知识讲解_定积分的简单应用(基础)

知识讲解_定积分的简单应用(基础)
知识讲解_定积分的简单应用(基础)

定积分的简单应用

【学习目标】

1.会用定积分求平面图形的面积。

2.会用定积分求变速直线运动的路程

3.会用定积分求变力作功问题。

【要点梳理】

要点一、应用定积分求曲边梯形的面积

1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积:

()[()()]b b

a

a

S f x dx f x g x dx ==-??

2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线

()y f x =(0)(≤x f )围成的曲边梯形的面积:

()()[()()]b

b b

a

a

a

S f x dx f x dx g x f x dx =

=-=-?

??

3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上

()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积:

()c

a

S f x dx =

+

?

()b

c

f x dx ?

=()c a

f x dx -?+()b

c

f x dx ?.

4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围

成图形的面积:

1212[()()]()()b b b

a

a

a

S f x f x dx f x dx f x dx =-=-???

要点诠释:

研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积;

② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值);

要点二、求由两条曲线围成的平面图形的面积的解题步骤

(1)画出图形;

(2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式;

(5)运用微积分基本定理计算定积分,求出平面图形的面积。

要点三、定积分在物理中的应用

① 速直线运动的路程

作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间

[,]a b 上的定积分,即()b

a

S v t dt =?.

②变力作功

物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W =

()b

a

F x dx ?

.

要点诠释:

1. 利用定积分解决运动路程问题,分清运动过程中的变化情

况是解决问题的关键。应注意的是加速度的定积分是速度,速度的定积分是路程。 2. 求变力作功问题,要注意找准积分变量与积分区间。 【典型例题】

类型一、求平面图形的面积

【高清课堂:定积分的简单应用 385155 例1】

例1.计算由两条抛物线2

y x =和2

y x =所围成的图形的面积.

【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

【解析】

2

01y x x y x

?=??==?

=??及,所以两曲线的交点为(0,0)

、(1,1), 面积

S=1

20

x dx =-??,

所以1

3

1232

0021211

d 3

3333S x x x x x ??=

-=-=-= ????

?

【总结升华】1. 两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的

面积的差得到。

2. 在直角坐标系下求平面图形的面积的四个步骤: ⑴.作图象;

⑵.求交点,定积分上、下限; ⑶.用定积分表示所求的面积; ⑷.微积分基本定理求定积分。 举一反三:

【变式】求曲线x y 2log =与曲线)(log x y -=42以及x 轴所围成的图形面积。 【答案】所求图形的面积为

dy dy y f y g S y ?

?

?-=

-1

1

224)()()(【=

e e y y 210224224log |)log -=?-=(

例2. 计算由直线y=x ―3和抛物线y 2

=4x 所围成的平面图形的面积。 【思路点拨】画出简图,结合图形确定积分区间。

【解析】 画出直线y=x ―3和曲线y 2

=4x 。

则所求平面图形的面积为如图1-5-3-7所示的阴影部分面积,解方程组2

34y x y x

=-??

=?

得交点A (1,―2),B (9,6)。

又直线y=x ―3与x 轴交于点D (3,0),过A 、D 作x 轴的垂线把阴影分割成 S 1、S 2、S 3、S 4四部分,则根据定积分的几何意义有

1234S S S S S =+++

3

9

1

3

3

01

(3)]d (3)d x x x x x x =

+-+

-+

-?

???

9

31

3

333

2

22

221003441413333232

x x x x x x x ????=+-+++- ? ?????

324481494913272799333

232322??????????

=?+?-+-?++--- ? ? ? ???????????

??

41

(1822133

=-+

+=。 【总结升华】 从图形可以看出,所求图形的面积可以转化为一个梯形与两个曲线三

角形面积的差,进而可以用定积分求出面积。为了确定出被积函数和积分的上、下限,我们需要求出直线与曲线的交点的横坐标。 举一反三:

【变式1】如右图,求直线y=2x+3与抛物线y=x 2

所围成的图形面积。 【答案】由方程组2

23y x y x

=+??

=?可得x 1=―1,x 2=3。

令3

11

(23)d S x x -=

+?

,3

221

d S x x -=?,

取2

()3F x x x =+,

则'()23F x x =+,从而3

11(23)d (3)(1)20S x x F F -=+=--=?。

取3

1()3

G x x =,则2'()G x x =, 则3

21

282d (3)(1)3

S x x G G -=

=--=

?

。 ∴12323

S S S =-=

。 【高清课堂:定积分的简单应用 385155 例2】 【变式2】计算由直线4y x =-

,曲线y =x 轴所围图形的面积S.

【答案】作出直线4y x =-

,曲线y =

解方程组4

y y x ?=??

=-??

得直线4y x =-

与曲线y =

8,4) .

直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S

2

8

4

4

[(4)]x dx =+--?

?

?

334

82822044

140||(4)|23

x x x =-=. 类型二、求变速直线运动的路程

例3.物体A 以速度231v t =+在一直线上运动,在此直线上与物体A 出发的同时,物体B 在物体A 的正前方5m 处以10v t =的速度与A 同向运动,问当两物体何时相遇?相遇时物体

A 的走过的路程是多少?(时间单位为:s ,速度单位为:m/s ) 【思路点拨】

对速度函数积分即可得物体A 所走过的路程,从而根据题意建立方程进行求解。 【解析】设A 追上B 时,所用的时间为0t 依题意有B 5A S S =+

20

(31)105t t t dx tdx +=+?

?,3200055t t t +=+,22000(1)5(1)t t t +=+,0t =5 (s)

所以 A S =2

055t +=130 (m)

因此5秒后两物体相遇,此时物体A 走过了130米。

【总结升华】利用定积分解决物理问题,分清运动过程中的变化情况是解决问题的关键。应

注意的是加速度的定积分是速度,速度的定积分是路程。 举一反三:

【变式】一辆汽车的速度-时间曲线如图1-5-3-9,求该汽车在这1 min 内行驶的路程。

【答案】由图象可得3 [0,10)()30 [10,40)1.590 [40,60]t t v t t t t ∈??

=∈??-+∈?

由变速直线运动的路程公式可得

104060

10

40

3d 30d ( 1.590)d S t t t t t =++-+???

60

10402210040

333090135024t t t t ??=++-+= ???。

故该汽车在1 min 内行驶的路程是1350 m 。

类型三、求变力做功

例4. 一物体在变力2

36

()(N)F x x =作用下沿坐标平面内x 辆正方向由x=8处运动到x=18处,求力()F x 做的功。

【思路点拨】对变力F 进行定积分即可得变力所作的功。 【解析】 如右图,阴影部分的面积即()F x 所做的功。

18

18

12

88

36d 36S x x x -==-?

1

1

95

(3618)(368)(2)22

--??=-?--?=---= ???, ∴()F x 做的功5

J 2

W =

。 【总结升华】求变力作功问题,一般利用定积分加以解决,但要注意寻找积分变量与积分区间。 举一反三:

【高清课堂:定积分的简单应用 385155 例5】 【变式】

求证: 把质量为m (单位kg )的物体从地球的表面升高h (单位:m )处所做的功W = G ·

()

Mmh

k k h +,

其中G 是地球引力常数,M 是地球的质量,k 是地球的半径.

【答案】 根据万有引力定律,知道对于两个距离为r ,质量分别为m 1、m 2的质点,它们之

间的引力f 为f = G ·

12

2

m m r ,其中G 为引力常数. 则当质量为m 物体距离地面高度为x (0≤x ≤h )时,地心对它有引力f (x ) = G ·

2

()Mm k x +故该物体从地面升到h 处所做的功为 0

()h

W f x =?d x =2

()h

Mm G k x ?

+?·d x = GMm 2

01()h k x +?dx = GMm 01()|h

k x -+ =11()()

Mnh

GMm G k h k k k h -

+=?

++. 类型四、定积分的综合应用

例5. 在曲线y=x 2

(x ≥0)上某一点A 处作一切线,使之与曲线以及x

轴所围成图形

的面积为

1

12

,求: (1)切点A 的坐标。

(2)过切点A 的切线方程。

【思路点拨】切线的斜率即是函数在切点处的导数值,再由积分式算出围成图形的面积。 【解析】 如图,设切点A (x 0,y 0),

由y '=2x 知过A 点的切线方程为y ―y 0=2x 0(x ―x 0),即2

002y x x x =-。 令y=0,得02x x =

,即0,02x C ??

???

。 设由曲线与过A 点的切线及x 轴所围成图形的面积为S ,

ABC AOB S S S ??=-曲边

00

2

3300

011d 33

x

x AOB S x x x x ?===?

曲边,

2300001112224

ABC x S BC AB x x x ??

?=

?=-?= ???。 即3330001111341212

S x x x =

-==。 所以x 0=1,从而切点A (1,1),切线方程为2x ―y ―1=0。

【总结升华】 本题将导数与定积分联系起来,解题的关键是求出曲边△AOB 的面积,所以设出切点A 的坐标,利用导数的几何意义写出切线方程,然后利用定积分求出所围成平面图形的面积,从而确定切点A 的坐标,使问题解决。 举一反三:

【变式】 有一直线与抛物线y=x 2

相交于A,B 两点,AB 与抛物线所围成的

图形的面积恒等于

3

4

,求线段AB 的中点P 的轨迹方程. 【答案】 如图所示,设抛物线上的两点为A(a,a 2

),B(b,b 2

),

不妨设a

则S=3

4

)a b (61dx ]x ab x )b a [(3b

a 2

=-=--+??b-a=2(※),

设AB 的中点P(x,y),则x=2

b a +, y=2b a 2

2+,

由(※)式得x=a+1,y=a 2+2a+2,消去参数a,可得y=x 2

+1, ∴线段AB 的中点P 的轨迹方程为y=x 2

+1.

定积分的简单应用求体积

定积分的简单应用求体 积 Document number:BGCG-0857-BTDO-0089-2022

定积分的简单应用(二) 复习: (1) 求曲边梯形面积的方法是什么 (2) 定积分的几何意义是什么 (3) 微积分基本定理是什么 引入: 我们前面学习了定积分的简单应用——求面积。求体积问题也是定积分的一个重要应用。下面我们介绍一些简单旋转几何体体积的求法。 1. 简单几何体的体积计算 问题:设由连续曲线()y f x =和直线x a =,x b =及x 轴围成的平面图形(如图甲) 绕x 轴旋转一周所得旋转体的体积为V ,如何求V 分析: 在区间[,]a b 内插入1n -个分点,使0121n n a x x x x x b -=<<<<<=,把曲线()y f x =(a x b ≤≤)分割成n 个垂直于x 轴的“小长条”,如图甲所示。设第i 个“小长条”的宽是1i i i x x x -?=-,1,2,,i n =。这个“小长条”绕x 轴旋转一周就得到一个厚度是i x ?的小圆片,如图乙所示。当i x ?很小时,第i 个小圆片近似于底面半径为()i i y f x =的小圆柱。因此,第i 个小圆台的体积i V 近似为2()i i i V f x x π=? 该几何体的体积V 等于所有小圆柱的体积和:

2221122[()()()]n n V f x x f x x f x x π≈?+?+ +? 这个问题就是积分问题,则有: 22()()b b a a V f x dx f x dx ππ==?? 归纳: 设旋转体是由连续曲线()y f x =和直线x a =,x b =及x 轴围成的曲边梯形绕x 轴旋转而成,则所得到的几何体的体积为2()b a V f x dx π=? 2. 利用定积分求旋转体的体积 (1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数 (2) 分清端点 (3) 确定几何体的构造 (4) 利用定积分进行体积计算 3. 一个以y 轴为中心轴的旋转体的体积 若求绕y 轴旋转得到的旋转体的体积,则积分变量变为y ,其公式为 2()b a V g y dy π=? 类型一:求简单几何体的体积 例1:给定一个边长为a 的正方形,绕其一边旋转一周,得到一个几何体,求它的体积 思路: 由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。 解:以正方形的一个顶点为原点,两边所在的直线为,x y 轴建立如图所示的平面直角 坐标系,如图:BC y a =。则该旋转体即为圆柱的体积为: 22300|a a V a dx a x a πππ=?==?

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

§1.7定积分的简单应用

定积分的简单应用 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==? =??及,所以两曲线的交点为 (0,0)、(1,1),面积S=1 1 20 xdx x dx = -? ?,所以 ?1 2 0S =(x -x )dx 321 3 023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 2 x y =y x A B C D O

巩固练习 计算由曲线36y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-与曲线2y x =的交点的横坐标, 直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图1. 7一2 阴影部分的 面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 334 82822044 2222140||(4)|23 x x x =+-=. 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图, 再借助图形直观确定出被积函数以及积分的上、下限. 例3.求曲线], [sin 320π∈=x x y 与直线,,3 20π==x x x 轴所围成的图形面积。

高中数学选修2-2同步练习题库:定积分的简单应用(较难)

定积分的简单应用(较难) 1、由直线,,曲线及轴所围成的封闭图形的面积是() A. B. C. D. 2、已知,,则展开式中,项的系数为()A. B. C. D. 3、的值为( ) A.0 B. C.2 D.4 4、设则多项式的常数项是() A.-332. B.332 C.166 D.-166 5、由直线,曲线及轴所围图形的面积为() A. B. C. D.

积是() A. B. C. D. 7、函数的图象与轴所围成的封闭图形的面积为()A. B. C. D. 8、设,则多项式的常数项() A. B. C. D. 9、曲线在点(1,)处的切线与坐标轴围成的三角面积为()A. B. C. D. 10、的值为 A.0 B. C.2 D.4

积是() A.1 B. C. D.2 12、设下列关系式成立的是() A. B. C. D. 13、设,则的值为() A. B. C. D. 14、 A. B. C. D. 15、若S1=dx,S2=dx,S3=dx,则S1,S2,S3的大小关系为( ) A.S1<S2<S3 B.S2<S1<S3 C.S2<S3<S1 D.S3<S2<S1 16、由曲线,直线及y轴所围成的图形的面积为()

A. B.4 C. D.6 17、下列等于1的积分是() A. B. C. D. 18、下列计算错误的是()A. B. C. D. 19、由曲线所围成的封闭图形的面积为 A. B. C. D. 20、如图,阴影部分的面积是( ) A.2 B.2- C. D. 21、由曲线围成的封闭图形面积为() A. B. C. D.

定积分的简单应用(6)

§1.7 定积分的简单应用(一) 一:教学目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 解:201y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 1 20 xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图阴影部分的面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 33482822044 2222140||(4)|3323 x x x =+-=. 例3.求曲线],[sin 3 20π ∈=x x y 与直线,,3 20π ==x x x 轴所围成的图形面积。 答案: 2 33 2320 = -=? ππo x xdx S |cos sin = 练习 1、求直线32+=x y 与抛物线2x y =所围成的图形面积。 答案:3 32 33323132 23 1= -+=--? |))x x x dx x x S (-+(= 2、求由抛物线342-+-=x x y 及其在点M (0,-3) 2 x y =y x = A B C D O

定积分知识点总结

定积分知识点总结 航空航天大学 权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性

如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()( 特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道

最新定积分的简单应用测试题

一、选择题 1. 如图所示,阴影部分的面积为() 2. 如图所示,阴影部分的面积是() 面积(如图)是( A. 2(x2—1)dx '0 B . | 2(x2—1)dx| ■ 0 C. 2|x2 —1|dx D. '(x2—1)dx + 2(x2—1)dx J c J ▲ 0 1 4.设f(x)在[a, b]上连续,则曲线f(x)与直线x= a, x= b, y= 0 围成图形的面积为() A. b f(x)dx B. | b f(x)dx| 'a ' a 精品文档 A. b f(x)dx 'a C. b[f(x) —g(x)]dx 'a B. b g(x)dx 'a D. b[g(x)—f(x)]dx -a C.32 肿5 D.35 3.由曲线y= x2—1、直线x= 0、x= 2和x轴围成的封闭图形的

C. b |f(x)|dx 'a D .以上都不对 5. 16 曲线y =1—w 与x 轴所围图形的面积是() D.5 1 2 比较积分值0 e x dx 和 1 2 1 — U x dx 大于 0e x dx 2 1 C . U x dx 等于 0 7.由曲线y = x 2, y = x 3围成的封闭图形面积为( ) B.1 D. 12 6. 1 x >e dx fe"dx 的大小() 1 2 , 1 B . o e xdx 小于 ° 1 2 1 - D . o e x dx 和°e Xjx 不能比较 e dx A-12 Cl 8.求 1 /dx 的解( ) C . -1 9.求 12 x 2dx 的解( ) A.* C .- 3 10 .过原点的直线I 与抛物线y =x 2— 2ax (a>0)所围成的图形面 积 为9a 3,则直线I 的方程为( ) A . y = iax B . y = ax C . y = — ax D . y = — 5ax

定积分的概念和性质公式

1.曲边梯形的面积 设在区间*I上:;--L ,则由直线工’=■<、応匚、V 1及曲线■V °/W所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间-八「中任意插入若干个分点将宀…-分成n个小区间 兀5 5 <…,小区间的长度&广呜一為」(T三12… 在每个小区间- :-一I〕上任取一点-■■作乘积 求和取极限:则面积取极限

J=1 其中;'1 ; J L厂V '…,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度| I「是上*的连续函数,且1■求在这段时间内物体所经过的路程。 分割求近似:在「〔[内插入若干分点■- _ "将其分成 n 个小区间「—,小区间长度■- _■'.-1, ■1丄。任取? _ _ 做 求和取极限:则路程一取极限 将分成n个小区间-,其长度为2 - —,在每个小区间 上任取一点「:,作乘积■- ' ■',并求和 r , 记1■r 1,如果不论对怎样分法,也不论小区间[:■ 上的 点「怎样取法,只要当「「I;时,和总趋于确定的极限,则称这个极限 为函数-—I在区间上的定积分,记作J ',即 定义设函数」?、在L?二上有界,在-亠二中任意插入若干个分点

其中叫被积函数,一’,八叫被积表达式,'‘叫积分变量,二叫积分下限, 「叫积分上限,-’」叫积分区间。■叫积分和式。 说明: 1.如果(*)式右边极限存在,称-’’」在区间-仁丄可积,下面两类函数在区间 上…-可积,(1)」在区间-LL■- - 上连续,则■' J'-在可积。(2)-’八在区间-‘丄-上有界且只有有限个间断点,则在--"-■ 上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所 3.

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

定积分的简单应用

定积分的简单应用 海口实验中学陈晓玲 一、教材分析 “定积分的简单应用”是人教A版《普通高中课程标准实验教科书数学》选修2-2第一章1.7的内容。从题目中可以看出,这一节教学的要求就是让学生在充分认识导数与积分的概念,计算,几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,在学习过程中了解导数与积分的工具性作用,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 二、教学目标(以教材为背景,根据课标要求,设计了本节课的教学目标) 1、知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 三、教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题。 四、教学用具:多媒体 五、教学设计

教学环节教学设计师生 互动 设计意图 一、 创设情境 引出新课1、生活实例: 实例1:国家大剧院的主题构造 类似半球的构造,如何计算建造时中间玻璃段的使用面积? 边缘的玻璃形状属于曲边梯形,要计算使用面积可以通过计算 曲边梯形的面积实现。 实例2:一辆做变速直线运动的汽车,我们如何计算它行驶的 路程? 2、复习回顾: 如何计算曲边梯形的面积? 3、引入课题: 定积分的简单应用 学生:观 察。 教师:启 发,引导 学生:思 考,回 忆。 学生:疑 惑,思 考,感 受。 教师:启 发,引 导。 学生:复 习,回忆 老师:引 入课题 数学源于生活,又服 务于生活。 通过对国家大剧院的 观察,创设问题情境,体 验数学在现实生活中的 无处不在,激发学生的学 习热情,引导他们积极主 动的参与到学习中来。 启发学生把物理问题 与数学知识联系起来,训 练学生对学科间的思维 转换和综合思维能力。 学生感受定积分的工 具性作用与应用价值。 在生活实例的启发 下,引导学生把所学知识 与实际问题联系起来,回 忆如何计算曲边梯形面 积。 这是这节课的知识基 础。 引入本节课的课题。 哎呀,里程表坏了,你 能帮我算算我走了多 少路程吗? x y o y f(x) = a b A ?=b a dx x f A) (

最新导数及其应用知识点经典习题集

导数及其应用 1、函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111 212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数在0x x =处的瞬时变化率是 ,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即= . 3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。 )(x f y =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000)(x f y =0x )(x f y =0x )(0'x f 0|'x x y =)(0'x f x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000

6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有: 7.用导数求函数单调区间的步骤:①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。 8.求可导函数f (x )的极值的步骤:(1)确定函数的定义域。(2) 求函数f (x )的导数 '()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区 间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值 9.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;

知识讲解_定积分的简单应用(基础)

定积分的简单应用 【学习目标】 1.会用定积分求平面图形的面积。 2.会用定积分求变速直线运动的路程 3.会用定积分求变力作功问题。 【要点梳理】 要点一、应用定积分求曲边梯形的面积 1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积: ()[()()]b b a a S f x dx f x g x dx ==-?? 2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线 ()y f x =(0)(≤x f )围成的曲边梯形的面积: ()()[()()]b b b a a a S f x dx f x dx g x f x dx = =-=-? ?? 3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上 ()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积: ()c a S f x dx = + ? ()b c f x dx ? =()c a f x dx -?+()b c f x dx ?. 4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围

成图形的面积: 1212[()()]()()b b b a a a S f x f x dx f x dx f x dx =-=-??? 要点诠释: 研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积; ② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值); 要点二、求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形; (2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式; (5)运用微积分基本定理计算定积分,求出平面图形的面积。 要点三、定积分在物理中的应用 ① 速直线运动的路程 作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间 [,]a b 上的定积分,即()b a S v t dt =?. ②变力作功 物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W = ()b a F x dx ? . 要点诠释: 1. 利用定积分解决运动路程问题,分清运动过程中的变化情 况是解决问题的关键。应注意的是加速度的定积分是速度,速度的定积分是路程。 2. 求变力作功问题,要注意找准积分变量与积分区间。 【典型例题】 类型一、求平面图形的面积 【高清课堂:定积分的简单应用 385155 例1】 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

巩固练习_定积分的简单应用(基础)125

【巩固练习】 一、选择题 1.如右图所示,阴影部分面积为( ) A .()d b a f x x ? B .()d b a g x x ? C . [()()]d b a f x g x x -? D .[()()]d b a f x g x x +? 2.已知做自由落体运动的物体的速度为v=gt ,则物体从t=0到t=t 0所走过的路程为( ) A . 2013gt B .2 gt C .2012gt D .2014 gt 3.如图1-5-3-14所示,阴影部分的面积是( ) A .23 B .23- C . 323 D .35 3 4.将边长1米的正方形薄片垂直放于液体密度为ρ的液体中,使其上边缘与液面距离为2米,则该正方形薄片所受液压力为( ) A . 3 2 d x x ρ? B .21 (2)d x x ρ+? C .10 d x x ρ? D .3 2 (1)d x x ρ+? 5.由抛物线y=x 2―x ,直线x=―1,x=1及x 轴围成的图形面积为( ) A . 23 B .1 C .43 D .5 3 6.某物体的运动方程S(t)=?t x dx xe 2 ,则此物体在t=2时刻的瞬间速度为( ) A.0 B.e 4 C.e 2 D.2e 4 7.在底面积为S 的圆柱形容器中盛有一定量的气体,在等温条件下,由于气体的膨胀,把容器中的一个活塞(面积为S )从点a 处推到b 处,则在移动过程中,气体压力所做的功为( )焦耳。 A .ln b k a B .ln b a C .(ln ln )k b a + D .ln k b 二、填空题 8.质点直线运动瞬时速度的变化为v (t ) = – 3sin t ,则 t 1 = 3至t 2 = 5时间内的位移是 ________。(只列式子) 9. 由曲线y=x 2+1,x+y=3,及x 轴,y 轴所围成的区域的面积为: . 10.如图1-5-3-16所示,将一弹簧从平衡位置拉到离平衡位置l m 处,则克服弹簧力所做的功为________。(弹簧的劲度系数为k )

定积分知识点总结.doc

定积分知识点总结 北京航空航天大学 李权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性 如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()(

特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下 和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道 i i i M f m ≤≤)(ξ 将这些不等式逐项各乘以i x ?(i x ?是正数)并依i 求其总和,可以得到

1.7定积分的简单应用

§1.7定积分的简单应用(二课时) 一:教学目标 知识与技能:初步掌握利用定积分求曲边梯形的几种常见题型及方法;让学生深刻理解定积 分的几何意义以及微积分的基本定理。 过程与方法:进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方 法 情感态度与价值观:体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功), 培养学生唯物主义思想。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程:(第一课时) 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x y x ?=?==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 20 0x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线3 6y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y = x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形 2 x y =y x A B C D O

(完整版)定积分知识点汇总.doc

定积分 一.定积分的几何意义 ① b f ( x) 0 时, f (x)dx S a b f ( x) 0 时, f (x)dx S a f(x) 有正有负时, b c d a f ( x)dx S1, f ( x)dx S2 , f ( x)dx S3 b c d b c d f ( x)dx a 面积和 S1 二.定积分基本性质 ①当 a b 时,b f ( x)dx 0. a b b ② kf ( x) dx k f (x)dx a a b b f (x)dx f ( x)dx f (x)dx S1 S2 S3. a b c b c d S2 S3 a f (x)dx f (x)dx f (x)dx b c b [ f ( x) g(x)] dx S a b b ③[ f1 ( x) f 2 ( x) f n (x)]dx f1 ( x)dx f 2 (x)dx f n (x)dx a a a a b c1 c2 b f ( x)dx ④ f (x)dx f ( x)dx f (x)dx a a c1 c n a ⑤若奇函数 ⑥若偶函数y f ( x) 在 [a, a] y f ( x) 在 [a, a] 上连续不断,则 f (x)dx 0 a a f (x)dx a 上连续不断,则 2 f ( x)dx a 0

微分基本定理: 如果 f ( x) 是区间 [ a, b] 上的连续函数,且 F '( x) f ( x) ,则 b a b F (b) F (a) (牛顿—莱布尼兹公式) f ( x)dx F ( x) a 1. 直线 x 0, x , y 0 与曲线 y sin x 所围成图形的面积用定积分表示为 2. 用定积分表示抛物线 y x 2 2x 3 与直线 y x 3 所围成图形的面积为 3. 曲线 y x 2 1, x 2, x 0, y 0 围成的阴影部分的面积用定积分表示为 4. 由曲线 y x 2 4, x 4, x 0, y 0 和 x 轴围成的封闭图形的面积是( ) 4 4) dx 4 (x 2 4)dx | A. ( x 2 B.| 0 4 4 | dx 2 4 4) dx C. | x 2 D . (x 2 4) dx( x 2 0 2 5. 计算下列定积分 3 1 2 dx (1)9 x 2 dx ( 2)4 4x 3 1

最新定积分的简单应用导学案

定积分的简单应用导 学案

定积分的简单应用导学案 学科:高二数学课型:新授课课时:2课时编写时间:2013-3-15 编写人:邓朝华审核人:陈平班级:姓名: 【导案】 【学习目标】 1.熟练掌握应用定积分求解平面图形的面积问题。 2.掌握应用定积分解决变速直线运动的路程和变力做功等问题。 3.培养学生的建模水平和解决实际问题的能力。 【学习重难点】 重点:应用定积分解决平面图形的面积、变速直线运动的路程和变力做功等问题使学生在解决问题的过程中体验定积分的价值。 难点:将实际问题化归为定积分的问题。 【学案】 1.计算平面图形面积的一般步骤 在利用定积分求平面图形的面积时,一般要先____________,再借助 ________________直观确定出____________________以及积分的____________。 2.变速直线运动的路程 作变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a, b]上的定积分,即s=____________________________. 仅供学习与交流,如有侵权请联系网站删除谢谢10

3.变力作功 (1)恒力F的作功公式 一物体在恒力F(单位:N)的作用下做直线运动,如果物体沿着与F相同的方向移动了s(单位:m),则力F所作的功为____________。 (2)变力F(x)的作功公式 如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F(x)相同的方向从x=a移动到x=b(a<b),那么变力F(x)所作的功为W=________________。 4.例题分析 【例1】计算由曲线y2=x, y=x2所围图形的面积S。 【例2】计算由直线y=x-4,曲线 以及x轴所围图形的面积S. 【例3】一辆汽车的速度-时间曲线如图所示。求汽车在这1min行驶的路程。 仅供学习与交流,如有侵权请联系网站删除谢谢10

数学北师大选修同步练习 第四章§定积分的简单应用 含解析

高手支招6体验成功 基础巩固 1.抛物线y=x 2-x 与x 轴围成的图形面积为( ) A. 81 B.1 C.61 D.2 1 答案:C 思路分析:所求面积S=- ?0 1 (x 2-x )dx=( 22x -33x )|10|10=-(31-21)=6 1 2.如果某质点的初速度v(0)=1,其加速度a(t)=6t,做直线运动,则质点在t=2 s 时的瞬时速度为 ( ) A.5 B.7 C.9 D.13 答案:D 思路分析:v(2)-v(0)= ?0 2 a(t)dt= ?0 2 6tdt=3t 2| 2 . ∴v(2)=v(0)+3×22=1+12=13. 3.曲线y 2=4ax,x=a 绕x 轴旋转所得的旋转体体积是( ) A.2πa 2 B.4πa 2 C.2πa 3 D.4πa 3 答案:C 思路分析:不妨设a >0,由旋转体体积公式可得:V=π ?0 a y 2dx=π ?0 a 4axdx=4πa( 2 1x 2)|0a =2πa 3. 4.若f(x)=???<-≥+, 0,, 0,32x x x x 则?-11f(x)dx=_____________. 答案: 6 23 思路分析: ?-11f(x)dx=?-10(-x)dx+?01(x 2+3)dx=-21x 2|01-+(31x 3+3x)|10=6 23 . 5.?-a a (xcosx-5sinx+2)dx=_____________. 答案:4a 思路分析:原式= ?-a a xcosxdx-?-a a 5sinxdx+?-a a 2dx,由于前两个积分的被积函数是奇函 数,画出图像,由定积分的几何意义可知,前两个积分值都为0.所以原式=?-a a 2dx=2x |a a -=4a. 6.如果 ?0 1 f (x )dx=1, ?0 2 f (x )dx=-1,则 ?12 f (x )dx=______________.

5.1 定积分的概念与性质-习题

1.利用定积分的定义计算下列积分: ⑴ b a xdx ? (a b <); 【解】第一步:分割 在区间[,]a b 中插入1n -个等分点:k b a x k n -=,(1,2,,1k n =-),将区间[,]a b 分为n 个等长的小区间[(1),]b a b a a k a k n n --+-+, (1,2,,k n =),每个小区间的长度均为k b a n -?=, 取每个小区间的右端点k b a x a k n -=+, (1,2,,k n =), 第二步:求和 对于函数()f x x =,构造和式 1 ()n n k k k S f x ==??∑1 n k k k x ==??∑1 ()n k b a b a a k n n =--=+ ?∑ 1()n k b a b a a k n n =--=+∑1 ()n k b a b a na k n n =--=+∑ 1()n k b a b a na k n n =--=+∑(1) []2 b a b a n n na n n ---=+? ^ 1()[(1)]2b a b a a n -=-+ ?-1 ()()22b a b a b a a n --=-+-? 1 ()()22b a b a b a n +-=--? 第三步:取极限 令n →∞求极限 1 lim lim ()n n k k n n k S f x →∞ →∞ ==??∑1 lim()( )22n b a b a b a n →∞ +-=--? ()(0)22 b a b a b a +-=--?()2b a b a +=-222b a -=, 即得 b a xdx ? 22 2 b a -=。

相关文档
最新文档