平面直角坐标系教案浙教版数学八年级上册

合集下载

浙教版数学八年级上册《4.2 平面直角坐标系》教案

浙教版数学八年级上册《4.2 平面直角坐标系》教案

浙教版数学八年级上册《4.2 平面直角坐标系》教案一. 教材分析《4.2 平面直角坐标系》是浙教版数学八年级上册的一个重要内容。

本节内容主要让学生了解平面直角坐标系的定义、各象限内点的坐标特征及坐标轴上的点的坐标特征。

通过学习,学生能熟练运用平面直角坐标系解决一些实际问题。

二. 学情分析八年级的学生已经掌握了实数、一次函数和二次函数等基础知识,对数学图形有一定的认识。

但部分学生在坐标与图形的对应关系方面可能还存在一定的困难。

因此,在教学过程中,需要关注这部分学生的学习需求,通过直观的教学手段,帮助他们更好地理解平面直角坐标系。

三. 教学目标1.知识与技能:让学生掌握平面直角坐标系的定义,了解各象限内点的坐标特征及坐标轴上的点的坐标特征。

2.过程与方法:通过观察、实践,培养学生运用坐标系解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识,使学生在解决实际问题中体会数学的重要性。

四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征及坐标轴上的点的坐标特征。

2.难点:坐标与图形之间的对应关系,以及运用坐标系解决实际问题。

五. 教学方法1.情境教学法:通过生活中的实例,让学生感受坐标系的存在和作用。

2.直观演示法:利用教具和多媒体手段,直观展示坐标系的特点和规律。

3.合作学习法:引导学生分组讨论,共同探究坐标系的性质,提高学生的合作能力。

六. 教学准备1.教具:平面直角坐标系模型、多媒体设备。

2.学具:练习本、笔。

七. 教学过程1.导入(5分钟)利用生活中熟悉的场景,如商场购物、电影院等,引导学生思考如何用数学工具表示这些场景中的位置。

通过分析,引入平面直角坐标系的概念。

2.呈现(10分钟)展示平面直角坐标系模型,让学生直观地了解坐标系的组成。

同时,讲解坐标轴上的点的坐标特征,如原点、正方向等。

3.操练(10分钟)让学生在练习本上绘制一个简单的平面直角坐标系,并标注出各象限内的点。

八年级数学上册《建立适当的平面直角坐标系》教案、教学设计

八年级数学上册《建立适当的平面直角坐标系》教案、教学设计
4.学生在合作交流方面有待提高,教师应充分利用小组合作学习,培养学生的团队协作能力和沟通能力,使学生在交流中互相学习、共同进步。
三、教学重难点和教学设想
(一)教学重难点
1.重点:建立适当的平面直角坐标系,理解点与坐标之间的关系,运用坐标系解决实际问题。
2.难点:坐标系的选择与建立,图形与坐标之间的转换,以及坐标系在实际问题中的应用。
4.培养学生严谨、细致、勤奋的学习态度,养成独立思考、合作交流的学习习惯,为学生终身学习奠定基础。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了基本的几何知识和代数运算。在此基础上,学生对平面直角坐标系的建立与运用是一个新的挑战。根据前期的教学观察,学生对坐标系的概念理解不够深入,对坐标与图形之间的关系认识不足。因此,在本章节的教学中,应关注以下几点:
3.教师提出问题:“如何用数学的方法来描述这些场景中的位置关系?”激发学生的好奇心,为接下来的新课学习做好铺垫。
(二)讲授新知
1.教师简要回顾已学的几何知识和代数运算,为学生建立坐标系的知识框架。
2.介绍平面直角坐标系的概念,解释坐标轴、坐标点等基本元素,并说明坐标系在数学和实际生活中的重要性。
3.示范如何建立平面直角坐标系,讲解坐标与图形之间的关系,引导学生理解坐标系中各个部分的含义。
八年级数学上册《建立适当的平面直角坐标系》教案、教学设计
一、教学目标
(一)知识与技能
1.理解平面直角坐标系的概念,掌握平面直角坐标系的建立方法,能够准确地描述点在坐标系中的位置。
2.学会通过给定的点或图形,建立适当的平面直角坐标系,并能运用坐标系进行问题的分析与解决。
3.能够运用坐标系中的点与坐标之间的关系,进行图形的变换、点的对称、距离和角度的计算等操作。

初中数学初二数学上册《平面直角坐标系》教案、教学设计

初中数学初二数学上册《平面直角坐标系》教案、教学设计
b.坐标的平移、对称性质在几何问题中如何应用?
c.如何利用坐标系解决实际问题?
2.各小组汇报讨论成果,教师进行点评总结坐标系的实际应用和坐标性质的作用。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
a.填空题:给出一些点的坐标,让学生填写对应的点。
b.选择题:判断坐标的性质,如平移、对称等。
4.小组合作,探讨坐标系的平移、对称性质在解决几何问题中的应用。要求每组选取一个典型问题进行详细解答,并在课堂上进行分享。这个作业有助于培养学生的团队协作能力和表达能力。
5.针对课堂学习内容,撰写学习心得体会,总结自己在平面直角坐标系知识方面的收获和不足。要求字数不少于300字,让学生在反思中不断提高。
4.分层次设计练习题,针对不同水平的学生,提高他们在坐标系知识方面的掌握程度。同时,注重题目的实际应用背景,培养学生的数学建模能力。
5.教学过程中,注重启发式教学,引导学生主动发现问题、解决问题,提高学生的自主探究能力。
6.定期进行课堂小结,帮助学生总结所学知识,形成知识体系。同时,关注学生的学习反馈,调整教学策略,提高教学效果。
2.完成教材课后练习题,包括填空题、选择题和计算题。这些题目涵盖了本节课的重点知识,有助于学生巩固坐标的表示方法和性质,提高运算能力。
3.设计一道实际问题,要求学生运用坐标系知识进行解答。例如:在学校的平面图上,标出教学楼、操场和食堂的位置,并计算它们之间的距离。这个作业旨在培养学生将实际问题转化为数学问题的能力,提高数学建模能力。
难点:将抽象的坐标系与实际情境相结合,运用数学知识解决现实问题。
(二)教学设想
1.采用情境导入法,以生活中的实际问题为例,引导学生认识到坐标系在解决实际问题时的重要性,激发学生的学习兴趣。

平面直角坐标系教学设计浙教版八年级数学上册

平面直角坐标系教学设计浙教版八年级数学上册

平面直角坐标系教学设计教师活动1:教师提问:什么是平面直角坐标系?教师带领回顾:平面内画两条互相垂直,并且有公共原点O的数轴,组成平面直角坐标系,简称直角坐标系教师提问:各象限内点的坐标的符号特征有哪些?教师带领回顾:1.点P(x,y)在第一象限 x>0,y>0;教师活动2:例2.对于正方形ABCD,建立如图1的直角坐标系。

写成A,B,C,D各顶点的坐标.如果把x轴往下平移2个单位,那么A,B,C,D各顶点坐标在新坐标系中将怎样变化?解:A,B,C,D各顶点坐标为A(2, 2),B(2,2),C(2,2),D(2,2).A,B,C,D各顶点的坐标分别变为( 2,0),(2,0),(2,4),(2,4).如图,长方形ABCD的长和宽分别为4和6,建立适当的平面直角坐标系,并写出各个顶点的坐标A(3,2),B(3,2),C(3,2),D(3,2)A(4,0),B(0,0),C(6,0),D(6,4)A(3,4),B(3,0),C(3,0),D(3,4)活动意图说明:通过数形结合,探究如何根据图形的需要建立适当的直角坐标系,让教师活动3:思考:如何建立合适的平面直角坐标系?(1)尽可能选择一些特殊点作坐标原点(如顶点、中心、垂足),使图形上的特殊点尽可能多的在坐标轴上;(2)如果图形有对称中心,可以选对称中心为坐标原点;(3)如果图形有对称轴,可以选择对称轴为坐标轴;(4)坐标轴尽可能建立在图形已知的线段上(5)画直角坐标系一定要完整例3.一个四边形的形状和尺寸如图所示.建立适当的直角坐标系,在坐标系中作出这个四边形,并标出各顶点的坐标.分析:如图,为了使这个四边形的各个顶点坐标容易确定,可以把点E作为坐标系的原点,线段AB画在x轴上,那么DE就落在y轴上.选择适当的比例,求出A,B,C,D各点的坐标,再描点,用线段连结起来,就得到所求的图形.解:建立直角坐标系如图,选择比例为1:10.取点E为直角坐标系的原点,使四边形的边AB在x轴上,则可得A,B,C,D各点的坐标分别为(1,0),(2,0),(2.5, 1.5),(0,3.5).根据上述坐标在直角坐标系中作点A,B,C,D,并用线段依次连结各点,图中的四边形就是所求作的图形.活动意图说明:让学生通过具体例题的教学理解和巩固数学基础知识,把数学理论与必做题:1.下图是杭州西湖几个旅游景点的大致位置示意图,如果用(0,0)表示三潭印月的位置,用(1,5)表示断桥残雪的位置,那么雷峰夕照的位置可以表示为()A.(3,1)B.(3,1)C.(3,1)D.(3,1)2.中国象棋文化历史久远.某校开展了以“纵横之间有智意,攻防转换有乐趣”为主题的中国象棋文化节,如图所示的是某次对弈的残局图,如果建立平面直角坐标系,使“帅”位于点(1,2),“马”位于点(2,2),那么“兵”在同一坐标系下的坐标是.3.已知长方形ABCD的长为2,宽为1.以AB所在的直线为x轴,AB的中点为原点,建立直角坐标系,如图.求长方形各个顶点的坐标.4.已知某镇的镇政府、镇中心小学、农技站的位置如图.用线段连结这三个地点,恰好构成一个正三角形,且边长为2km.试选取适当的比例,建立直角坐标系,在坐标系中画出这三个地点的位置,并标出坐标.选做题:1.下图是一只蝴蝶标本,已知表示蝴蝶“翅膀尾部”A,B两点的坐标分别为(2,3),(2,3),则表示蝴蝶“身体尾部”C点的坐标为()A.(0,1)B.(1,1)C.(1,0)D.(2,1)2.某风景区中古塔、飞瀑、笔峰、望夫石四个景点的位置依次在一个边长为4km的正方形的四个顶点上(如图).试选取适当的比例,建立适当的坐标系,确定四个顶点的坐标,并在直角坐标系中标出它们的位置。

浙教版数学八年级上册4.2《平面直角坐标系》说课稿1

浙教版数学八年级上册4.2《平面直角坐标系》说课稿1

浙教版数学八年级上册4.2《平面直角坐标系》说课稿1一. 教材分析《平面直角坐标系》是浙教版数学八年级上册4.2节的内容,本节内容是在学生已经掌握了坐标系的基本概念和一次函数的图象的基础上进行讲解的。

通过本节内容的学习,使学生能进一步理解坐标系的意义,掌握平面直角坐标系的构成及特点,能熟练地在平面直角坐标系中确定点的坐标,会根据实际问题建立适当的坐标系,从而提高学生解决实际问题的能力。

二. 学情分析学生在学习本节内容之前,已经初步了解了坐标系的概念,并能够利用坐标系解决一些简单的问题。

但他们对坐标系的认识还比较肤浅,对平面直角坐标系的构成和特点还不够明确,同时,学生对实际问题与坐标系的结合还比较生疏,因此,在教学过程中,需要引导学生深入理解坐标系的含义,并通过实际问题,让学生体会坐标系在解决实际问题中的作用。

三. 说教学目标1.知识与技能目标:使学生掌握平面直角坐标系的构成及特点,能熟练地在平面直角坐标系中确定点的坐标,会根据实际问题建立适当的坐标系。

2.过程与方法目标:通过观察、操作、思考等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:平面直角坐标系的构成及特点,点的坐标在实际问题中的应用。

2.教学难点:如何根据实际问题建立适当的坐标系,以及坐标系在解决实际问题中的作用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、教具模型等辅助教学,提高教学效果。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生回顾已学的坐标系知识,为新课的学习做好铺垫。

2.讲解新课:讲解平面直角坐标系的构成及特点,让学生通过观察、操作、思考等活动,深入理解坐标系的含义。

3.实践操作:让学生通过实际操作,掌握在平面直角坐标系中确定点的坐标的方法。

浙教版八年级上册 4.2 平面直角坐标系 课件(共19张PPT)

浙教版八年级上册 4.2 平面直角坐标系 课件(共19张PPT)

1234
②有坐标(a,b),能否确定对应点P的位置. C
O
–1
Ex
小结:坐标可以确定点的位置.
–2
D
–3
–4
点P
(a,b)
情境升华,二生三
笛卡尔(1596-1660)
做中所悟,三生万物
活动4:小组活动 若需将现有10个点根据位置和坐标进行分类, 小组交流分类方式并分享你们分类的依据, 小组确定汇报人进行汇报交流.
点的位置

点P
有序数对 数
(a,b)
说说点的坐标
直角坐标系中,点P的坐标,其中a是 点P的横坐标,b是点P的纵坐标.
情境升华,二生三
活动3:2在该直角坐标系内,已知G,H,M,N
y
A
B
4
对应的坐标(3,2),(-3,-3),(0,2),(-4,2)
3
请你在坐标系内找到四点的位置;
2
1
–4 –3 –2 –1
终章活动,做中所固
2.在平面直角坐标系中,点P的坐标是(a,b),若ab>0,则 点P在第________象限;若ab<0,则点P在第________象限; 若ab=0,则点P在_________.
瓢城东望水漫漫,行到下菰城畔望
4.2 平面直角坐标系2022来自5.31情境引入,一生二
活动1:根据“数学灯谜”,推理出信息.
A:江 E:成 I:南
B:晶 F:水 J:修
C:德 G:正 K:苏
D:盐 H:才 L:浔
推理线索 -1,-5,-5,3,6
水晶晶南浔
修正德成正才 4 1 -4 -2 1 2
情境引入,一生二
情境升华,二生三
平面直角坐标系

浙教版数学八年级上册《4.2 平面直角坐标系》教案1

浙教版数学八年级上册《4.2 平面直角坐标系》教案1

浙教版数学八年级上册《4.2 平面直角坐标系》教案1一. 教材分析《4.2 平面直角坐标系》是浙教版数学八年级上册的教学内容,本节课的主要内容是让学生掌握平面直角坐标系的定义、各象限内点的坐标的符号特征,以及坐标轴上点的坐标特点。

通过本节课的学习,为学生后续学习函数、几何等知识打下基础。

二. 学情分析学生在七年级已经学习了平面图形的坐标表示,对坐标的概念有一定的了解。

但他们对平面直角坐标系的理解还不够深入,对于坐标系中各象限内点的坐标符号特征以及坐标轴上点的坐标特点还需要进一步巩固。

三. 教学目标1.知识与技能:使学生掌握平面直角坐标系的定义,理解各象限内点的坐标符号特征,以及坐标轴上点的坐标特点。

2.过程与方法:通过观察、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标符号特征。

2.难点:坐标轴上点的坐标特点,以及坐标系在实际问题中的应用。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究、积极参与,提高他们的学习兴趣和动手能力。

六. 教学准备1.教具:黑板、粉笔、多媒体课件。

2.学具:练习本、尺子、圆规。

七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中常见的坐标系图片,如地图、股市走势图等,引导学生关注坐标系在实际生活中的应用。

提问:这些图片中的点是如何用坐标表示的?引发学生对坐标系的思考。

2.呈现(10分钟)讲解平面直角坐标系的定义,以及各象限内点的坐标符号特征。

通过示例,让学生直观地理解坐标轴上点的坐标特点。

3.操练(10分钟)让学生分组讨论,用坐标表示给定的点,并判断这些点位于哪个象限。

每组选出一个代表进行汇报,师生共同评价、纠正。

4.巩固(10分钟)出示一些坐标系题目,让学生独立完成,检查他们对平面直角坐标系的理解。

八年级数学上册《平面直角坐标系》教案

八年级数学上册《平面直角坐标系》教案

一、教学目标1. 知识与技能:(1)理解平面直角坐标系的定义及其特点;(2)掌握坐标轴、坐标点、坐标值等基本概念;(3)学会在平面直角坐标系中确定点的位置;(4)能够进行坐标点的相互转换。

2. 过程与方法:(1)通过观察实际例子,培养学生的空间想象能力;(2)利用数形结合的思想,引导学生理解坐标系中点的坐标含义;(3)通过实践活动,提高学生运用坐标系解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生合作交流、解决问题的能力。

二、教学重点与难点1. 教学重点:(1)平面直角坐标系的定义及其特点;(2)坐标轴、坐标点、坐标值等基本概念;(3)在平面直角坐标系中确定点的位置;(4)坐标点的相互转换。

2. 教学难点:(1)坐标点的相互转换;(2)利用坐标系解决实际问题。

三、教学方法1. 情境教学法:通过实际例子,引导学生理解平面直角坐标系的概念;2. 数形结合法:利用数形结合的思想,让学生掌握坐标系中点的坐标含义;3. 实践活动法:引导学生动手操作,提高运用坐标系解决实际问题的能力;4. 小组合作法:鼓励学生合作交流,培养解决问题的能力。

四、教学准备1. 教学工具:黑板、粉笔、多媒体教学设备;2. 教学素材:平面直角坐标系图示、实际例子;3. 学具:练习本、铅笔、直尺。

五、教学过程1. 导入新课:(1)利用生活中的实际例子,如电影院座位分布图,引导学生思考如何表示座位位置;(2)介绍平面直角坐标系的定义及其特点;(3)引入坐标轴、坐标点、坐标值等基本概念。

2. 探究与讲解:(1)讲解坐标轴、坐标点、坐标值的关系;(2)引导学生学会在平面直角坐标系中确定点的位置;(3)讲解坐标点的相互转换方法。

3. 实践活动:(1)让学生分组进行坐标点的相互转换练习;(2)利用坐标系解决实际问题,如计算两点间的距离。

(2)引导学生思考坐标系在实际生活中的应用;(3)布置课后作业,巩固所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系教学设计
教师活动2:
教师提问:围棋在我国春秋战国时期已经广为流行,若在围棋盘上画上如图两条数轴(以小方格边长为单位),并规定列号写在前面,你将怎样表示点O,白棋A和黑棋B的位置?
教师引导学生得到:O (0,0),A (10,15),B (14,13)
教师讲授:如图,在平面内画两条互相垂直,并且有公共原点O的数轴,组成平面直角坐标系,简称直角坐标系.坐标系所在的平面就叫做坐标平面
对于平面内任意一点M,作MM1⊥x轴,MM2⊥y轴,设垂足M1, M2在各自数轴上所表示的数分别为x,y
x叫做点M的横坐标
y叫做点M的纵坐标
有序实数对(x,y )叫做点M的坐标
建立了平面直角坐标系后,对于坐标平面内任何一点,我们
可以确定它的坐标.反过来,对于任何一个坐标,我们可以
在坐标平面内确定它所表示的一个点.
教师提问:x轴和y轴把坐标平面分成四个象限
思考:在各个象限以及x轴、y轴上的点的坐标有什么特
征?
教师讲授:象限以数轴为界,x轴、y轴上的点不属于任何
象限
活动意图说明:通过数形结合,清晰且直观地认识平面直角坐标系,明确四个象限中
D( 3.5,2).
),O(0,0),P(1,
解:M(2,4),N(2,2),L(0,3
2
3

2
活动意图说明:让学生通过具体例题的教学理解和巩固数学基础知识,把数学理论与
教师活动4:
什么是平面直角坐标系?
答:
平面内画两条互相垂直,并且有公共原点O的数轴,组成平
面直角坐标系,简称直角坐标系
四个象限的点的坐标具有什么特征?
答:x轴、y轴上的点不属于任何象限
活动意图说明:对课堂教学进行归纳梳理,给学生一个整体印象,促进学生掌握知识
必做题:
1.下列选项中各坐标对应的点,落在如图所示的平面直角坐标系中阴影区
域内的是()
A.(1,2)
B.(2,0)
C.(0,3)
D.(1,1)
2.如果点P(m,1+2m)在第三象限内,那么m的取值范围是()
1
<m<0
2
B.m>1
2
C.m<0
D.m<1
2
3.从学校出发,沿正南方向走150 m,再沿正东方向走200 m可到达小敏家,如果以学校的位置为原点,以正北、正东方向为y轴、x轴的正方向,1m 表示一个单位长度建立平面直角坐标系,那么小敏家的位置用坐标表示为.
4.如图.
(1)写出图中六边形各个顶点的坐标.它们各在哪个象限内或坐标轴上?哪些点的横坐标相同?哪些点的纵坐标相同?
(2)作出点G(2,1),H(3,5),M(0,3),N(5,2),并判断这些点中哪些在六边形内,哪些在六边形外.
选做题:
1.已知点A的坐标为(a+1,3a),下列说法正确的是()
A.若点A在y轴上,则a=3
B.若点A在第一、三象限的角平分线上,则a=1
C.若点A到x轴的距离是3,则a=±6
D.若点A在第四象限,则a的值可以为2
2.数经历了从自然数到有理数,到实数,再到复数的发展过程,数学中把形如a+b i(a,b为实数)的数叫做复数,用z=a+b i表示,任何一个复数z=a+b i
在平面直角坐标系中都可以用有序数对Z(a,b)表示,如:z=1+2i表示为
Z(1,2),则z=2i可表示为()
A.Z(2,0)
B.Z(2,1)
C.Z(2,1)
D.Z(1,2)
如下页图是画在方格纸上的我国著名的水泊梁山的旅游景点简图. (1) 分别写出忠义堂、黑风亭、快活林、练武场的坐标(精确到0.1).
(2) (6,8),(6.6,3.6),(7.9,4.4)所表示的地点分别是什么?
必做题:
1.在平面直角坐标系中,点P(3,a2+1)所在的象限是()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.已知点A(2,15), B(√5,3),C(5,2),D(0.5,√7).判断这些点中,哪些在阴影区域内,哪些不在阴影区域内?。

相关文档
最新文档