Macroscopic parameters of Fokker-Planck flows
课件——应用随机过程(英文版—G.A. PAVLIOTIS)

StochProc
January 16, 2011 2 / 367
This is a basic graduate course on stochastic processes, aimed towards PhD students in applied mathematics and theoretical physics.
The course will consist of three parts: Fundamentals of the theory of stochastic processes, applications (reaction rate theory, surface diffusion....) and non-equilibrium statistical mechanics.
Pavliotis (IC)
StochProc
January 16, 2011 5 / 367
3. PART III: NON-EQUILIBRIUM STATISTICAL MECHANICS. Derivation of stochastic differential equations from deterministic dynamics (heat bath models, projection operator techniques etc.). The fluctuation-dissipation theorem. Linear response theory. Derivation of macroscopic equations (hydrodynamics) and calculation of transport coefficients.
The emphasis of the course will be on the presentation of analytical tools that are useful in the study of stochastic models that appear in various problems in applied mathematics, physics, chemistry and biology.
湖南农业大学毕业论文

湖南农业大学全日制普通本科生毕业论文(设计)水稻陆两优996的临界氮稀释曲线测定与分析Determination and analysis of rice luliangyou 996critical nitrogen dilution curve学生姓名:衣启乐学号:201042144125年级专业及班级:2010级生态学(1)班指导老师及职称:刘向华副教授学院:生物科学技术学院湖南·长沙提交日期:2014年 5 月目录摘要:..................................................................................................................... - 2 - 关键词:................................................................................................................... - 2 - 1 前言..................................................................................................................... - 5 - 1.1立论背景............................................................................................................. - 5 - 1.2氮素水平对作物生物量积影响的研究进展..................................................... - 6 - 1.3作物临界氮浓度与稀释曲线的研究进展......................................................... - 6 -1.4本研究的目的和意义......................................................................................... - 7 -2 材料与方法......................................................................................................... - 8 - 2.1 试验材料............................................................................................................ - 8 - 2.2 试验设计............................................................................................................ - 8 - 2.3 测定项目.......................................................................................................... - 8 - 2.3.1 干物质测定................................................................................................... - 8 - 2.3.2 氮的测定......................................................................................................... - 8 - 2.3.3 成熟期产量测定........................................................................................... - 9 - 3结果与分析............................................................................................................ - 9 - 3.1 数据处理.......................................................................................................... - 9 - 3.2 实验水稻移栽后地上部干重变化情况............................................................ - 9 - 3.3 不同施氮处理下水稻产量分析...................................................................... - 10 -3.4 临界氮的计算.................................................................................................. - 10 -4 讨论与结论......................................................................................................... - 11 - 4.1氮素水平对水稻氮浓度的效应及其临界氮浓度模型................................... - 11 - 4.1.1水稻临界氮浓度模型分析............................................................................ - 11 - 4.1.2临界氮累积模型在氮素运筹中的应用........................................................ - 11 - 4.2结论................................................................................................................... - 12 - 参考文献................................................................................................................. - 12 - 致谢..................................................................................................................... - 15 -水稻陆两优996的临界氮稀释曲线测定与分析学生:衣启乐指导老师:刘向华(湖南农业大学生物科学技术学院,长沙 410128)摘要:本实验选择水稻陆两优996在湖南农业大学(长沙)试验基地进行,2013年3月23--7月20日期间,对水稻田进行临界氮测定试验,氮素浓度处理依次为N1(0kg/hm2),N2(60kg/hm2),N3(95kg/hm2),N4(130kg/hm2),N5(165kg/hm2),N6(200kg/hm2),N7(235kg/hm2),N8(270kg/hm2)。
火龙罐疗法联合常规治疗在AECOPD_患者中的应用效果

- 143 -*基金项目:广东省中医药局立项项目(202105211511578370)①梅州市中医医院 广东 梅州 510000火龙罐疗法联合常规治疗在AECOPD患者中的应用效果*韩文聪① 陈晓英① 郑小芬① 邹爱萍①【摘要】 目的:探讨火龙罐疗法联合常规治疗在慢性阻塞性肺疾病急性加重期(AECOPD)患者中的应用效果。
方法:选取2022年1—10月在梅州市中医医院住院的100例AECOPD 患者作为研究对象,根据临床实际情况以及患者意愿,且按是否接受火龙罐治疗分为治疗组与对照组,各50例。
对照组给予常规治疗,治疗组给予火龙罐疗法联合常规治疗。
比较两组治疗前后症状积分、血气指标[动脉血氧分压(PaO 2)、动脉血二氧化碳分压(PaCO 2)],治疗前及随访3个月、6个月生活质量(ADL)与6分钟步行试验(6MWT)变化,不良反应发生情况。
结果:治疗后,两组症状积分、PaCO 2较治疗前降低,且治疗组低于对照组,两组PaO 2较治疗前提高,且治疗组高于对照组,差异有统计学意义(P <0.05)。
随访3个月、6个月,两组ADL 评分、6MWT 距离较治疗前提高,随访6个月两组各指标较随访3个月提高,且治疗组高于对照组,差异有统计学意义(P <0.05)。
两组治疗期间不良反应发生率比较,差异无统计学意义(P >0.05)。
结论:火龙罐疗法联合常规治疗AECOPD 效果满意,可缓解患者的临床症状,改善血气指标,提高生活质量及步行能力,同时不增加不良反应发生率。
【关键词】 慢性阻塞性肺疾病急性加重期 火龙罐疗法 康复 血气指标 doi:10.14033/ki.cfmr.2024.06.036 文献标识码 B 文章编号 1674-6805(2024)06-0143-04 Application Effect of Fire Dragon Cup Therapy Combined with Conventional Treatment in Patients with AECOPD/HAN Wencong, CHEN Xiaoying, ZHENG Xiaofen, ZOU Aiping. //Chinese and Foreign Medical Research, 2024, 22(6): 143-146 [Abstract] Objective: To investigate the application effect of Fire Dragon Cup therapy combined with conventional treatment in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Method: A total of 100 patients with AECOPD who hospitalized in Meizhou Traditional Chinese Medicine Hospital from January to October 2022 were selected as the research objects, according to the actual clinical situation and patients' wishes, they were divided into the treatment group and the control group according to whether they received Fire Dragon Cup treatment, with 50 cases in each group. The control group was given conventional treatment, and the treatment group was given Fire Dragon Cup therapy combined with conventional treatment. The symptom scores, blood gas indexes [arterial partial pressure of oxygen (PaO 2), arterial partial pressure of carbon dioxide (PaCO 2)] before and after treatment, quality of life (ADL) and 6-minute walking test (6 MWT) before treatment, 3 months and 6 months after follow-up, and incidence of adverse reactions were compared between two groups. Result: After treatment, the symptom scores and PaCO 2 of two groups were lower than those before 弹力纤维降解的影响及机制[J].中华实用诊断与治疗杂志,2020,34(1):9-12.[19] SAN NORBERTO E M,REVILLA Á,Fernandez-Urbon A,et al.Vascular calcification progression in patients with end-stage chronic kidney disease[J]. Int Angiol,2021,40(6):528-536.[20] LI H,YANG M. Ligustrazine activate the PPAR-γ pathwayand play a protective role in vascular calcification[J]. Vascular,2022,30(6):1224-1231.[21] WING T T,ERIKSON D W,BURGHARDT R C,et al. OPNbinds alpha V integrin to promote endothelial progenitor cell incorporation into vasculature[J]. Reproduction,2020,159(4):465-478.[22] OGATA H,FUKAGAWA M,HIRAKATA H,et al. Effect oftreating hyperphosphatemia with lanthanum carbonate vs calcium carbonate on cardiovascular events in patients with chronic kidney disease undergoing hemodialysis: the LANDMARK randomized clinical trial[J]. JAMA,2021,325(19):1946-1954.[23] SHIRAKAWA K,SANO M. Osteopontin in cardiovasculardiseases[J]. Biomolecules,2021,11(7):1047.[24] DE VRIESE A S,CALUW É R,PYFFEROEN L,et al.Multicenter randomized controlled trial of Vitamin K antagonist replacement by Rivaroxaban with or without Vitamin K 2 in hemodialysis patients with atrial fibrillation: the Valkyrie Study[J]. J Am Soc Nephrol,2020,31(1):186.(收稿日期:2023-08-22) 慢性阻塞性肺疾病(COPD)属于常见的一种慢性气道疾病,COPD分为稳定期与急性加重期[1]。
ExploraVAC MAX 全面封闭热吸收试验室试验室说明书

ExploraVAC™ M A X f u l l yenclosed thermal vacuum testchambers offer a large viewportwindow with LED chamberlighting, integrated touch screendisplay, front door quick-latchclosure, and a spacious LF 200side test port for feedthroughconnections.Heating and Cooling LimitsThermally isolated platen forsample temperature controlfrom -180 to +400 °C. Chamberwall heating, with a maximumwall temperature of 140 °C,is available with set point andramp rate controls.Pressure ControlAltitude simulation with a ceilingof 280,000 feet using the dryscroll pump alone. When crossedover and evacuated by thehigh-vacuum turbomolecularpump, its pressure simulatesdeep space, in the 10-7 T orr range.I/O ConnectionsA digital feedthrough back panelhas multiple ports for runningthe system from a PC. WithAutoExplor™ software you cancreate, run, save, and repeatcomplex system recipes, log data,and retrieve real time systemgenerated data.The ExploraVAC MAX™ series of thermal vacuum test chamber instruments are designed to allow users to quickly tailor experiments and gather diagnostic data as the product is subjected to the extreme stress factors of vacuum and temperature. They empower the operator with complete laboratory control over internal chamber test conditions and are ideal for prototype device exploration during the product research and development phase. These instruments are built with innovation in mind and can be configured to meet your thermal vacuum product testing needs.Ideal Vacuum’s innovative AutoExplor™ software is the leading edge in the field of thermal vacuum test chamber automation and control. It brings life and functionality to our ExploraVAC™ series of thermal vacuum test chambers. It is intuitive and easy to use. In just minutes, a new operator can learn how to use its many functions and features. The software gives the operator the power to precisely set all test conditions and confirm that they were met. Features include manual device control, automated recipe control, data logging, and test report generation. Complex multistep test recipes can be created, where each step may control the on/off state, setpoint, and ramp rate of multiple device functions. The user can quickly generate Environmental Thermal Vacuum Test Reports from recipe data log files. This software ships factory-installed on systems with a built-in touch screen display or may be installed on a PC for remote control.The Home Screen is thel a n d i n g p a g e f o r t h esoftware. It offers manualcontrol of all componentsin the system and has threemain sections: manualoperation, running graph,and device panel. Themanual operation sectionallows control over allinstalled devices. Therunnin g g ra ph plot ssensor output values asa function of time. Thedevice panel reports thestatus of all devices anddisplays current operatingparameters.The Recipe Creation section facilitates designing and updating recipes in a step-by-step process, where each step has its own set of device setpoints, ramp rates, and stated conditions. The conditions dictate when the system moves to the next step. The left column shows all the devices and controls installed on the system. The main center section is a scrollable zone which shows each independent step and the controls that are active for that step. Recipe steps are fully programmable to meet any series of unique test condition requirements, including step looping and logical condition grouping (multiple conditions can be joined together with AND or OR to meet the test condition requirements).ENTRY LEVEL & BASIC (Rough Vacuum)Rough vacuum is used to store delicate chemical samples, as a pristine environment for spectroscopy, in vacuum coating processes, to remove water or other residual vapors, in plastic curing, and in freeze drying. Whatever the end application, Ideal Vacuum’s ExploraVAC Entry Level and Basic vacuum systems deliver 20 mTorr at the push of a button.CHEMICAL RESISTANTMany chemicals and chemical processes, such as epoxy and plastic curing, freeze drying, chemical storage, harsh environmental testing, and thermal bakeout, involve or release corrosive, caustic, or organic chemicals such as ozone, mineral acids, and organic acids. Ideal Vacuum’s ExploraVAC Corrosive Chemical Tolerant vacuum systems are equipped with chemical-series, oil-free dry scroll vacuum pumps with impressive resistance against most chemical vapors.VACUUM OVENVacuum ovens are used by the medical, pharmaceutical, dietary supplement, and cannabis industries to quickly and gently dry heat-sensitive substances and extracts. Vacuum ovens are used by the plastic, rubber, and paper industries to remove dissolved or trapped gases, cure and crosslink resin, and outgas residual monomer to increase strength and rigidity in finished products. Ideal Vacuum’s ExploraVAC MAX Vacuum Oven system has full chamber heating up to 140 °C and delivers pressures down to 20 mTorr.PLASTIC & EPOXY CURINGQuality, high-strength, low-outgassing, and low-leaching plastics and epoxies are possible through heated vacuum treatment to remove bubbles and dissolved gases in the liquid resin and bake out unreacted monomer in the finished product. Ideal Vacuum’s ExploraVAC Epoxy Outgassing and Curing vacuum systems deliver pressures as low as 20 mTorr and have a heated platen for precise sample temperature control.ALTITUDE SIMULATION, RAPID COMPRESSION & DECOMPRESSIONAerospace and aeronautical engineers must design parts, components, and electronics that operate under variable pressure experienced during takeoff, cruising at high altitude, and landing. Ideal Vacuum’s ExploraVAC Altitude Simulation, Rapid Compression, and Decompression systems deliver precise pressure and altitude control from local elevation to 280,000 ft with a maximum simulated rate of rise of 22,500 feet per minute.AEROSPACE, AERONAUTICAL ENGINEERING, & ENVIRONMENTAL TESTINGAerospace, aeronautical, and mechanical engineers must design, test, and validate parts, components, and devices that can survive any temperature, pressure, and atmospheric composition. Ideal Vacuum’s ExploraVAC Aerospace, Aeronautical Engineering, and Environmental Testing vacuum system is capable of temperature control from -70 to 400 °C, pressure control down to 20 mTorr, and has an internally regulated purge gas port for introduction of any user-selected gas or gas mixture.DEEP FREEZE DRYINGFreeze drying is used by the medical, biological science, and material synthesis communities to remove solvent and contaminants while maintaining sample shape and inner geometry down to the cellular or microscopic level. Ideal Vacuum’s ExploraVAC Deep Freeze Drying vacuum systems have a high surface area platen that delivers temperatures down to -70 °C and a chemical resistant vacuum pump to handle condensable vapors.HIGH VACUUMHigh vacuum is necessary for precision scientific instrumentation, optical and semiconductor coating and processing, and to simulate the deep vacuum found in space. Whatever the end application, Ideal Vacuum’s ExploraVAC High Vacuum systems deliver 1×10-7 Torr at the push of a button.SPACE SIMULATIONSatellites, CubeSats, and spacecraft must be prepared to experience constant high vacuum and huge temperature swings as they orbit the earth. Ideal Vacuum’s ExploraVAC Space Simulation systems have a heated and cooled platen that delivers precise device temperature control from -70 to 400 °C and can apply pressures as low as1×10-7 Torr.UNIVERSALWhen you need one chamber to do everything, Ideal Vacuum’s ExploraVAC Universal test chamber comes equipped with all features necessary for chemical tolerance, rough vacuum, pressure control from ambient to 20 mTorr, high vacuum, temperature control from -70 to 400 °C, and user-selected gas purging.Our ExploraVAC thermal vacuum test chambers are configurable with many different chamber sizes and options to meet your product testing needs. They are available with our modular aluminum vacuum cube chambers. Our modular Ideal Vacuum Cube chambers provide the ultimate on-site, user-reconfigurable, environmental simulation system. 9, 12, or 24-inch modular Ideal Vacuum Cubes have chamber plates that may be easily swapped out by the operator and quickly reconfigured for dif-ferent applications.ExploraVAC systems can also be ordered with welded steel chambers with 12, 16, 20, or 24-inch interior cubic dimensions, providing up to 8 ft3 of chamber volume. System options include chamber heating up to 140 °C, a heated and cooled platen from -180 to +400 °C, chemical resistant dry scroll vacuum pumps, high-vacuum turbomolecular pumps for space simulation down to 10-7 Torr, pressure control for altitude and rapid depressurization simulation, and a purge port for introduction of pressur-ized gas up to 250 PSIG.TYPE ExploraVAC TM MAX ExploraVAC TMPN SPECIFICATIONS PN SPECIFICATIONSEntry-Level P101210324-in. SS Chamber & nXDS10i P101209912-in. SS Chamber w/ Viewport & nXDS10i Basic P101210424-in. SS Chamber & nXDS20i P101209120-in SS Chamber w/ Viewport & nXDS20i Corrosive P101211424-in. Aluminum Chamber & nXDS20iCAltitude Simulation P101210624-in. SS Chamber, Pressure Control, PurgePort, & nXDS20iP101209324-in. SS Chamber w/ Viewport, Pressure Control,Purge Port, & nXDS20iOutgassing P101210924-in. Aluminum Chamber, Wall Heating (140°C)Thermal Platen (400 °C), & nXDS20iC P101209620-in. SS Chamber W/ Viewport, Pressure Control, Thermal Platen (400 °C), & nXDS20iCVacuum Oven P101211324-in. Aluminum Chamber, Wall Heating (140°C) & nXDS20iCHigh-Vacuum P101210524-in. SS Chamber, HiPace 300 Turbo & nXD-S20i P101209220-in. SS Chamber w/ Viewport, HiPace 300 Turbo, & nXDS20iAerospace & Aeronautical P101210724-in. SS Chamber, Pressure Control, PurgePort, Heated and Cooled Platen (-70 to 400 °C),& nXDS20iP101209424-in. SS Chamber w/ Viewport, Pressure Control,Purge Port, Heated and Cooled Platen (-70 to 400°C), & nXDS20iAdvanced High-Vacuum P101211224-in. Aluminum Chamber, Wall Heating (140 °C), HiPace 300 Turbo, & nXDS20iFreeze Drying P101211024-in. SS Chamber, Wall Heating (140°C), Heated& Cooled Platen (-70 to 400°C), & nXDS20iC P101209720-in. SS Chamber w/ Viewport, Cooled Platen (-70 °C), & nXDS20iCXtremeFreez P101213824-in. Aluminum Chamber, Wall Heating(140°C), Pressure Control, Purge Port, Heatedand Cooled Platen (-180 to 400 °C), RecirculatedLiquid Nitrogen System, HiPace 300 Turbo, &nXDS20iC P101213424-in. SS Chamber w/ Viewport, Pressure Control, Purge Port, Heated and Cooled Platen (-180 to400 °C), Recirculated Liquid Nitrogen System,HiPace 300 Turbo, & nXDS20iCSpace Simulation P101210824-in. Aluminum Chamber, Wall Heating (140°C), Purge Port, Heated and Cooled Platen (-70to 400 °C), HiPace 300 Turbo, & nXDS20iP101209524-in. SS Chamber w/ Viewport, Purge Port, Heat-ed and Cooled Platen (-70 to 400 °C), HiPace 300Turbo, & nXDS20iCUniversal P101211124-in. Aluminum Chamber, Wall Heating (140°C), Pressure Control, Purge Port, Heated andCooled Platen (-70 to 400 °C), HiPace 300 Turbo,& nXDS20iC P101209824-in. SS Chamber w/ Viewport, Pressure Control, Purge Port, Heated and Cooled Platen (-70 to 400°C), Recirculated Cooling System, HiPace 300Turbo, & nXDS20iC9-in. Vacuum CUBE Ultimate P1*******-in. Modular Vacuum Cube Chamber, Pressure Control, Purge Port, Heated and Cooled Platen(-70 to 400 °C), HiPace 80 Turbo, & nXDS10iC12-in. Vacuum CUBE Ultimate P101153012-in. Modular Vacuum Cube Chamber, Pressure Control, Purge Port, Heated and Cooled Platen(-70 to 400 °C), HiPace 80 turbo, & nXDS10iC24-inch Vacuum CUBE Ultimate P101213324-in. Modular Vacuum Cube Chamber, Pressure Control, Purge Port, Heated and Cooled Platen(-70 to 400 °C), HiPace 300 turbo, & nXDS20iCPN DESCRIPTION PN DESCRIPTIONP1012135XtremeFreez TM 240 Liter Cryogenic Liquid Cylinder P108390CommandValve TM KF16 Smart Butterfly ValveP1012136XtremeFreez TM Cryogenic Vacuum Jacketed Hose P108389CommandValve TM KF25 Smart Butterfly ValveP1012137XtremeFreez TM Cryogenic Solenoid Valve P108388CommandValve TM KF40 Smart Butterfly ValveP107361Plug & Play Heater Control System P1010261XactGauge TM XGC-321 Convection Gauge KF-16 P1012100AutoExplor TM Software Full Version P1010260XactGauge TM XGC-321 Convection Gauge KF-25 P1012101AutoExplor TM Software Yearly Renewal P1011205GP 355 Micro-Ion Hot Cathode Gauge KF-25P1012102AutoExplor TM Basic Version Software P103317Pfeiffer HiPace-80 Turbomolecular PumpP105130Edwards nXDS10i Dry Scroll Vacuum Pump P103385Pfeiffer HiPace-300 Turbomolecular PumpP105124Edwards nXDS10iC Corrosive Resistant DSVP P105686Pfeiffer HiPace-80 Oil Fluid Lubricant FeltP105132Edwards nXDS20i Dry Scroll Vacuum Pump P105687Pfeiffer HiPace-300 Oil Fluid Lubricant FeltP105129Edwards nXDS20iC Corrosive Resistant DSVP P105546Edwards nXDS Scroll Pump Tip Seal Service KitA. Pump down curves for a 24-inch welded vacuum chamber with only nXDS20i roughing pump (blue) and with bothHiPace 300 turbomolecular and nXDS20i dry scroll vacuum pumps (green). The system pumps down to ~10-5 torrin ~7 minutes.B. Pump down curve for a 24-inch welded vacuum chamber with both HiPace 300 turbomolecular and nXDS20i dry scroll vacuumpumps with an ultimate pressure of ~10-7 Torr.C. Pump down curve for a 24-inch welded vacuum chamber plotted as simulated Altitude in units of feet with an nXDS20i dry scroll roughing pump. The ceiling is around 280,000 feet. Additional pumps can be configured to achieve any desired rate of rise and ceiling.D. Pressurization by venting of a 24-inch welded vacuum chamber. The chamber goes from vacuum to atmosphere in ~1.25 minutes. The chamber pressurization rate of ~10 Torr per second is more rapid pressurization than an object feels in free fall.E. Heating Ramp of an ExploraVAC MAX 24-inch welded aluminum chamber. A maximum temperature of 140 °C is reached within ~55 minutes.F. Heating ramp of a 23-inch thermally-isolated platen. Temperature rises from -70 °C to a maximum of 400 °C within ~45 minutes.G. Cooling curves of a 23-inch thermally-isolated platen with a hassle-free, closed-loop refrigeration system. An ultimate low temperature of -70 °C is reached in ~4.5 hours with prechilled coolant (green) and ~10 hours if coolant is not prechilled (blue).H. Cooling curve of a 21-inch thermally isolated platen with an XtremeFreez TM recirculated liquid nitrogen cooling system. An ultimate low temperature of -180 °C is reached within ~45 minutes.I. Warm up curve of a 21-inch thermally isolated platen after being cooled with XtremeFreez TM liquid nitrogen cooling system. The platen is left to warm up naturally by its surroundings, no additional heat is added, and it is kept under vacuum. The platen warms from -180 to -10 °C within 10 hours and takes > 30 hours to reach room temperature.。
双源CT_定量参数在非小细胞肺癌术后随访中的应用及其与复发因子的相关性

双源CT 定量参数在非小细胞肺癌术后随访中的应用及其与复发因子的相关性李晨光,付义彬,岳军艳新乡医学院第一附属医院放射科,河南新乡453100【摘要】目的探讨双源CT 定量参数在非小细胞肺癌(NSCLC)术后随访中应用及与复发因子相关性。
方法回顾性分析2019年6月至2021年6月新乡医学院第一附属医院收治的126例NSCLC 患者的临床资料,所有患者均行肺癌根治术,根据术后2年内是否复发分为复发组(n =50)和未复发组(n =76)。
比较两组患者的一般资料、双源CT 定量参数和复发因子[血管内皮生长因子(VEGF)、可溶性CD105(sCD105)]的表达水平,采用Logistic 回归方程分析NSCLC 患者术后复发的影响因素,采用Pearson 相关系数分析双源CT 定量参数与复发因子相关性,绘制受检者工作特征曲线(ROC)分析双源CT 定量参数对NSCLC 患者术后复发的预测效能。
结果复发组患者临床分期Ⅱ期占比、中分化占比和吸烟史占比分别为62.00%、66.00%、56.00%,明显高于未复发组的43.42%、40.79%、28.95%,差异均具有统计学意义(P <0.05);复发组患者术后3个月的血清VEGF 、sCD105表达分别为(14.35±4.00)ng/mL 、(4.72±1.36)ng/m ,明显高于未复发组的(6.88±2.00)ng/mL 、(3.50±1.05)ng/mL ,差异均有统计学意义(P <0.05);复发组患者术后3个月的血清动脉期标准化碘浓度(NIC AP )、动脉期病灶碘覆盖值(CT AP )分别为(13.66±4.10)%、(24.23±6.60)HU ,明显高于未复发组的(6.62±1.98)%、(15.11±3.63)HU ,差异圴有统计学意义(P <0.05);经Logistic 回归方程分析结果显示,吸烟史、术后3个月VEGF 、sCD105、NIC AP 、CT AP 均是NSCLC 术后复发影响因素(P <0.05);复发患者术后3个月的NIC AP 、CT AP 与VEGF 、sCD105呈显著正相关(r =0.500、0.436、0.511、0.455,P <0.05);术后3个月NIC AP 、CT AP 联合预测NSCLC 术后复发的AUC 为0.883(95%CI :0.814~0.934),与术后3个月血清VEGF 、sCD105联合预测效能的AUC 接近[AUC 为0.888(95%CI :0.819~0.937)。
土壤微塑料影响植物生长的因素与机制研究进展

塑料作为一种被广泛应用的有机合成聚合物材料,在为我们生活提供便利的同时,也带来了后续的环境问题。
据估算,到2050年,将有大约12000万t 塑料垃圾被埋入垃圾填埋场或自然环境中[1],塑料垃圾进入到环境后会逐渐破碎变成微塑料(<5mm ),导致其在土壤和水体中的丰度逐年递增[2-3]。
2015年的第二届联合国环境大会已将微塑料污染列为环境与生态领域的第二大科学问题[3]。
目前,人们对水体中微塑料的认识已较为系统[4-6],土壤微塑料逐步成为新的研究热点[7-8]。
2012年Rillig [9]首次提出微塑料会影响土壤理化性质,这引起了人们对土壤微塑料的关注,后续研究表明微塑料可被植物吸收并积累[10-11],最终通过食物链进入人体。
厘清微塑料对植物生长的影响及其机制,有助于系统掌握其在土壤-植物体陈欣,郭薇,李济之,等.土壤微塑料影响植物生长的因素与机制研究进展[J].农业环境科学学报,2024,43(3):488-495.CHEN X,GUO W,LI J Z,et al.Research progress on the influencing factors and mechanisms of soil microplastics on plant growth[J].Journal of Agro-Environment Science ,2024,43(3):488-495.土壤微塑料影响植物生长的因素与机制研究进展陈欣1,郭薇1,2,李济之1,2,迟光宇1*(1.中国科学院沈阳应用生态研究所,污染生态与环境工程重点实验室,沈阳110016;2.中国科学院大学,北京100049)Research progress on the influencing factors and mechanisms of soil microplastics on plant growthCHEN Xin 1,GUO Wei 1,2,LI Jizhi 1,2,CHI Guangyu 1*(1.Key Laboratory of Pollution Ecology and Environmental Engineering,Institute of Applied Ecology,Chinese Academy of Sciences,Shenyang 110016,China ;2.University of Chinese Academy of Sciences,Beijing 100049,China )Abstract :Microplastics in soil can affect plant growth in a variety of ways,accumulate in plants,and eventually enter the human body via the food chain.Clarifying the mechanisms and main factors whereby microplastics influence plant growth can contribute to a systematic understanding of their environmental behavior in soil-plant systems.Both the occurrence state and physicochemical characteristics of microplastics can influence their effects on plants.In this paper,from the perspectives of particle size,shape,concentration,and type,plastic additives,and aging degree of microplastics,we review the main factors and mechanisms underlying the effects of soil microplastics on plant growth.The key direction of future research is proposed,which will provide a reference for further clarifying the impact of microplastics on soil ecosystems.Keywords :soil;microplastics;plant;influencing factor;mechanism of action收稿日期:2023-04-13录用日期:2023-06-19作者简介:陈欣(1968—),男,辽宁沈阳人,博士,研究员,研究方向为农业生态。
多伯努利滤波的快速红外弱小目标检测与跟踪
多伯努利滤波的快速红外弱小目标检测与跟踪李翠芸;李宁;姬红兵【摘要】In view of the problems of tracking instability and non real‐time and highly nonlinear measurement model for the detection and tracking of multiple Infrared ( IR ) dim targets under the complicated background , a fast detection and tracking algorithm based on multi‐Bernoulli filter is presented . Firstly , the improved Robinson Guard filter suppresses the background clutter in order to avoid the suppression of the target in the strong background image . Then , the squar e‐root cubature Kalman filter (SCK) performs the multi‐Bernoulli track‐before‐detect ( MB‐TBD) . It can perform real‐time tracking in the highly nonlinear model . The numerical instability caused by a negative definite covariance matrix is avoided . The experiments with some real IR background images show that the improved Robinson Guard algorithm can suppress the background clutter effectively and preserve the dim target information . It is also shown that SCK‐MB‐TBD can estimate the number and states of targets accurately and stably so as to complete target detection and tracking .%针对复杂背景下多个弱目标检测与跟踪中存在的跟踪不稳定、非实时及量测模型高度非线性问题,提出一种基于多伯努利滤波的快速检测与跟踪算法。
一维 Fokker-Planck 方程的有限体积法求解及其在中性束注入加热中的应用
张 能 ,龚学余 ,黄千红 一 ,侯 伟 ,谢宝艺 ,余江妹 ,李景春
(1.南 华 大 学 数 理学 院 ,湖 南 衡 阳 421001;2.南 华 大 学 核 科 学 技 术 学 院 ,湖 南 衡 阳 421001)
摘 要 :采 用 有 限体 积 法 数 值 求 解 一 维 Fokker-Planck方 程 ,通 过 模 拟 电 子 自碰 撞 过 程 步 讨 论 束 能 量 和 功 率 的影 响 ,随 束 能 量 和 功 率 的增 加 ,等 离 子 体 离 子 温 度 均 升 高 ,离 子 温 度 随 束 能
量 的 增 加 升 高 的 幅值 较 大 ,而 随 束 功 率 的增 加 升 高 的 幅值 较 小 。 关 键 词 :有 限体 积 法 ;Fokker-P1anck方 程 ;分 布 函数 演 化 ;中 性 束 注 入 加 热
in Neutral Beam Inj ection Heating
ZH ANG Neng ,GONG Xue—yu ,H UANG Qian—hong。一 ,HOU W ei , XIE Bao—yi ,YU Jiang—m ei ,LI Jing—chun
(1.School of Mathematics and Physics,University of South China,Hengyang 421001,China; 2.School of N uclear Science and Technology,University of South China,Hengyang 421001,China)
第49卷第 6期 2015年 6月
原 子 能 科 学 技 术
A tom ic Energy Science and T echnology
复方苁蓉益智胶囊治疗血管性痴呆的研究进展
血管性痴呆(vascular dementia,VD)是一种由脑血管病变导致的疾病,其临床症状包括引起记忆和执行功能障碍等。
它被认为是继阿尔茨海默病之后的第二大常见痴呆类型[1]。
目前,在亚洲和发展中国家的痴呆病例中,VD 约占30%,高于北美和欧洲(15%~20%)[2-3]。
据研究资料显示,我国60岁及以上人群的血管性痴呆发病率为每年每千人中有2.42例[4-5]。
研究表明,我国约有1507万人60岁以上的痴呆患者,其中约有392万人为VD 患者[6]。
VD 会造成日常生活质量不断下降,而且不能扭转,给家庭和社会带来极大的冲击和负担。
复方苁蓉益智胶囊是由王永炎院士多年临床实践研制的具有益智养肝,化浊活血和增智健脑等功效的中成药[7],主料何首乌、肉苁蓉、荷叶、地龙、漏芦等。
Progress of compound ciYizhi capsule in the treatment of vascular dementia Di Shuai, Zhang Jiapeng, Liu Yixuan, LiYanan, Zhang Jiang, Zhou Fuling. The Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China【Abstract 】Compound ciYizhi capsule has the effect of nourishing liver,promoting turbidity and activating blood, and increasing wisdom and brain. It is suitable for mild to moderate vascular dementia with liver and kidney deficiency and phlegm stasis blocking collateral syndrome. Recently, it has been widely used in the long-term and synergistic treatment of vascular dementia with remarkable efficacy.To summarizes the clinical and experimental studies of compound ciYizhi capsule. It is found that compound ciYizhi capsule can treat vascular dementia by reducing the expression of MARKS mRNA in hippocampus, inhibiting oxidative stress in brain tissue, protecting mitochondria, reducing the range of cerebral infarction, protecting cerebral ischemic injury and pound ciYizhi capsule combined with other anti-dementia drugs can significantly improve the clinical symptoms of patients with vascular dementia and improve the self-care ability and quality of life.In order to provide some reference for the subsequent study of compound cistanche qianyi capsule.【Key words 】Vascular dementia; Compound ciYizhi capsule; Dementia; Clinical application 复方苁蓉益智胶囊治疗血管性痴呆的研究进展邸帅 张佳朋 刘乙璇 李亚楠 张江* 周福玲作者单位:063000 河北省唐山市,华北理工大学附属医院神内二、四病区*通讯作者【摘要】 复方苁蓉益智胶囊具有益智养肝,化浊活血和增智健脑的功效,适用于肝肾亏虚兼痰瘀阻络证的轻中度血管性痴呆。
应用于作物荧光检测的改进型Offner光谱仪设计
第 14 卷 第 6 期 2021 年 11 月
文章编号 2095-1531(2021)06-1459-09
中国光学 Chinese Optics
Vol. 14 No. 6 Nov. 2021
应用于作物荧光检测的改进型 Offner 光谱仪设计
范纪泽1,2,李 博1 *,张 璐1,2,巨燕方1,2
1 引 言
作为近年来各航天仪器上的有效载荷—光谱 探测器,使得对地大范围、同步性监测成为可 能。多项研究表明光谱分析及荧光检测方法对识 别作物生长环境及生长状态有较大作用[1-3],通过 分析作物中叶绿素荧光光谱特征可较好地研究作 物生长情况。在叶绿素荧光过程中,将在 670~ 780 nm 之间形成Hα、O2 − A、O2 − B等 3 条吸收 暗线,理想的观察条件是从卫星上分析O2 − A、 O2 − B气体在大气光谱中的吸收程度,较好的办法 是使用高光谱分辨率的光谱仪[4]。国外较早提出 该方法,较为先进的机载光谱仪(AAHIS)的相对 孔径达到了 0.33,工作在可见光波段[5]。2015 年, 欧洲航天局提出了荧光卫星计划(FLEX)专门用 作叶绿素荧光检测,其中含有 Offner 型光谱仪, 在可见光波段的光谱分辨率达到了 0.3 nm[6]。
分有所偏差。 目前,光谱仪正朝着大视场、长狭缝、更高光
谱分辨率方向发展[10]。本文将设计一款专用于叶 绿素荧光检测的光谱仪,以 Offner 型光谱仪为原 型,通过改进更高密度的凸面光栅实现作物荧光 0.3 nm 的光谱分辨率,通过在光谱仪外部附加弯 月放大透镜来满足 30 mm 长狭缝的条件。优化 后的光谱仪与无色差的反射物镜系统衔接,得到 的完整结构能更好地满足使osed system can meet the requirements of highly precise real-time monitoring in crop growth chlorophyll detection. Key words: optical design;Offner spectral imaging system;ultra-high spectral resolution
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∞ ∞ ∞
3
=
2iF i . (2π )3
(22)
4. Fokker - Planck equation and conservation laws Fokker - Planck equation with damping force is: ∂n ∂n ∂n ∂2 n + vk − α vk −3 αn = k ; ∂t ∂xk ∂v k ∂v m ∂v m where α - damping coefficient. Multiplying (23) by exp(−i v k q k ) and integrating over velocities, we obtain
For our simple model of non-interacting particles following relation between density of internal energy and pressure is valid p=− where p - the hydrostatic pressure. The current of energy is Fi = 1 1 1 1 v k v k vi = ρ u k u k ui + w k w k ui + u k w k wi + w k w k wi = 2 2 2 2 = ( K + E ) ui − u k σ ki + 1 w w w. 2 k k i (16) 1 2 σ kk = E ; 3 3 (15)
From macroscopical point of view the tensor of stresses describes the interaction between portions of continuum. It is remarkable, that though interaction between particles is missing, macroscopic cells are interacting nevertheless. This interaction is due to chaotic momentum transfer from one cell to another. For interacting particles additional term should arise in (9). The volume density of energy is
-31 vk vk ; 2
e=
(11)
because the only form of energy for non-interacting particles is their kinetic energy. Decomposition (7) of velocities leads to decomposition of full energy e= 1 1 ρ uk uk + wk wk = K + E . 2 2 (12)
−∞ −∞ −∞
∫ ∫ ∫ nv dv dv dv
k 1 2
∞ ∞ ∞
3
=
−i ρ u k ; (2π )3
(19)
- current of momentum tensor ∂2 M −1 (t , x 1 , x 2 , x 3 , 0, 0, 0) = ∂q i ∂q j (2π )3
−∞ −∞ −∞
k k 1 2
∞ ∞ ∞
3
=
−e ; (2π )3
(21)
- current of energy is ∂3 M i (t , x 1 , x 2 , x 3 , 0, 0, 0) = ∂q i ∂q∫ ∫ nv v v dv dv dv
i k k 1 2
∫ ∫ ∫ nv v dv dv dv
i j 1 2
∞ ∞ ∞
3
=
− J ij ; (2π )3
(20)
- volume density of energy −1 ∂2 M (t , x 1 , x 2 , x 3 , 0, 0, 0) = (2π )3 ∂q k ∂q k
−∞ −∞ −∞
∫ ∫ ∫ nv v dv dv dv
∫ ∫ ∫ f dx dx dx .
1 2 3 D
(2)
-2-
The most interesting functions are functions, which satisfy some conservation laws. That is time derivative of F is a sum of volume and surface integrals dF = dt
−∞ −∞ −∞
∫ ∫ ∫ n exp(−i v q ) dv dv dv .
k k 1 2 3
∞ ∞ ∞
(17)
where q k - velocities momentum variables. Using this definition, we can express macroscopic parameters in terms of Fourier transform of density and its derivatives: - density 1 (2π )3
σ ij = − w i w j ;
(8)
(9)
- recall classic kinetic gas theory formula for pressure. Using this definition, we can write expression for the momentum current tensor in the final form J ij = ρ ui u j − σ ij . (10)
The first term in (12) is kinetic energy density K= 1 ρu u . 2 k k (13)
The second term in (12) is energy of chaotic movement or internal energy volume density E= 1 wk wk . 2 (14)
∫∫∫
D
∂f dx 1 dx 2 dx 3 + ∂t
∫∫
∂D
Fl 1 dx 2 dx 3 + Fl 2 dx 3 dx 1 + Fl 3 dx 1 dx 2 .
(3)
where Fl i is the current of f . Our aim is to construct the set of conservation laws for special case, when distribution function n( x i , v i ) satisfies Fokker - Planck equation. 2. General definitions of macroscopic parameters The density of mass is the average of unity 1 = ρ. The current of mass vector is vi = ρ ui . where ui - average velocity. (5) represents at the same time the vector momentum density. The current of momentum tensor is J ij = v i v j . Decomposition of velocity gives vi = ui + wi ; (7) (6) (5) (4)
3. Expressions for macroscopic parameters through Fourier transform of density Let us denote by M the Fourier transform of density M (t , x i , q j ) = 1 (2π )3
+∞ +∞ +∞
f ( xi ) =
−∞ −∞ −∞
∫ ∫ ∫ n f dv dv dv .
1 2 3
(1)
Defined in such a way average value, depends obviously only on spatial coordinates x i . Macroscopic observer deals with these average values and traits them from the continuum mechanics field theory point of view. He perceives average f as volume density of some additive function F F=
Keywords Fokker-Planck equation, continuum mechanics
1. Introduction The statistical mechanics of systems described by kinetic equations and generalized Fokker - Planck equations is currently subject of active research (see [1]). In this work we study rather special kind of medium without interaction of particles. To describe the state of this medium we use density distribution function n( x i , v i ) in the space of Cartesian coordinates x i and corresponding velocities v i . We define average of any function f of these variables by