高中数学 3.1.13.1.2变化率问题、导数的概念课时作业 新人教A版选修11
【免费下载】 新人教A版高中数学教材目录(必修+选修)

选修 1-1 第一章 常用逻辑用语 1.1 命题及其关系 1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词 小结 复习参考题 第二章 圆锥曲线与方程 2.1 椭圆 探究与发现 为什么截口曲线是椭圆 信息技术应用 用《几何画板》探究点的轨迹:椭圆 2.2 双曲线 2.3 抛物线
新人教 A 版高中数学教材目录(必修+选修)
必修 1 第一章 集合与函数概念 1.1 集合 1.2 函数及其表示 1.3 函数的基本性质 第二章 基本初等函数(Ⅰ) 2.1 指数函数 2.2 对数函数 2.3 幂函数 第三章 函数的应用 3.1 函数与方程 3.2 函数模型及其应用 必修 2 第一章 空间几何体 1.1 空间几何体的结构 1.2 空间几何体的三视图和直观图
选修 1-2 第一章 统计案例
1.1 回归分析的基本思想及其初步应用 1.2 独立性检验的基本思想及其初步应用 实习作业 小结 复习参考题 第二章 推理与证明 2.1 合情推理与演绎证明 阅读与思考 科学发现中的推理 2.2 直接证明与间接证明 小结 复习参考题
选修 2-3 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 探究与发现 子集的个数有多少 1.2 排列与组合
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配,料置不试技仅卷术可要是以求指解,机决对组吊电在顶气进层设行配备继置进电不行保规空护范载高与中带资负料荷试下卷高总问中体题资配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,.卷编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试5写交卷、重底保电要。护气设管装设备线置备4高敷动调、中设作试电资技,高气料术并中课3试中且资件、卷包拒料中管试含绝试调路验线动卷试敷方槽作技设案、,术技以管来术及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
高中数学第三章导数及其应用3.1导数的概念3.1.2瞬时变化率—导数学案苏教版选修1-1(2021

(江苏专用)2018-2019学年高中数学第三章导数及其应用3.1 导数的概念3.1.2 瞬时变化率—导数学案苏教版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018-2019学年高中数学第三章导数及其应用3.1 导数的概念3.1.2 瞬时变化率—导数学案苏教版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018-2019学年高中数学第三章导数及其应用3.1 导数的概念3.1.2 瞬时变化率—导数学案苏教版选修1-1的全部内容。
3.1。
2 瞬时变化率—导数学习目标:1。
理解导数的概念和定义及导数的几何意义.(重点) 2.理解运动在某时刻的瞬时变化率(瞬时速度).(难点)[自主预习·探新知]1.曲线上一点处的切线设曲线C上的一点P,Q是曲线C上的另一点,则直线PQ称为曲线C的割线;随着点Q沿曲线C向点P运动,割线PQ在点P附近越来越逼近曲线C。
当点Q无限逼近点P时,直线PQ 最终就成为在点P处最逼近曲线的直线l,这条直线l称为曲线在点P处的切线.2.瞬时速度运动物体的位移S(t)对于时间t的导数,即v(t)=S′(t).3.瞬时加速度运动物体的速度v(t)对于时间t的导数,即a(t)=v′(t).4.导数设函数y=f(x)在区间(a,b)上有定义,x0∈(a,b),当Δx无限趋近于0时,比值错误!=错误!无限趋近于一个常数A,则称f(x)在点x=x0处可导,并称常数A为函数f(x)在点x=x处的导数,记作f′(x0).5.导函数若函数y=f(x)对于区间(a,b)内任一点都可导,则f(x)在各点的导数也随自变量x的变化而变化,因而也是自变量x的函数,该函数称为f(x)的导函数,记作f′(x).6.函数y=f(x)在点x=x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.[基础自测]1.判断正误:(1)函数y=f(x)在x=x0处的导数值与Δx值的正、负无关.()(2)在导数的定义中,Δx,Δy都不可能为零.( )(3)在导数的定义中,错误!>0.( )【解析】(1)√。
高中数学第五章一元函数的导数及其应用1.2导数的概念及其几何意义学案新人教A版选择性必修2

导数的概念及其几何意义必备知识·自主学习导思1.什么是函数在某点处的导数?它的几何意义是什么?2.导函数是如何定义的?它与函数在某点处的导数有何关系?1.函数y =f ()x 的自变量x 从x 0变化到x 0+Δx 的平均变化率定义式 Δy Δx =f ()x 0+Δx -f ()x 0Δx实质 函数值的改变量与自变量的改变量之比 意义刻画函数在[]x 0,x 0+Δx 上函数值变化的快慢(1)Δx=x 2-x 1是正数吗?提示:Δx=x 2-x 1可能是正数,也可能是负数,但不能为0. (2)函数的平均变化率的几何意义是什么?提示:几何意义为函数y =f ()x 图象上过两点P 1()x 1,y 1 ,P 2()x 2,y 2 的割线的斜率. 2.函数y =f ()x 在x =x 0处的导数(瞬时变化率)(1)定义:如果当Δx→0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f ()x 在x =x 0处可导,并把这个确定的值叫做y =f ()x 在x =x 0处的导数. (2)记作f′()x 0 或0x x y' ,即f′()x 0 =lim Δx→0ΔyΔx =lim Δx→0 f ()x 0+Δx -f ()x 0Δx. (3)作用:刻画函数在某点处函数值变化的快慢.(1)函数y =f ()x 在x =x 0处的导数一定存在吗?提示:当Δx→0时,平均变化率ΔyΔx 的极限存在,则函数y =f ()x 在x =x 0处可导,否则在x =x 0处不可导或无导数.(2)函数y =f ()x 在x =x 0处的导数的定义还可以用别的式子表示吗?提示:还可以表示为f′()x 0 =lim Δx→0f ()x 0-Δx -f ()x 0-Δx =x x lim f()x -f ()x 0x -x 0等.3.导数的几何意义函数f(x)在x =x 0处的导数f′(x 0)就是切线P 0T 的斜率k 0, 即k 0=lim Δx→0f (x 0+Δx)-f (x 0)Δx =f′(x 0).(1)曲线的切线与曲线一定只有一个公共点吗?提示:曲线的切线并不一定与曲线只有一个公共点,可以有多个,甚至可以有无穷多个. (2)曲线的切线与导数有什么关系?提示:①函数f(x)在x =x 0处有导数,则函数f(x)在该点处必有切线,并且导数值就是该切线的斜率.②函数f(x)表示的曲线在点(x 0,f(x 0))处有切线,但函数f(x)在该点处不一定可导,例如f(x)=3x 在x =0处有切线,但不可导. 4.导函数的概念(1)定义:当x 变化时,y =f′(x)就是x 的函数,称它为y =f(x)的导函数(简称导数). (2)记作f′(x)或y′,即f′(x)=y′=lim Δx→0f (x +Δx)-f (x )Δx.f′(x)与f′(x 0)相同吗?它们之间有何关系?提示:f′(x)与f′(x 0)不相同.f′(x)是函数f(x)的导函数,f′(x 0)是函数f(x)在x =x 0处的导数值,是函数f′(x)在x =x 0时的函数值.1.辨析记忆(对的打“√”,错的打“×”).(1)函数y =f(x)在x =x 0处的导数f′(x 0)的几何意义是函数y =f(x)在点x =x 0处的函数值.( × )提示:函数y =f(x)在x =x 0处的导数f′(x 0)的几何意义是函数y =f(x)在点x =x 0处的导数值.(2)函数y=f(x)在x=x0处的导数f′(x0)的几何意义是函数y=f(x)在点(x0,f(x0))处的切线与x轴所夹锐角的正切值.( ×)提示:函数y=f(x)在x=x0处的导数f′(x0)的几何意义是函数y=f(x)在点(x0,f(x0))处的切线倾斜角的正切值.(3)函数y=f(x)在x=x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.( √)提示:函数y=f(x)在x=x0处的导数f′(x0)的几何意义就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.(4)函数y=f(x)在x=x0处的导数f′(x0)的几何意义是点(x0,f(x0))与点(0,0)连线的斜率.( ×)提示:函数y=f(x)在x=x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,不是点(x0,f(x0))与点(0,0)连线的斜率.2.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则( )A.f′(x)=a B.f′(x)=bC.f′(x0)=a D.f′(x0)=b【解析】选C.f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx=limΔx→0(a+b·Δx)=a.3.(教材习题改编)函数y=f(x)的图象如图所示,下列描述错误的是( )A.x=-5处比x=-2处变化快B.x=-4处呈上升趋势C.x=1和x=2处增减趋势相反D.x=0处呈上升趋势【解析】选D.根据导数的几何意义:f′(-5)>0,f′(-4)>0,f′(-2)=0,f′(0)<0,f′(1)f′(2)<0,判断可知D错误.4.已知函数f(x)在x0处的导数为f′(x0)=1,则函数f(x)在x0处切线的倾斜角为________.【解析】设切线的倾斜角为α,则tan α=f′(x 0)=1,又0°≤α<180°,所以α=45°. 答案:45°关键能力·合作学习类型一 求函数在某点处的导数(数学抽象、数学运算)1.已知函数y =f(x)是可导函数,且f′(1)=2,则lim Δx→0 f (1+Δx)-f (1)2Δx =( )A .12B .2C .1D .-1【解析】选C.由题意可得:lim Δx→0 f (1+Δx)-f (1)2Δx=12 lim Δx→0 f (1+Δx)-f (1)Δx =12 f′(1), 即:lim Δx→0f (1+Δx)-f (1)2Δx =12×2=1.2.设曲线f(x)=ax 2在点(1,a)处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B .12 C .-12D .-1【解析】选A.因为f′(1)=lim Δx→0a (1+Δx)2-a×12Δx=lim Δx→0 2aΔx+a (Δx)2Δx =lim Δx→0 (2a +aΔx)=2a ,所以2a =2,所以a =1.3.求函数f(x)=x 在x =1处的导数.【解析】由导数的定义知,函数在x =1处的导数f′(1) =lim Δx→0 f (1+Δx)-f (1)Δx ,而f (1+Δx)-f (1)Δx=1+Δx-1Δx =11+Δx+1,又lim Δx→011+Δx+1 =12 ,所以f′(1)=12 .求函数y =f(x)在点(x 0,f(x 0)) 处的导数的三个步骤【补偿训练】若函数y=f(x)在x=x0处可导,则limh→0f(x0+h)-f(x0-h)h等于( )A.f′(x0) B.2f′(x0) C.-2f′(x0) D.0【解析】选B.因为Δx=(x0+h)-(x0-h)=2h.所以limh→0f(x0+h)-f(x0-h)h=2limh→0f(x0+h)-f(x0-h)2h=2f′(x0).类型二导数的意义在实际问题中的应用(数学抽象、数学运算)【典例】一质点做抛物线运动,已知在t s时,质点的运动路程(单位:m)为s()t=8-3t2.(1)求质点在[1,1+Δt]这段时间内的平均速度;(2)求质点在t=1 s时的瞬时速度,并说明它们的意义.四步内容理解题意条件:质点的运动路程与时间t的函数关系式结论:(1)求质点在[1,1+Δt]这段时间内的平均速度;(2)求质点在t=1 s时的瞬时速度,并说明它们的意义.思路探求(1)按照平均速度的定义式计算;(2)取平均速度的极限即为瞬时速度.书(1)因为s()t=8-3t2,写表达所以Δs=8-3(1+Δt)2-(8-3×12)=-6Δt-3(Δt)2,所以质点在[1,1+Δt]这段时间内的平均速度为:v=ΔsΔt=-6-3Δt.(2)质点在t=1 s时的瞬时速度即s′(1).s′()1=limΔt→0ΔsΔt=limΔt→0(-6-3Δt)=-6.质点在t=1 s时的瞬时速度为-6 m/s,说明在第1 s附近,质点的运动路程每秒大约减少6 m.题后反思当导数值为正值时,说明运动的方向与位移是一致的;当导数值为负值时,说明运动的方向与位移是相反的.关于导数的实际意义根据物体的路程关于时间的函数求速度与加速度、求已知曲线的切线直接促使了导数的产生.可以利用上述实际问题理解导数的实际意义,导数是在某一时刻附近的瞬时变化率,是路程、速度等在这一时刻附近增加(减小)的大小.1.某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T内完成预期的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如下所示.在这四种方案中,运输效率(单位时间内的运输量)逐步提高的是( )【解析】选B.从函数图象上看,要求图象在[0,T]上越来越陡峭,在各选项中,只有B项中图象的切线斜率在不断增大,即运输效率(单位时间内的运输量)逐步提高.2.建造一栋面积为x m2的房屋需要成本y万元,y是x的函数,y=f(x)=x10+x10+0.3,求f′(100),并解释它的实际意义.【解析】根据导数的定义,得f′(100)=lim Δx→0 Δy Δx =lim Δx→0 f (100+Δx)-f (100)Δx=lim Δx→0(100+Δx+100+Δx+3)-(100+100+3)10Δx=lim Δx→0⎝⎛⎭⎪⎫110+100+Δx-1010Δx=lim Δx→0 ⎣⎢⎡⎦⎥⎤110+110×(100+Δx+10)=110 +110×(10+10) =0.105. 100 m 2时,成本增加的速度为1 050元/m 2.类型三 导数几何意义的应用(数学抽象、数学运算) 角度1 求切线方程【典例】已知曲线C :y =x 2.求曲线在x =1点处的切线方程.【思路导引】可先求出切点坐标,再求切线的斜率,最后利用点斜式得出切线方程. 【解析】把x =1代入y =x 2得y =12=1.即切点P(1,1),y′|x =1=lim Δx→0 Δy Δx =lim Δx→0 (1+Δx)2-1Δx=lim Δx→0(Δx+2)=2,所以k =y′|x =1=2.所以曲线y =x 2在P(1,1)处的切线方程为y -1=2(x -1),即2x -y -1=0.求曲线y =x 2+1过点P(1,0)的切线方程.【解析】设切点为Q ()a ,a 2+1 ,k =lim Δx→0 f (a +Δx)-f (a )Δx=lim Δx→0(2a +Δx)=2a.所以在Q 点处的切线方程为y -(a 2+1)=2a(x -a).(*) 把点(1,0)代入(*)式得-(a 2+1)=2a(1-a). 解得a =1± 2 .再把a =1± 2 代入到(*)式中.即得y =(2+2 2 )x -(2+2 2 )或y =(2-2 2 )x -(2-2 2 ).这就是所求的切线方程. 角度2 导数值的大小与函数图象变化间的关系【典例】1.已知函数y =f(x)的图象是下列四个选项中的图象之一,且其导函数y =f′(x)的图象如图所示,则该函数的图象是( )【解析】选B.由函数y =f(x)的导函数y =f′(x)的图象自左至右先增后减,可知函数y =f(x)图象的切线的斜率自左至右先增大后减小.2.某斜坡在某段内的倾斜程度可以近似地用函数y =-x 2+4x ⎝ ⎛⎭⎪⎫32≤x≤2 来刻画,试分析该段斜坡的坡度的变化情况.【解析】因为Δy Δx =[-(x +Δx)2+4(x +Δx)]-(-x 2+4x )Δx=-2x·Δx+4Δx-(Δx)2Δx =-2x +4-Δx,所以y′=lim Δx→0Δy Δx =-2x +4⎝ ⎛⎭⎪⎫32≤x≤2 . 由于y′=-2x +4在区间⎣⎢⎡⎦⎥⎤32,2 上是减函数,且0≤y′≤1,故该段斜坡的坡度最开始很接近45°,随着高度慢慢上升,坡度在慢慢变小,在x 达到2时坡度接近0°.1.利用导数的几何意义求切线方程的方法(1)若已知点(x 0,y 0)在已知曲线上,求在点(x 0,y 0)处的切线方程,先求出函数y =f(x)在点x 0处的导数,然后根据直线的点斜式方程,得切线方程y -y 0=f′(x 0)(x -x 0). (2)若点(x 0,y 0)不在曲线上,求过点(x 0,y 0)的切线方程,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.2.导数几何意义理解中的两个关键点关键点一:y =f(x)在点x =x 0处的切线斜率为k ,则k >0⇔f′(x 0)>0;k <0⇔f′(x 0)<0;k =0⇔f′(x 0)=0.关键点二:|f′(x 0)|越大⇔在x 0处瞬时变化越快;|f′(x 0)|越小⇔在x 0处瞬时变化越慢.已知直线l :y =4x +a 和曲线C :y =x 3-2x 2+3相切.求a 的值和切点的坐标. 【解析】设直线l 与曲线C 相切于点P(x 0,y 0), 因为f′(x)=lim Δx→0f (x +Δx)-f (x )Δx=lim Δx→0(x +Δx)3-2(x +Δx)2+3-(x 3-2x 2+3)Δx =3x 2-4x.由题意可知,直线l 的斜率k =4,即3x 20 -4x 0=4,解得x 0=-23 或x 0=2,所以切点的坐标为⎝ ⎛⎭⎪⎫-23,4927 或(2,3).当切点为⎝ ⎛⎭⎪⎫-23,4927 时,有4927 =4×⎝ ⎛⎭⎪⎫-23 +a ,a =12127 ;当切点为(2,3)时,有3=4×2+a ,a =-5.所以当a =12127 时,切点为⎝ ⎛⎭⎪⎫-23,4927 ;当a =-5时,切点为(2,3).【补偿训练】 已知f(x)=x 2+2.求: (1)f(x)在x =1处的导数; (2)f(x)在x =a 处的导数.【解析】(1)因为Δy Δx =f (1+Δx)-f (1)Δx=(1+Δx)2+2-(12+2)Δx =2+Δx,当Δx 趋近于0时2+Δx 趋近于2, 所以f(x)在x =1处的导数等于2.(2)因为Δy Δx =f (a +Δx)-f (a )Δx =(a +Δx)2+2-(a 2+2)Δx=2a +Δx,当Δx 趋近于0时,2a +Δx 趋近于2a , 所以f(x)在x =a 处的导数等于2a.课堂检测·素养达标1.设f′(x 0)=0,则曲线y =f(x)在点(x 0,f(x 0))处的切线( ) A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交【解析】选B.f′(x 0)=0,说明曲线y =f(x)在点(x 0,f(x 0))处的切线斜率为0,所以与x 轴平行或重合.2.已知函数y =f(x)的图象如图,则f′(x A )与f′(x B )的大小关系是( )A.0>f′(x A )>f′(x B ) B .f′(x A )<f′(x B )<0 C .f′(x A )=f′(x B )D .f′(x A )>f′(x B )>0【解析】选B .f′(x A )和f′(x B )分别表示函数图象在点A ,B 处的切线斜率,故f′(x A )<f′(x B )<0.3.曲线y =9x 在点(3,3)处的切线的倾斜角为( )A .30° B.45° C.135° D.60°【解析】选C.令y =f(x)=9x ,因为曲线f(x)=9x 在点(3,3)处的切线的斜率为k =f′(3)=lim Δx→0 f (3+Δx)-f (3)Δx =lim Δx→0 93+Δx -3Δx=lim Δx→0-33+Δx =-1,所以切线的倾斜角为135°.4.(教材练习改编)曲线f(x)=2x 在点(-2,-1)处的切线方程为________.【解析】f′(-2)=lim Δx→0 f (-2+Δx)-f (-2)Δx=lim Δx→0 2-2+Δx+1Δx=lim Δx→01-2+Δx =-12,所以切线方程为y +1=-12 (x +2),即x +2y +4=0.答案:x +2y +4=05.求函数y =3x 2在x =1处的导数.【解析】因为Δy=3(1+Δx)2-3×12=6Δx+3(Δx)2,所以Δy Δx =6+3Δx,所以y′=lim Δx→0 Δy Δx =lim Δx→0 (6+3Δx)=6.。
3.1.1 变化率问题 3.1.2导数的概念 教案(人教A版选修1-1)

3.1 变化率与导数3.1.1变化率问题3.1.2导数的概念(教师用书独具)●三维目标1.知识与技能通过大量的实例的分析,让学生经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数.2.过程与方法通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法.3.情感、态度与价值观学生在从平均变化率到瞬时变化率的探索过程中,通过动手算、动脑思和集体合作讨论,发展思维能力,树立敢于战胜困难的信息,养成主动获取知识和敢于探索求知的习惯,激发求知欲,增强合作交流意识.●重点、难点重点:了解导数概念的形成,理解导数有内涵.难点:在平均变化率的基础上探求瞬时变化率,深刻理解导数的内涵.通过列举大量实例增强学生对导数概念形成的理解,以化解重点;通过逼近的方法,引导学生观察来突破难点.(教师用书独具)●教学建议学生对平均变化率已有了很好的认识,同时在物理课程中已学习过瞬时速度,因此,学生已经具备了一定的认知基础,于是,在教学设计中,宜采用相互讨论、探究规律和引导发现的教学方法,本着为学生发展的原则,通过师生互动、共同探索,形成概念,并学以致用.在学生的认知基础上,为了让学生明确导数就是瞬时变化率,函数f (x )在x =x 0处的导数反映了函数f (x )在x =x 0处附近变化的快慢,从而更好地理解导数的概念.在学法指导上,应回避了学生较难理解的极限思想,而是通过让学生体验逼近的思想,让他们通过自主探究,发现导数的内涵.使学生在学习过程中探究能力,分析问题、解决问题的能力都得到了不同程度的提升.●教学流程创设问题情境,引出问题:如何刻画物体运动的快慢?⇒引导学生结合物理知识,分析、比较,引出平均变化率与瞬时变化率的概念.⇒通过引导学生回答所提问题理解瞬时变化率,得出导数的概念.⇒通过例1及其变式训练,使学生掌握如何计算平均变化率.⇒通过例2及其变式训练,使学生掌握求瞬时速度的方法,为求导数打下基础.⇒通过例3及其变式训练,学会求函数在某点处的导数的步骤与方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(对应学生用书第45页)【问题导思】实例:(1)当你吹气球时会发现随着气球内空气容量的增加,气球的半径增加的会越来越慢.(2)从高空放下一件物体,随着时间的变化,物体下降的速度会越来越快. 1.如何用数学的观点刻画物体运动的快慢? 【提示】 可以运用平均变化率来刻画.2.实例(2)中,当t 1≈t 2时刻时,平均变化率有什么样的特点? 【提示】 平均变化率接近t 1或t 2时刻的速度. 1.函数y =f (x )从x 1到x 2的平均变化率 (1)定义式:Δy Δx =f (x 2)-f (x 1)x 2-x 1.(2)实质:函数值的改变量与自变量的改变量之比. (3)作用:刻画函数值在区间[x 1,x 2]上变化的快慢. 2.函数y =f (x )在x =x 0处的瞬时变化率 (1)定义式:lim Δx →ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)实质:瞬时变化率是当自变量的改变量趋近于0时,平均变化率趋近的值. (3)作用:刻画函数在某一点处变化的快慢.函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li mΔx →0 ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx.(对应学生用书第45页)求函数f (x )=x 2在x =1,2,3附近的平均变化率,取Δx 都为13,在哪一点附近平均变化率最大?【思路探究】 (1)Δx 、Δy 分别为多少?(2)平均变化率怎么求?(3)哪一点附近的平均变化率大?【自主解答】 在x =1附近的平均变化率为 k 1=f (1+Δx )-f (1)Δx =(1+Δx )2-1Δx =2+Δx ;在x =2附近的平均变化率为k 2=f (2+Δx )-f (2)Δx =(2+Δx )2-22Δx =4+Δx ;在x =3附近的平均变化率为k 3=f (3+Δx )-f (3)Δx =(3+Δx )2-32Δx =6+Δx .若Δx =13,则k 1=2+13=73,k 2=4+13=133,k 3=6+13=193.由于k 1<k 2<k 3,故在x =3附近的平均变化率最大.1.解答本题的关键是弄清在某点处自变量的增量Δx 与函数值的增量Δy . 2.求函数y =f (x )从x 1到x 2的平均变化率的三个步骤 (1)求自变量的增量:Δx =x 2-x 1. (2)求函数值的增量:Δy =f (x 2)-f (x 1). (3)作商求函数的平均变化率:Δy Δx =f (x 2)-f (x 1)x 2-x 1.求函数y =sin x 在0到π6之间和π3到π2之间的平均变化率,并比较它们的大小.【解】 函数y =sin x 在0到π6之间的平均变化率为sin π6-sin 0π6-0=3π,在π3到π2之间的平均变化率为sin π2-sin π3π2-π3=3(2-3)π. ∵2-3<1,∴3π>3(2-3)π.∴函数y =sin x 在0到π6之间的平均变化率为3π,在π3到π2之间的平均变化率为3(2-3)π,且在0到π6之间的平均变化率较大.s =⎩⎪⎨⎪⎧3t 2+2 (t ≥3)29+3(t -3)2(0≤t <3) 求(1)物体在t ∈[3,5]内的平均速度. (2)物体的初速度v 0.【思路探究】 (1)求物体在[3,5]内的平均速度应选择哪一段函数的解析式?(2)物体的初速度v 0的含义是什么?如何去求?【自主解答】 (1)∵物体在t ∈[3,5]内时,s =3t 2+2,且时间增量Δt =5-3=2, 物体在t ∈[3,5]内的位移变化量为Δs =3×52+2-(3×32+2)=3×(52-32)=48, ∴物体在t ∈[3,5]上的平均速度为 Δs Δt =482=24(m/s). (2)求物体的初速度v 0,即求物体在t =0时的瞬时速度. ∵物体在t =0附近的平均变化率为 Δs Δt =f (0+Δt )-f (0)Δt=29+3[(0+Δt )-3]2-29-3(0-3)2Δt =3Δt -18,∴物体在t =0处的瞬时变化率为 li mΔt →0 ΔsΔt=li mΔt →0 (3Δt -18)=-18, 即物体的初速度为-18 m/s.1.解答本例首先要弄清第(1)问是求平均变化率,而第(2)问实际上是求t =0时的瞬时速度(即瞬时变化率).2.求瞬时速度应先求平均速度v =Δs ,再用公式v =li mΔt →0 Δs,求得瞬时速度. 3.如果物体的运动方程是s =s (t ),那么函数s =s (t ),在t =t 0处的导数,就是物体在t =t 0时的瞬时速度.一辆汽车按规律s =2t 2+3做直线运动,求这辆车在t =2时的瞬时速度(时间单位:s ,位移单位:m).【解】 设这辆车在t =2附近的时间变化量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt )2,Δs Δt =8+2Δt ,当Δx 趋于0时,平均变化率ΔsΔt 趋于8. 所以,这辆车在t =2时的瞬时速度为8 m/s.【思路探究】 求Δy →求ΔyΔx→取极限→得f ′(1) 【自主解答】 Δy =f (1+Δx )-f (1)=[3(1+Δx )2+a (1+Δx )+b ]-(3+a +b )=3(Δx )2+(6+a )Δx .Δy Δx =3(Δx )2+(6+a )Δx Δx=3Δx +6+a . li mΔx →0 ΔyΔx=li mΔx →0 (3Δx +6+a )=6+a . ∴f ′(1)=6+a .1.求函数f (x )在某点处导数的步骤与求瞬时变化率的步骤相同,简称:一差、二比、三极限.2.利用定义求函数y =f (x )在点x 0处的导数的两个注意点(1)在求平均变化率Δy Δx 时,要注意对Δy Δx 的变形与约分,变形不彻底可能导致li mΔx →0 ΔyΔx 不存在.(2)当对Δy Δx 取极限时,一定要把ΔyΔx变形到当Δx →0时,分母是一个非零常数的形式.已知函数f (x )=ax 2+c ,且f ′(1)=2,求a 的值. 【解】 ∵Δy =f (1+Δx )-f (1) =a (1+Δx )2+c -(a +c ) =2a ·Δx +(Δx )2,∴Δy =2a ·Δx +(Δx )2=2a +Δx . 因此f ′(1)=lim Δx →ΔyΔx =lim Δx →0(2a +Δx )=2a .∴2a=2,a=1.(对应学生用书第48页)求物体的瞬时速度、初速度时要注意步骤的规范性(12分)(2013·长沙高二检测)一做直线运动的物体,其位移s与时间t的关系是s(t)=3t-t2.(1)求此物体的初速度;(2)求此物体在t=2时的瞬时速度;(3)求t=0到t=2时的平均速度.【思路点拨】本题已知函数解析式,求初速度即t=0时的瞬时速度,t=2时的瞬时速度和t∈[0,2]时的平均速度,可以用一差、二比、三极限的方法.【规范解答】(1)当t=0时的速度为初速度.在0时刻取一时间段[0,0+Δt],即[0,Δt],∴Δs=s(Δt)-s(0)=[3Δt-(Δt)2]-(3×0-02)=3Δt-(Δt)2,2分Δs Δt=3Δt-(Δt)2Δt=3-Δt,3分lim Δt→0ΔsΔt=limΔt→0(3-Δt)=3.4分∴物体的初速度为3.(2)取一时间段[2,2+Δt],∴Δs=s(2+Δt)-s(2)=[3(2+Δt)-(2+Δt)2]-(3×2-22) =-Δt-(Δt)2,6分Δs Δt=-Δt-(Δt)2Δt=-1-Δt,7分lim Δt→0ΔsΔt=limΔt→0(-1-Δt)=-1,8分∴当t=2时,物体的瞬时速度为-1.(3)当t∈[0,2]时,Δt=2-0=2.Δs =s (2)-s (0)=(3×2-22)-(3×0-02)=210分 v =Δs Δt =22=1. ∴在0到2之间,物体的平均速度为1.12分解答此类问题首先要理解概念与公式的内涵,其次在解题过程中要严格按规定步骤解答,切忌跨步,以免出错.1.平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ,当Δx 趋于0时,它所趋于的一个常数就是函数在x 0处的瞬时变化率,即求函数的瞬时变化率是利用平均变化率“逐渐逼近”的方法求解.另外,它们都是用来刻画函数变化快慢的,它们的绝对值越大,函数变化得越快.2.函数在一点处的导数,就是在该点函数值的改变量与自变量的改变量的比值的极限,它是一个定值,不是变数.(对应学生用书第48页)1.已知物体位移公式s =s (t ),从t 0到t 0+Δt 这段时间内,下列说法错误的是( ) A .Δs =s (t 0+Δt )-s (t 0)叫做位移增量B.Δs Δt =s (t 0+Δt )-s (t 0)Δt 叫做这段时间内物体的平均速度C.ΔsΔt 不一定与Δt 有关 D.lim Δt →ΔsΔt叫做这段时间内物体的平均速度 【解析】 D 错误,应为t =t 0时的瞬时速度. 【答案】 D2.已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43D .0.44【解析】 ∵x =2,Δx =0.1, ∴Δy =f (2+0.1)-f (2)=2.12-22=0.41. 【答案】 B3.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( )A .f ′(x )=aB .f ′(x )=bC .f ′(x 0)=aD .f ′(x 0)=b 【解析】Δy Δx =f (x 0+Δx )-f (x 0)Δx =a +b ·Δx , f ′(x 0)=lim Δx →ΔyΔx =lim Δx →0(a +b ·Δx )=a . 【答案】 C4.一物体运动的方程是s =3+t 2,求物体在t =2时的瞬时速度. 【解】 Δs =(2+Δt )2-4=4Δt +(Δt )2.∴ΔsΔt=4+Δt . ∴当Δt →0时,瞬时速度为4.(对应学生用书第103页)一、选择题1.已知函数y =x 2+1的图象上一点(1,2)及邻近一点(1+Δx,2+Δy ),则ΔyΔx 等于( )A .2B .2xC .2+ΔxD .2+(Δx )2【解析】 Δy =(1+Δx )2+1-(12+1)=2Δx +(Δx )2.∴Δy Δx =2Δx +(Δx )2Δx=2+Δx . 【答案】 C2.自由落体运动的公式为s =s (t )=12gt 2(g =10 m/s 2),若v =s (1+Δt )-s (1)Δt ,则下列说法正确的是( )A .v 是在0~1 s 这段时间内的速度B .v 是1 s 到(1+Δt )s 这段时间内的速度C .5Δt +10是物体在t =1 s 这一时刻的速度D .5Δt +10是物体从1 s 到(1+Δt )s 这段时间内的平均速度【解析】 由平均速度的概念知:v =s (1+Δt )-s (1)Δt =5Δt +10.故应选D.【答案】 D3.(2013·惠州高二检测)某物体做直线运动,其运动规律是s =t 2+3t (t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度为( )A.12316米/秒B.12516米/秒 C .8米/秒 D.674米/秒【解析】 ∵Δs Δt =(4+Δt )2+34+Δt -16-34Δt=(Δt )2+8Δt +-3Δt 4(4+Δt )Δt=Δt +8-316+4Δt,∴lim Δt →0 Δs Δt =8-316=12516. 【答案】 B4.函数f (x )=x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1,k 2的大小关系是( )A .k 1<k 2B .k 1>k 2C .k 1=k 2D .无法确定【解析】 k 1=f (x 0+Δx )-f (x 0)Δx =2x 0+Δx ,k 2=f (x 0)-f (x 0-Δx )Δx=2x 0-Δx ,而Δx 可正可负,故k 1、k 2大小关系不确定.【答案】 D5.已知点P (x 0,y 0)是抛物线y =3x 2+6x +1上一点,且f ′(x 0)=0,则点P 的坐标为( )A .(1,10)B .(-1,-2)C .(1,-2)D .(-1,10)【解析】 Δy =3(x 0+Δx )2+6(x 0+Δx )-3x 20-6x 0=6x 0·Δx +3(Δx )2+6Δx ,∴lim Δx →0 Δy Δx =lim Δx →0(6x 0+3Δx +6)=6x 0+6=0. ∴x 0=-1,y 0=-2.【答案】 B二、填空题6.(2013·洛阳高二检测)一小球沿斜面自由滚下,其运动方程是s (t )=t 2, (s 的单位:米,t 的单位:秒),则小球在t =5时的瞬时速度为________.【解析】 v ′(5)=lim Δt →0 s (5+Δt )-s (5)Δt=lim Δt →0(10+Δt )=10 【答案】 10米/秒7.已知函数f (x )=ax +4,若f ′(1)=2,则a =________.【解析】 f ′(1)=lim Δx →0 a (1+Δx )+4-a -4Δx =lim Δx →0 a Δx Δx=2,∴a =2. 【答案】 28.若函数f(x)在x=a处的导数为m,那么limΔx→0f(a+Δx)-f(a-Δx)Δx=________.【解析】∵limΔx→0f(a+Δx)-f(a)Δx=m,则limΔx→0f(a-Δx)-f(a)-Δx=m.∴limΔx→0f(a+Δx)-f(a-Δx)Δx=limΔx→0f(a+Δx)-f(a)+f(a)-f(a-Δx)Δx=limΔx→0f(a+Δx)-f(a)+limΔx→0f(a-Δx)-f(a)-Δx=m+m=2m.【答案】2m三、解答题9.已知f(x)=(x-1)2,求f′(x0),f′(0).【解】∵Δf=(x0+Δx-1)2-(x0-1)2=2x0·Δx-2Δx+(Δx)2,∴ΔfΔx=2x0Δx-2Δx+(Δx)2Δx=2x0-2+Δx,f′(x0)=limΔx→0ΔfΔx=limΔx→0(2x0-2+Δx)=2x0-2,把x0=0代入上式,得f′(0)=2×0-2==-2.10.设质点做直线运动,已知路程s是时间t的函数:s=3t2+2t+1.(1)求从t=2到t=2+Δt的平均速度,并求当Δt=1,Δt=0.1时的平均速度;(2)求当t=2时的瞬时速度.【解】(1)从t=2到t=2+Δt内的平均速度为:Δs Δt=s(2+Δt)-s(2)Δt=3(2+Δt)2+2(2+Δt)+1-3×4-2×2-1Δt=14Δt+3(Δt)2Δt=14+3Δt.当Δt=1时,平均速度为14+3×1=17;当Δt=0.1时,平均速度为14+3×0.1=14.3.(2)t=2时的瞬时速度为:v=limΔt→0ΔsΔt=limΔt→0(14+3Δt)=14.11.(2013·黄冈高二检测)枪弹在枪筒中运动可以看作匀加速运动,如果枪弹的加速度是a =5×105 m/s 2,它从枪口射出所用的时间为t 1=1.6×10-3 s ,求枪弹射出枪口时的瞬时速度. 【解】 ∵s (t )=12at 2, ∴Δs =s (t 1+Δt )-s (t 1)=12a (t 1+Δt )2-12at 21=at 1Δt +12a (Δt )2, Δs Δt =at 1Δt +12a (Δt )2Δt =at 1+12a Δt . ∴枪弹射出枪口时的瞬时速度为v =lim Δt →0 Δs Δt =lim Δt →0 (at 1+12a Δt )=at 1. 由题意a =5×105 m/s 2,t 1=1.6×10-3s , ∴v =at 1=5×105×1.6×10-3 =800(m/s),即枪弹射出枪口时的瞬时速度为800 m/s.(教师用书独具)求函数y =1x在x =1时的瞬时变化率. 【解】 ∵Δy =f (1+Δx )-f (1) =11+Δx -1=1-1+Δx 1+Δx=1-1-Δx (1+1+Δx )1+Δx=-Δx (1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx . ∴Δx 趋于0时,Δy Δx 趋于-12. ∴x =1时的瞬时变化率为-12.求y =x 在x =1处的导数.【解】 由题意知Δy =1+Δx -1, ∴Δy Δx =1+Δx -1Δx =(1+Δx -1)(1+Δx +1)Δx (1+Δx +1) =11+Δx +1, ∴y ′|x =1=lim Δx →011+Δx +1=12.。
人教A版高中数学选修1-1《三章导数及其应用3.1变化率与导数3.2导数的概念》优质课教案_24

1.1.2导数的概念(一)教材分析本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础•同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具.(二)教学目标(1)在上一节学习平均变化率的基础上,了解瞬时速度、瞬时变化率的概念;(2)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;(3)会求函数在某点的导数及简单应用.(三)教学重点与难点重点:通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念. 难点:使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.(四)教学过程1. 复习引入(1)函数y = f(x)从x i到X2的平均变化率公式;(2)函数y = f(x)从x0到X Q L X的平均变化率公式.2. 合作探究在高台跳水运动中,运动员在不同时刻的速度是不同的. 我们把物体在某一时刻(某一位置)的速度称为瞬时速度.探究一:瞬时速度的求解从前面的学习我们知道,平均速度只能粗略地描述某段时间内物体的运动状态,不一定能反映运动员在某一时刻的瞬时速度. 如何求运动员的瞬时速度呢?设计意图:让学生产生进一步学习的需求,即有必要知道任意时刻的速度.以高台跳水运动为例,研究运动员在某一时刻的瞬时速度.在高台跳水运动中,如果运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在关系ht =-4.9t26.5t 10.探究:如何求运动员瞬时速度?比如t =2s的瞬时速度是多少?平均速度与瞬时速度有关系吗?设计意图:问题具体化,即求运动员在t=2s时的瞬时速度.针对具体的问题情境,寻求解决问题的想法.我们求t=2s的瞬时速度是多少,先察t=2s附近平均速度的情况:(2) 我们如何表示运动员在t=2s 时的瞬时速度? (3) 运动员在某一时刻t o 的瞬时速度怎样表示?设计意图:从特殊到一般,即从特殊点t=2上升到任意点t=t °瞬时速度的表示. (4) 函数f(x)在x=x 0处的瞬时变化率怎样表示?设计意图:舍弃具体变化率问题的实际意义,抽象为数学问题,定义导数. 探究二:导数的定义瞬时速度是平均速度—当览趋近于0时的极限.L t导数的定义:函数y =f(x)在x =x o 处的瞬时变化率是啊卡=|m f(xo:-f (xo),我们称它为函数y = f(x)在x=x o 处的导数,记作 f (x o ) 或 y'U 即 f(x o )pm of(x x)—f(x o )注意:(1) 函数应在点X 。
高中数学第三章导数及其应用3.1.1变化率问题3.1.2导数的概念新人教A版选修

探究2:根据函数的瞬时变化率与在某点处导数的定 义,回答下列问题:
(1)瞬时变化率与平均变化率的关系是什么?它们的 物理意义分别是什么?
提示 瞬时变化率是平均变化率在Δx 无限趋近于 0 时,ΔΔxy无限趋近的值;瞬时变化率的物理意义是指物体运 动的瞬时速度,平均变化率的物理意义是指物体运动的平 均速度.
(2)瞬时变化率与函数在某点处导数的关系是什么? 提示 函数在某点处的瞬时变化率就是函数在此点 处的导数.
课堂探究案·核心素养提升
题型一 求函数的平均变化率
例1 求函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的
平均变化率,并求当x0=2,Δx=0.1时平均变化率的 值.
【自主解答】 函数 y=f(x)=3x2+2 在区间[x0,x0
【答案】
1 (1)2
(2)见自主解答
●规律总结
1.求函数y=f(x)在点x0处的导数的三个步骤
2.瞬时变化率的几种变形形式
f(x0+Δx)-f(x0) Δx
2×12=5.
题型二 求函数在某点处的导数
例2 (1)函数 y= x在 x=1 处的导数为________.
(2)如果一个质点由定点 A 开始运动,在时间 t 的位 移函数为 y=f(t)=t3+3,
①当 t1=4,Δt=0.01 时,求Δy 和比值ΔΔyt; ②求 t1=4 时的导数.
【自主解答】 (1)Δy= 1+Δx-1, ΔΔxy= 1+ΔΔxx-1= 1+Δ1 x+1,
+
Δ
x]
上
的
平
均
变
化
率
为
f(x0+Δx)-f(x0) (x0+Δx)-x0
=
[3(x0+Δx)2+2]-(3x20+2) Δx
新人教A版高中数学教材目录(必修+选修)【很全面】

人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
2024届高考一轮复习数学课件(新教材人教A版 提优版):导数的概念及其意义、导数的运算

fx+Δx-fx Δx .
知识梳理
2.导数的几何意义 函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0)) 处的切线的 斜率 ,相应的切线方程为 y-f(x0)=f′(x0)(x-x0) .
知识梳理
3.基本初等函数的导数公式 基本初等函数 f(x)=c(c为常数)
知识梳理
f(x)=logax(a>0,且a≠1) f(x)=ln x
1 f′(x)=_x_ln__a_
1 f′(x)=__x _
知识梳理
4.导数的运算法则 若f′(x),g′(x)存在,则有 [f(x)±g(x)]′= f′(x)±g′(x) ; [f(x)g(x)]′= f′(x)g(x)+f(x)g′(x) ; gfxx′=f′xg[xg-xf]2xg′x(g(x)≠0); [cf(x)]′= cf′(x) .
教材改编题
1.若函数f(x)=3x+sin 2x,则
√A.f′(x)=3xln 3+2cos 2x
C.f′(x)=ln3x3+cos 2x
B.f′(x)=3x+2cos 2x D.f′(x)=ln3x3-2cos 2x
因为函数f(x)=3x+sin 2x, 所以f′(x)=3xln 3+2cos 2x.
对于
C,2sxin2
x′=2sin
x′x2-2sin x4
xx2′=2xcos
x-4sin x3
x,故
C
错误;
对于D,(2x+cos x)′=(2x)′+(cos x)′=2xln 2-sin x,故D正确.
(2)已知函数f(x)的导函数为f′(x),且满足f(x)=x3+x2f′(1)+2x-1,则
f′(2)等于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1 变化率问题 3.1.2 导数的概念
课时目标 1.了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率.3.会利用导数的定义求函数在某点处的导数.
定义
实例
平均 变化率
函数y =f (x )从x 1到x 2的平均变化率为
________________,简记作:Δy
Δx
.
①平均速度; ②曲线割线的斜率.
瞬时
变化率
函数y =f (
x )在x =x 0处的瞬时变化率是函数f (x )从x 0到x 0+Δx 的平均变化率
在Δx →0时的极限,
即_______________=0lim x →Δy
Δx
①瞬时速度:物体在某一时刻的速度;
②切线斜率.
2.导数的概念:一般地,函数y =f (x )在x =x 0处的瞬时变化率是0lim
x →Δy
Δx
=____________,
我们称它为函数y =f (x )在x =x 0处的 ,记为 或
即f
′(x 0) =0lim x →Δy
Δx
一、选择题
1.当自变量从x 0变到x 1时,函数值的增量与相应自变量的增量之比是函数( ) A .在[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化率 D .以上都不对
2.已知函数f (x )=2x 2
-1的图象上一点(1,1)及邻近一点(1+Δx ,f (1+Δx )),则
Δy Δx
等于( )
A .4
B .4+2Δx
C .4+2(Δx )2
D .4x
3.如图,函数y =f (x )在A ,B 两点间的平均变化率是 ( )
A .1
B .-1
C .2
D .-2
4.设f(x)在x =x 0处可导,则0
lim x →f x 0-Δx -f x 0
Δx 等于 ( )
A .-f ′(x 0)
B .f ′(-x 0)
C .f ′(x 0)
D .2f ′(x 0)
5.已知f (x )=-x 2
+10,则f (x )在x =32
处的瞬时变化率是( )
A .3
B .-3
C .2
D .-2
6.一物体的运动方程是s =12
at 2
(a 为常数),则该物体在t =t 0时的瞬时速度是( )
A .at 0
B .-at 0 C.1
2
at 0 D .2at 0
题 号 1 2 3 4 5 6 答 案 7.已知函数y =f (x )=x 2
+1,在x =2,Δx =0.1时,Δy 的值为________.
8.过曲线y =2x
上两点(0,1),(1,2)的割线的斜率为________.
9.已知物体运动的速度与时间之间的关系是:v (t )=t 2
+2t +2,则在时间间隔[1,1+Δt ]内的平均加速度是________,在t =1时的瞬时加速度是________.
三、解答题
10.已知函数f (x )=x 2
-2x ,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.
11.用导数的定义,求函数y =f (x )=1
x
在x =1处的导数.
能力提升
12.已知二次函数f (x )=ax 2
+bx +c 的导数为f ′(x ),f ′(0)>0,对于任意实数x ,有f (x )≥0,则
f f
的最小值为________.
13.枪弹在枪筒中可以看作匀加速直线运动,如果它的加速度是a =5×105
m/s 2
,枪弹
从枪口射出时所用的时间为1.6×10-3
s .求枪弹射出枪口时的瞬时速度.
1.做直线运动的物体,它的运动规律可以用函数s =s (t )描述,设Δt 为时间改变量,在t 0+Δt 这段时间内,物体的位移(即位置)改变量是Δs =s (t 0+Δt )-s (t 0),那么位移
改变量Δs 与时间改变量Δt 的比就是这段时间内物体的平均速度v ,即v =Δs
Δt
=
s t 0+Δt -s t 0
Δt
.
2.由导数的定义可得求导数的一般步骤(三步法):
(1)求函数的增量Δy =f (x 0+Δx )-f (x 0);(2)求平均变化率Δy Δx ;0 Δy Δx .→0 Δy
Δx
.
第三章 导数及其应用 §3.1 变化率与导数 3.1.1 变化率问题 3.1.2 导数的概念
答案
知识梳理
1.f x 2-f x 1x 2-x 1 lim Δx →0 f x 0+Δx -f x 0Δx
2.lim Δx →0 f x 0+Δx -f x 0
Δx 导数 f ′(x 0) y ′|x =x 0 lim Δx →0 f x
0+Δx -f x 0
Δx
作业设计 1.A
2.B [∵Δy =f (1+Δx )-f (1)
=2(1+Δx )2-1-2×12+1=4Δx +2(Δx )2
,
∴Δy Δx =4Δx +Δx 2
Δx
=4+2Δx .] 3.B [Δy Δx =f -f 3-1=1-3
2
=-1.]
4.A [lim Δx →0f x 0-Δx -f x 0Δx =lim Δx →0-f x 0-f x 0-Δx
Δx =-lim Δx →0f x 0-f x 0-Δx
Δx
=-f ′(x 0).]
5.B [∵Δy Δx =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭
⎪⎫32Δx =-Δx -3,
∴lim Δx →0Δy Δx
=-3.] 6.A [∵Δs Δt =s t 0+Δt -s t 0Δt =1
2a Δt +at 0,
∴lim Δt →0 Δs Δt =at 0.] 7.0.41 8.1
解析 由平均变化率的几何意义知k =2-1
1-0
=1.
9.4+Δt 4
解析 在[1,1+Δt ]内的平均加速度为Δv Δt =v +Δt -v
Δt
=Δt +4,t =1时
的瞬时加速度是li m Δt →0 Δv
Δt =li m Δt →0
(Δt +4)=4. 10.解 函数f (x )在[-3,-1]上的平均变化率为: f --f -
---
=-
2
--
--2
--
2
=-6.
函数f (x )在[2,4]上的平均变化率为:
f -f 4-2=2--2
-
2
=4.
11.解 ∵Δy =f (1+Δx )-f (1)=11+Δx -1
1
=
1-1+Δx 1+Δx =-Δx
1+Δx +1+Δx ,
∴Δy Δx =-11+Δx +1+Δx
, ∴lim Δx →0 Δy Δx =lim Δx →0
-1
1+Δx +1+Δx =-11+0+1+0=-1
2,
∴y ′|x =1=f ′(1)=-1
2
.
12.2
解析 由导数的定义,
得 f ′(0) =lim Δx →0 f Δx -f
Δx
=lim Δx →0 a Δx 2+b Δx +c -c Δx =lim Δx →0
[a ·(Δx )+b ]=b . 又⎩
⎪⎨⎪⎧
Δ=b 2
-4ac ≤0a >0,∴ac ≥b 2
4
,∴c >0.
∴
f f
=
a +
b +
c b ≥b +2ac b ≥2b
b
=2. 13.解 运动方程为s =12
at 2
.
因为Δs =12a (t 0+Δt )2
-12at 20
=at 0Δt +12a (Δt )2
,
所以Δs Δt =at 0+12a Δt .所以0 Δv Δt
=li m Δt →0 Δs Δt =at 0. 由题意知,a =5×105 m/s 2,t 0=1.6×10-3
s ,
所以at 0=8×102
=800 (m/s).
即枪弹射出枪口时的瞬时速度为800 m/s.。