七年级数学培优练习1
初一培优数学试题及答案

初一培优数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -5B. 0C. 2D. -3答案:C2. 绝对值等于5的数是:A. 5B. -5C. 5或-5D. 以上都不对答案:C3. 计算下列哪个表达式的结果为0?A. 3+2B. 5-5C. 7×0D. 8÷8答案:C4. 以下哪个分数是最简分数?A. 6/12B. 8/16C. 3/4D. 5/10答案:C5. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C6. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 6答案:A7. 一个数的倒数是1/2,这个数是:A. 2B. 1/2C. 1D. 0答案:A8. 一个数的平方等于9,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:C9. 计算下列哪个表达式的结果最大?A. 2^3B. 3^2C. 4^1D. 5^0答案:B10. 下列哪个方程的解是x=2?A. 2x+3=7B. 3x-6=0C. 4x-8=0D. 5x+10=15答案:A二、填空题(每题4分,共20分)11. 一个数的绝对值是7,这个数可能是______或______。
答案:7或-712. 一个数的立方等于-8,这个数是______。
13. 一个数除以-2等于3,这个数是______。
答案:-614. 一个数的平方根是4,这个数是______。
答案:1615. 一个数的两倍加上5等于15,这个数是______。
答案:5三、解答题(每题10分,共50分)16. 解方程:3x - 7 = 11。
解:3x - 7 + 7 = 11 + 7x = 18 / 3x = 6答案:x = 617. 计算:(-2)^3 + 4 × (-3) - 5。
解:(-2)^3 = -84 × (-3) = -12-8 - 12 - 5 = -25答案:-2518. 已知一个等腰三角形的两边长分别为5和8,求这个三角形的周长。
培优训练七年级数学试卷(一)

2012-2013学年度第一学期培优训练七年级数学试卷(一)题 序 一 二 三 四 总 分 得 分一、选择题(每小题2分,共20分) 1. 下列图形中数轴的画法正确的是()2. 下列说法正确的有() A. 0是整数,也是正数B. 是正小数,不是正分数C. 自然数一定是正数D. 负分数一定是负有理数3. 若数轴上点A 表示数是-3,则与点A 相距4个单位长度的点表示的数是( ) A. 4±B. 1±C. -1或7D. -7或14. 下列几组数中,互为相反数的是()A. -(+3)和+(-3)B. -5和-(+5)C. +(-7)和-(-7)D. -(-2)和+(+2)5. |31|-的相反数是( ) A. -3B. 3C. 31D. 31-6. 有理数a 、b 在数轴上的位置如图所示,则b a -一定是( )A.正数B. 负数C. 0D. 不能确定7. 若a a =||,则a 是()A. 0B. 不等于0C. 正数D. 非负数8. 计算 )5(--的结果是( ) A. 5B. -5C. 51D. 51-9. 某班数学平均分为88分,88分以上如90分记作+2分,某同学的数学成绩为85分,则应记作()A. +85分B. +3分C. -3分D. -310. 观察下列有规律的数:21,61,121,201,301,421…根据其规律可知第9个数是( )A.561 B.721 C.901 D.1101 二、填空题(每小题3分,共30分)11. 若7||=x ,则=x ;若0||=x ,则=x 。
12. 化简:=+-|3| ; =-+-|)3(| ; =+--|)21(|13. 比较大小(填上“>”“<”或“=”) -3 722-||π |14.3|- |2|+- 3-14. a 是绝对值最小的数,b 是最大的负整数,则=+b a15. 某地一天早晨的气温是C 07-,中午上升了C 011,午夜又下降了C 09,则午夜的气温是.16. 大于 且小于的正整数是 。
初一数学培优经典试题及答案

初一数学培优经典试题及答案试题一:有理数的加减法题目:计算下列有理数的和:\[ 3 + (-2) + 4 + (-1) \]答案:首先,我们可以将正数和负数分别相加:\[ 3 + 4 = 7 \]\[ -2 + (-1) = -3 \]然后,将两个结果相加:\[ 7 + (-3) = 4 \]所以,最终结果是4。
试题二:绝对值的计算题目:求下列数的绝对值:\[ |-5|, |-(-3)|, |0| \]答案:绝对值表示一个数距离0的距离,不考虑正负号。
因此:\[ |-5| = 5 \]\[ |-(-3)| = |3| = 3 \]\[ |0| = 0 \]所以,这三个数的绝对值分别是5, 3, 和0。
试题三:一元一次方程的解法题目:解下列方程:\[ 2x - 3 = 7 \]答案:首先,将方程中的常数项移到等号的另一边:\[ 2x = 7 + 3 \]\[ 2x = 10 \]然后,将等式两边同时除以2,得到x的值:\[ x = \frac{10}{2} \]\[ x = 5 \]所以,方程的解是x = 5。
试题四:代数式的值题目:当a=3,b=-2时,求代数式\( ab + a - b \)的值。
答案:将给定的a和b的值代入代数式中:\[ ab + a - b = 3 \times (-2) + 3 - (-2) \]\[ = -6 + 3 + 2 \]\[ = -1 \]所以,代数式的值是-1。
试题五:几何图形的周长和面积题目:一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
答案:长方形的周长是长和宽的两倍之和:\[ 周长 = 2 \times (长 + 宽) \]\[ 周长 = 2 \times (10 + 5) \]\[ 周长 = 2 \times 15 \]\[ 周长 = 30 \] 厘米长方形的面积是长乘以宽:\[ 面积 = 长 \times 宽 \]\[ 面积 = 10 \times 5 \]\[ 面积 = 50 \] 平方厘米结束语:以上是初一数学培优的经典试题及答案,希望同学们能够通过这些题目加深对数学概念的理解和应用。
七年级培优——绝对值

七年级培优——绝对值绝对值是七年级数学中的一个非常重要的基本概念,但涉及到的数学思想非常重要,所涉及的方法也会对整个初中数学的学习有很大的帮助,本节课我们将从几种方法对绝对值的综合题进行讲解。
一、利用绝对值的定义求绝对值的值。
绝对值的定义如下:⎪⎩⎪⎨⎧<-=>=.0,0,00,||时当时,当时,当a a a a a a例题1:已知1||≤x ,1||≤y ,求|52||1|--++x y y 的最小值。
方法点拨:要化简|52||1|--++x y y ,必须要搞清楚1+y 和52--x y 的正负情况,当不能判断的时候就需要通过分类来进行化简.解:因为1||≤x ,1||≤y 可得11≤≤-x ,11≤≤-y ,所以210≤+≤y ,从而得1|1|+=+y y因为11≤≤-y ,所以222≤≤-y ,因为11≤≤-x ,所以11≤-≤-x所以323≤-≤-x y所以2528-≤--≤-x y ,即052<--x y ,从而有52)52|52|++-=---=--x y x y x y ( 所以6521|52||1|+-=++-+=--++y x x y y x y y所以当x 取最小值,y 取最大值时,6+-y x 的值最小即当1-=x ,1=y 时,|52||1|--++x y y 的最小值为4611=+--.练习1:若3||=x ,2||=y ,且x y y x -=-||,求y x +的值.练习2:已知0<a ,0>b ,求|5||1|---+-b a a b 的值.练习3:已知a 、b 、c 是非零有理数,且0=++c b a ,求abcabc c c b b a a ||||||||+++的值.练习4:已知1||≤x ,1||≤y ,求|42||1|||--++++x y y y x 的最大值和最小值.练习5:已知152||=++y x x ,3| |=-+y y x ,求x ,y 的值.二、利用数轴解绝对值的值由绝对值的几何意义可知,||a 表示的几何意义为实数a 到原点的距离,||b a -表示的几何意思为实数a 到实数b 在数轴上的距离。
人教版2020七年级数学下册期中综合复习培优训练题1(附答案详解)

人教版2020七年级数学下册期中综合复习培优训练题1(附答案详解)1.和数轴上的点一一对应的是( )A .整数B .实数C .有理数D .无理数2.如图,已知直线AB ∥CD ,直线l 与直线AB 、CD 相交于点,E 、F ,将l 绕点E 逆时针旋转40°后,与直线AB 相交于点G ,若∠GEC=80°,那么∠GFE=( )A .60°B .50°C .40°D .30°3.如图,在平面直角坐标系上有个点()1,0P ,点P 第1次向上跳运1个单位至点()11,1P 紧接着第2次向左跳动2个单位至点()21,1P-,第3次向上跳动1个单位,第4次向右跳运3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位, ⋯,依此规律跳动下去,点P 第2016次跳动至点2016P 的坐标是( )A .()505,1008B .()505,1008-C .()504,1007D .()504.1007- 4.下列命题正确的个数是( )①等腰三角形的腰长大于底边长;②三条线段a 、b 、c ,如果a b c +>,那么这三条线段一定可以组成三角形;③等腰三角形是轴对称图形,它的对称轴是底边上的高;④面积相等的两个三角形全等.A .0个B .1个C .2个D .3个5.下列各数是无理数的是( )A .4B .2.2020020002C .39D .﹣16.一个运算程序输入后,得到的结果是221x -,则这个运算程序是( )A.先乘2,然后平方,再减去1 B.先平方,然后减去1,再乘2C.先平方,然后乘2,再减去1 D.先减去1,然后平方,再乘27.如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2017的横坐标为()A.1010B.2C.1D.﹣10068.下列计算结果正确的是:( )A.B.C.D.9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形的边在轴上,的中点是坐标原点固定点,,把正方形沿箭头方向推,使点落在轴正半轴上点处,则点的对应点的坐标为()A.B.C.D.10.若点A到直线l的距离为7cm,点B到直线l的距离为3cm,则线段AB的长度为()A.10cm B.4cm C.10cm或4cm D.至少4cm11.关于x轴、y轴或远点对称的点的坐标的特征点P与点p′关于x轴对称⇔_____坐标相等,_____坐标互为相反数点P与点p′关于y轴对称⇔______坐标相等,_____坐标互为相反数点P与点p′关于原点对称⇔___________坐标均互为相反数12.在平面直角坐标系中,点P(﹣2,6)在第____象限.13.已知点A(-2,0),B(3,0),则S∆ABC=_______.14.如图,在一次军棋比赛中,如果团长所在的位置的坐标为(2,-5),司令所在的位置的坐标为(4,-2),那么工兵所在的位置的坐标为_________.15.若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=45°,则∠1的度数为______. 16.已知31x 0216+=,则x=_______ 17.借助于计算器计算,可求2243+;224433+;22444333+…… 仔细观察上面几题的计算结果,试猜想2220092009444333⋅⋅⋅+⋅⋅⋅n n 的结果为_________. 18.已知|x ﹣y+2|+2x y +-=0,则x 2﹣y 2的值为______.19.在平面坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2017个正方形的面积为__________。
最新人教版七年级上册数学同步培优训练第一章有理数 近似数

12.下列由四舍五入法得到的近似数各精确到哪一位? (1)478;(2)0.032;(3)5.80亿;(4)4.0×105. 解:(1)精确到个位 (2)精确到千分位 (3)精确到百万位 (4)精确到万位
13.用四舍五入法,按括号中的要求对下列各数取近似数: (1)2.009 (精确到0.01); (2)46850000 (精确到万位); (3)4.762×107 (精确到百万位); (4)13亿 (精确到十万位). 解:(1)2.01 (2)4.685×107 (3)4.8×107 (4)1.3000×109
5.下列说法不正确的是( C) A.近似数0.015精确到千分位 B.近似数3000精确到个位 C.2.4万精确到万位 D.3.14×105精确到千位 6.3.207≈3.2是精确到___十__分__位__或者说精确到___0_.1.
7.(教材P46例6变式)按括号内的求,用四舍五入法对下列各数取近似数: (1)2.715 (精确到百分位); (2)0.1395 (精确到0.001); (3)123410000 (精确到万位); (4)3.01×105 (精确到百位). 解:(1)2.72 (2)0.140 (3)1.2341×108 (4)3.010×105
8.下列各对近似数中,精确度一样的是(B ) A.0.28与0.280 B.0.70与0.07 C.5百万与500万 D.1100与1.1×103 9.下列说法错误的是(D ) A.近似数16.8与16.80表示的意义不同 B.近似数0.2900是精确到0.0001 C.3.850×104精确到十位 D.49564精确到万位是5.0×104
3.(2020·济宁)用四舍五入法将数3.14159精确到千分位的结果是( C) A.3.1 B.3.14 C.3.142 D.3.141 4.(攀枝花中考)用四舍五入法将130542精确到千位,正确的是( C) A.131000 B.0.131×106 C.1.31×105 D.13.1×104
七年级(下)数学培优试题(一)含答案

七年级(下)数学培优试题(一)含答案一.选择题(共10小题,每小题3分,计30分.每小题只有一个选项符合题意)1.下列各式计算正确的是( )A.3332x x x ⋅= B .235()x x = C .358x x x += D .444()xy x y =2.下列能用平方差公式计算的是( )A.)y x )(y x (-+- B .)x 1)(1x (--- C.)x y 2)(y x 2(-+ D.)1x )(2x (+-3.如图1,已知∠1=110°,∠2=70°,∠4=115°,则∠3的度数为( ) A .65º B .70º C .97º D .115º4.2011世界园艺博览会在西安浐灞生态区举办,这次会园占地面积为418万平方米,这个数据用科学记数法可表示为(保留两个有效数字)( ) 图1A.4.18×106平方米B. 4.1×106平方米 C . 4.2×106平方米 D.4.18×104平方米5.某校组织的联欢会上有一个闯关游戏:将四张画有含30°的直角三角形、正方形、等腰三角形、平行四边形这四种图形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形就可以过关,那么翻一次就过关的概率是( )A.1/4B. 1/2 C . 1/3 D.16.如图2,一块实验田的形状是三角形(设其为△ABC ),管理员从BC 边上的一点D 出发,沿DC →CA →AB →BD 的方向走了一圈回到D 处,则管理员从出发到回到原处在途中身体( )A.转过90° B .转过180° C.转过270° D.转过a b c d2 4 1360°7. 如图3所示,在△ABC 和△DEF 中,BC ∥EF ,∠BAC =∠D ,且AB =DE =4,BC =5,AC =6,则EF 的长为( ).A 4B .5C .6 D.不能确定8.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点 y 与x 的关系可以由公式2035+=x y 来表示,则y 随x 的增大而( ) 图3A 、增大B 、减小C 、不变D 、以上答案都不对9. 如图4,图象描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( ) .A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C .从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时10. 下列交通标志中,轴对称图形的个数是( )A.4个B.3个C.2个D.1个二.填空题:(每空3分,共36分)11.代数式3234155a x a x x -+是___ ____项式,次数是__ ___次 图4124︒78︒ED CB A12.计算:2--+-=___________x x x(1)(23)(23)13. 如图5,DAE是一条直线,DE∥BC,则∠BAC=_____.图514.北冰洋的面积是1475.0万平方千米,精确到___ __位,有___ _个有效数字15.某七年级(2)班举行“建党九十周年”演讲比赛,共有甲、乙、丙三位选手,班主任让三位选手抽签决定演讲先后顺序,从先到后恰好是甲、乙、丙的概率是.图616. 如图6,⊿ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =17. 如图7,AB∥EF∥DC,∠ABC=90°,AB=DC,则图中有全等三角形对.18.一根弹簧原长13厘米,挂物体质量不得超过16千克,并且图7每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X(千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x的取值范围)19.如图8,D,E为AB,AC的中点,DE//BC,将△ABC沿线段DE 折叠,使点A落在点F处,若∠B=50°,则∠BDF=______.图8三.解答题(共54分)20. 计算:(每小题5分,共10分)①3b-2a2-(-4a+a2+3b)+a2②(4m3n-6 m2n2+12mn3)÷2mn21.(7分)先化简,再求值:22+---÷,其中10xy xy x y xy[(2)(2)2(2)]()x=,1y=-.2522.(8分)小明家的阳台地面,水平铺设着仅颜色不同的18块黑色方砖(如图10所示),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上.(1)分别求出小皮球停在黑色方砖和白色方砖上的概率;(2)要使这两个概率相等,可以改变第几行第即列的哪块方砖颜色?怎样改变?23.(9分)公园里有一条“Z ”字型道路ABCD ,如图,其中AB ∥CD ,在AB 、BC 、CD 三段路旁各有一只石凳E 、M 、F ,M 恰为BC 的中点,且E 、F 、M 在同一直线上,在BE 道路中停放着一排小汽车,从而无法直接测量B 、E 之间的距离,你能想出解决的方法吗?请说明其中的道理.图1024. (10分)小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校. 以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题: (1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?0 2 4 6 8 10 12 14 时间(分家25.(10分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B C E,,在同一条直线上,连结CD,AB AC∴=,AE AD=.请找出图②中的全等三角形,并说明理由(说明:结论中不得含有未标识的字母);C图图七年级(下)数学期末试题评分标准及参考答案2011.6 命题:李丹(教研室) 检测:史晓锋(龙泉中学)一、单项选择题(每小题3分,计30分)1.D2.B3.D4.C5.B6.B7.B8.A9.C 10.B二、填空题(每空3分,计36分)11. 三,五 12.-3x 2-2x +10 13. 46° 14. 千,五 15. 61 16. 74° 17.318. 18,y=13+0.5x 19. 80°三、解答题(共54分)20. ①解:原式=3b -2a 2+4a -a 2-3b +a2 (3分) =-2a 2+4a (5分)②解:原式=4m 3n÷2mn -6m 2n 2÷2mn +12mn 3÷2mn (2分) =2m 2-3mn +6n 2(5分)21. 解:原式2222(424)()x y x y xy =--+÷22()x y xy xy =-÷=-.(5分) 当10x =,125y =-时,原式1210255⎛⎫=-⨯-= ⎪⎝⎭.(7分) 22. 解:(1)P (黑色方砖)=95,P (白色方砖)=94;(6分)(2)要使这两个概率相等,可将其中的一块黑色方砖换为白色方砖,所改变的黑色方砖所在的行、列数答案不唯一,只要写准确即可得分.(8分)23.解:能.在图中连结E 、M 、F .(1分)理由:AB ∥CD →⎪⎭⎪⎬⎫=∠=∠∠=∠CM BM C B FMC EMB (4分)∴△EBM ≌△FCM (ASA )(7分)∴BE=CF .因此测量C 、F 之间的距离就是B 、E 之间的距离.(9分)24. 解:(1)1500米; (2分)(2)12-14分钟最快,速度为450米/分. (5分)(3)小明在书店停留了4分钟. (7分)(4)小明共行驶了2700米,共用了14分钟. (10分)25. 解:图2中ABE ACD △≌△.(2分)理由如下: ABC △与AED △都是直角三角形∴90BAC EAD ∠=∠= (4分)BAC CAE EAD CAE ∴∠+∠=∠+∠即BAE CAD ∠=∠ (6分)又∵AB=AC,AE=ADABE ACD ∴△≌△ (10分。
人教版七年级上册数学 第一章 有理数 数轴 综合培优练习题

人教版七年级上册数学第一章有理数数轴综合培优练习题1.已知数轴上两点A,B对应的数分别为a,b,点M为数轴上一动点,其中a,b满足(a+2)2+|b ﹣7|=0.(1)写出点A表示的数是;点B表示的数是.(2)若点M到A的距离是点M到B的距离的两倍,我们就称点M是[A,B]的好点.①若点M到运动到原点O时,此时点M [A,B]的好点(填是或者不是);②若点M以每秒1个单位的速度从原点O开始运动,当M是[A,B]的好点时,求点M所表示的数.2.如图,数轴上点A、B分别对应数a、b,其中a<0,b>0.(1)当a=﹣3,b=7时,线段AB的中点对应的数是.(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=3,b>3,且AM=2BM时,求代数式a+2b+2010的值;②a=﹣3.且AM=3BM时学生小朋通过演算发现代数式3b﹣4m是一个定值,老师点评;琪琪同学的演算发现还不完整!请你通过演算解释为什么“小朋的演算发现”是不完整的?3.数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.数轴上表示数a的点与表示数b的点的距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在答题卡相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x=,若|x﹣2|=|x+1|,则x=;(2)若|x﹣2|+|x+1|=3,则x能取到的最小值是,最大值是;(3)若|x﹣2|﹣|x+1|=3,则x能取到的最大值是;(4)关于x的式子|x﹣2|+|x+1|的取值范围是.4.数轴上两点A,B,其中A表示的数为﹣2,B表示的数为2,若数轴上存在一点C,使得AC+2BC =l,则称C为点A,B的“和l点”(其中AC,BC分别表示点C到点A,B的距离).(1)若点E在数轴上(不与A,B重合),若BE=AE,且点E为点A,B的“和l点”,则l的值可能为;(2)若点D在是点A,B的“和5点”,则点D表示的数可能为.5.如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.6.阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b,A、B两点间的距离表示为AB.则AB=|a﹣b|.所以式子|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,探究下列问题.(1)式子|x+1|+|x﹣2|的最小值是.(2)式子|x+1|﹣|x﹣2|的最大值是.(3)式子|x﹣2|+|2x﹣6|+|3x﹣1|的最小值是.7.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离,在解题中,我们会常常运用绝对值的几何意义:例1:已知|x|=2求x的值.解:在数轴上与原点距离为2的点对应的数为±2,即x=±2.例2:已知|x﹣1|=2,求x的值.解:在数轴上与1的距离为2的点对应的数为﹣1,3,即x=﹣1或x=3.参考阅读材料,解答下列问题:(1)已知|x|=3,则x的值为.(2)已知|x+2|=4,则x的值为.(3)已知x是有理数,当x取不同数时,式子|x﹣3|+|x+4|的值也会发生变化,问式子|x﹣3|+|x+4|是否有最小值?若有写出最小值,若没有,请说出理由.8.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)①若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案).9.如图,数轴的单位长度为1,点A,B,C,D都在数轴上,且点A,B表示的数互为相反数.(1)请在数轴上描出原点O的位置,并写出点A,C,D所表示的数.(2)点P在数轴上,且PA+PB=PD.①琪琪说:点P不可能在点A左侧.琪琪说得对吗?请说明理由.②求所有满足条件的点P所表示的数.10.甲、乙两辆汽车在东西走向的公路上行驶,规定向东为正,开始时甲车在西60千米的点A处,乙车在东10千米的点B处,(如图所示),甲车的速度为90千米/小时,乙车的速度为60千米/小时.(1)求甲、乙两车之间的距离(列式计算);(2)甲、乙两车同时向东行驶,甲车行驶270千米后进入服务区休息10分钟,然后继续向东行驶30千米,乙车一直向东行驶.①求此时乙车到达的位置点C所表示的数(列式计算);②甲车司机发现自己的手提包丢在服务区,立即调头来取,然后再追赶乙车,当甲车追上乙车时,求乙车到达的位置点D所表示的数(直接写出答案).11.点A在数轴的﹣1处,点B表示的有理数比点A表示的有理数小1,将点A向右移动8个单位得到点C,点D、点E是线段BC的两个三等分点.在所给的数轴(如图)上标出B、C、D、E各点,再写出它们各自对应的有理数.12.数轴上,当点A在原点的左边,点B在原点的右边,点A,B之间的距离为28个单位长度,点A与原点的距离为8个单位长度,若点A,B对应的有理数分别是a,b.(1)求a,b;(2)若质点M从点A沿数轴以每秒1个单位长度向左运动,质点N从点B沿数轴以每秒3个单位长度向左运动,若质点N在点C处追上质点M,求点C对应的有理数c;(3)若质点P从点A沿数轴以每秒2单位长度向右运动,质点Q从点B沿数轴以每秒1个单位长度向右运动,t秒钟后质点P与质点Q之间的距离为18时,求t的值.13.对于数轴上的A、B、C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“至善点”.例如:若数轴上点A、B、C所表示的数分别为1、3、4,则点B是点A、C的“至善点”.(1)若点A表示数﹣2,点B表示数2,下列各数、0、1、6所对应的点分别C1、C2、C3、C4,其中是点A、B的“至善点”的有(填代号);(2)已知点A表示数﹣1,点B表示数3,点M为数轴上一个动点:①若点M在点A的左侧,且点M是点A、B的“至善点”,求此时点M表示的数m;②若点M在点B的右侧,点M、A、B中,有一个点恰好是其它两个点的“至善点”,求出此时点M 表示的数m.14.如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A 的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?15.同学们知道,|8﹣3|表示8与3的差的绝对值,也可理解为数轴上表示数8与3两点间的距离.试探索:(1)填空:|8+3|表示数轴上数8与数两点间的距离;(2)|x+5|+|x﹣2|表示数轴上数x与数的距离和数x与数的距离的和.(3)满足|x+5|+|x﹣2|=7的所有整数x的值是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值;如果没有,说明理由.16.已知A,B两点在数轴上分别示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B 两点之间的距离AB=|a﹣b|.已知数轴上A,B两点对应的数分别为﹣1,3,P为数轴上一动点,A,B两点之间的距离是.设点P在数轴上表示的数为x,则点P与﹣4表示的点之间的距离表示为若点P到A,B两点的距离相等,则点P对应的数为若点P到A,B两点的距离之和为8,则点P对应的数为现在点A以2个单位长度/秒的速度向右运动,同时点B以0.5个单位长度/秒的速度向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?17.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.18.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.19.如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时匀速出发,同向而行时间/秒0 1 5A点位置﹣12 ﹣9B点位置8 18(1)请填写表格;(2)若两只蚂蚁在数轴上点P相遇,求点P在数轴上表示的数;(3)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(下)培优练习1
1. 如图,直线a ,b 都与直线c 相交,给出下列条件:
①∠1=∠5;②∠3=∠5;③∠1=∠6; ④∠2=∠7;⑤∠4=∠8.其中,能够得出
a ∥
b 的条件是 ( )
A .①②⑤
B .②③⑤
C .③④⑤
D .①②④
2. 如图,填空:
(1)∵∠1=∠2(已知),
∴AB ∥CD ( ). (2)∵∠1=∠3(已知)
∴____∥____(_ ).
3. 如图,
(1)因为∠1=∠2(已知),
所以________∥________(___________). (2)因为∠FAE =∠________(已知),
所以CE ∥AF (___________).
4. 如图,因为AC 平分∠BAD (已知),
所以___________(角平分线定义). 因为∠1=∠3(已知),
所以 (等量代换). 所以 (______________).
5. 如图,AB ⊥EF 于B ,CD ⊥EF 于D ,∠1=∠2. (1)请说明AB ∥CD 的理由;
(2)试判断BM 与DN 是否平行?为什么?
c
3 b
a
4 1 2
5
6
7 8
(第1题)
1 2
3
A
B
C D E
F (第2题)
2
A
B
C
D
1 3
(第 4题)
E
1 A
B
C
D
F
3
2
(第 3 题)
1 2 B
A
D
C
E
F
M
N
(第5题)
6.如图,CE 平分∠ACD ,∠1=∠B ,请说明AB ∥CE 的理由.
7.如图,不能够判定DE ∥BC 的条件是 ( )
A .∠BCE+∠DEC =180°
B .∠ED
C =∠DCB C .∠BGF =∠BC
D D .∠ACB =∠AED
8. 如图,(1)若∠1=∠2,则 ∥ ( );
(2)若∠3=∠4,则 ∥ ( ); (3)若∠BAD +∠ABC =180°,
则 ∥ ( );
(4)若∠ABC +∠BCD =180°,
则 ∥ ( ).
9. 如图,因为∠1+∠2=180°(已知),
又∵∠1+∠3=180°( ),
所以∠2=∠3( ). 所以 ∥ ( ). 因为∠4=∠E (已知),∠E =∠C (已知), 所以 (等量代换). 所以 ∥ ( ).
10. 如图,已知∠2=3∠1,且∠1+∠3=90°,试说明AB ∥CD .
1
2
D
B
A
C
E
(第6题)
(第7题)
(第 8 题)
A 1
3
2
4 C
B
D
(第9题)
A
4 B
C
F
D
E
2 1
3 (第10 题)
A
1
B
C
D
E
F
3
2。