SSS(全等三角形的判定)
判定全等三角形的五种方法

判定全等三角形的五种方法全等三角形是指具有相同形状和相等边长的三角形。
判定两个三角形是否全等是数学中的一个重要问题。
下面将介绍判定全等三角形的五种方法。
方法一:SSS判定法(边边边)SSS判定法是指通过比较两个三角形的三条边是否相等来判定其是否全等。
如果两个三角形的三条边长度相等,则可以判断它们是全等三角形。
方法二:SAS判定法(边角边)SAS判定法是指通过比较两个三角形的两条边和夹角是否相等来判定其是否全等。
如果两个三角形的一边和夹角分别相等,则可以判断它们是全等三角形。
方法三:ASA判定法(角边角)ASA判定法是指通过比较两个三角形的两个角和夹边是否相等来判定其是否全等。
如果两个三角形的两个角和夹边分别相等,则可以判断它们是全等三角形。
方法四:AAS判定法(角角边)AAS判定法是指通过比较两个三角形的两个角和非夹边的对应边是否相等来判定其是否全等。
如果两个三角形的两个角和非夹边的对应边分别相等,则可以判断它们是全等三角形。
方法五:HL判定法(斜边和直角边)HL判定法是指通过比较两个直角三角形的斜边和直角边是否相等来判定其是否全等。
如果两个直角三角形的斜边和直角边分别相等,则可以判断它们是全等三角形。
通过以上五种方法,我们可以准确地判定两个三角形是否全等。
这些方法都是基于几何学中的一些定理和公理推导而来,经过严谨的数学证明,可以确保判定结果的准确性。
需要注意的是,在判定全等三角形时,我们需要确保给定的条件足够,即要求已知的边长、角度等信息能够满足相应的判定条件。
如果给定的信息不足够,或者不满足判定条件,那么就无法准确地判定两个三角形是否全等。
判定全等三角形的方法还可以用于解决一些实际问题,例如在建筑设计、图形测量等领域。
通过判定三角形是否全等,可以确保设计和测量的准确性,提高工作效率。
总结起来,判定全等三角形的五种方法分别是SSS判定法、SAS判定法、ASA判定法、AAS判定法和HL判定法。
这些方法都是基于几何学中的定理和公理推导而来,通过比较边长、角度等信息,可以准确地判定两个三角形是否全等。
全等三角形与三角形全等的判定(SSS)知识点

====Word 行业资料分享--可编辑版本--双击可删====源-于-网-络-收-集 12.1 全等三角形一、全等形:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.说明:如果两个或两个以上的图形全等,那么这些图形放在一起就能完全重合。
这里的重合包括两层含义:一是形状相同,二是大小相等,二者缺一不可。
二、全等三角形:能够完全重合的两个三角形叫做全等三角形。
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.全等用符号用“≌”表 示.如△ABC 与△DEF 全等,则可表示为△ABC ≌△DEFA B C D E F B(E)注意:1、对应边与对边,对应角与对角的区别。
对应边、对应角是对两个三角形而言的,对边、对角是对同一个三角形的边和角的关系而言的。
2、在写两个三角形全等时,通常把对应顶点的字母写在对应位置时,这样容易写出对应边、对应角。
3、由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,•公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角)三、全等三角形的性质:全等三角形的对应边相等,对应角相等。
说明:1、因为全等三角形能够完全重合,所以对应边上的中线、高线和对应角的角平分线也相等,全等三角形的周长相等,面积相等。
很多情况下,全等三角形的性质可以用来证明线段或角相等。
2、全等三角形有传递性,若△ABC 与△DEF 全等,△DEF 与△MNP 全等,则△ABC 与△MNP 也全等。
三角形全等的判定(SSS )一、判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS ”).二、判断两个三角形全等的推理过程,叫做证明三角形全等.三、例题:如图所示,△ABC 是一个钢架,AB=AC ,AD 是连接点A 与BC 中点D 的支架,求证△ABD ≌△ACD .证明:∵D 是BC 的中点,∴BD=CD在△ABD 和△ACD 中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).。
11.2 三角形全等的判定(SSS)

满足下列条件的两个三角形是否一定全等:
(1)一个条件
一边 一角 一边一角
(2)两个条件
两角
两边 三角
(3)三个条件
三边 两边一角
两角一边
8cm
8cm
满足下列条件的两个三角形是否一定全等:
(1)一个条件
一边 一角 一边一角 两角 两边
×
(2)两个条件
三角
(3)三个条件 三边 两边一角 两角一边
400
满足下列条件的两个三角形是一定否全等:
(1)一个条件
一边
(2)两个条件
× 只有一个条件对应相等的 一角 × 两个三角形不一定全等。 一边一角 × 只有两个条件对应相 两角 × 等的两个三角形不一 两边 × 定全等。
三角
三边 两边一角 两角一边
(3)三个条件
65度 65度 35度 80度
35度
80度
画法: 画一个△ A’B’C’,使A’B’= AB ,B’C’ =BC,C’ A’= CA
全等
1.画线段B′C′ =BC, 2.分别以B′,C′为圆心,以线段AB ,AC为半径画弧, 两弧交于点 A’, 3.连接线段 A’B’= A’C’.
想一想:这个结果反映了什么规律?
三边对应相等的两个三角形全等( 可以简写为“边边边”或 “SSS”)。
一个条件 一边 一角
× ×
只有一个条件对应相等的 两个三角形不一定全等。
只有两个条件对应相 等的两个三角形不一 定全等。
两个条件
一边一角 × 两角 × 两边 × 三角 × 三边 两边一角 两角一边
三个条件
√
先任意画出一个△ABC,再画一个△ A’B’C’,使 A’B’= AB ,B’C’ =BC,C’ A’= CA,你能做到吗?
三角形全等的判定(SSS)

13.2 三角形全等的判定1(SSS)学习目标1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.学习重点:三角形全等的条件.学习难点:寻求三角形全等的条件.学习过程:学习过程:一、:温故知新1.怎样的两个三角形是全等三角形?2.全等三角形的性质?二、读一读,想一想,画一画,议一议1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?要求小组合作完成总结:通过我们画图可以发现只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形_________________全等;给出两个条件画出的两个三角形也_______________全等,按这些条件画出的三角形都不能保证一定全等.3.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.①②③④①我们首先探究三个角请同学们以小组合作的方式来研究当两个三角形的三个内角分别对应相等,那么这两个三角形是时候能够全等?结论:②在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索下一种情况.如果两个三角形的边分别对应相等,那么两个三角形是否全等?请同学们画出三边分别为3cm,4cm,6cm的三角形,并把自己画好的三角形与同组同学画的三角形叠在一起,你会发现什么?4.总结:“边边边”公理:__________________________________________________________书写格式:几何符号语言FEB第2题三:新知应用例1.如图,点、、、在同一直线上,,,.求证:例2.在中,,、分别为、上的点,且,,.求证:四.评价反思概括总结:1.根据边角边公理判定两个三角形全等,要找出三条边对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边),并要善于运用学过的定义、公理、定理.五.课堂练习:1.下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形 D.所有等边三角形都全等.2.如图,在中,,为的中点,则下列结论中:①≌;②;③平分;④,其中正确的个数为()B EC F CFBE=DEAB=DFAC=DEGC∠=∠ABC∆︒=∠90C D E AC AB BDAD= BCAE=DCDE=ABDE⊥ABC∆ACAB=D BC ABD∆ACD∆CB∠=∠AD BAC∠BCAD⊥DAA.1个 B.2个 C.3个 D.4个3.如图,若,,根据可得≌.4.如图,点、、、在同一直线上,,,求证:六.课后检测:1.如图,,,,,则的度数是()A.120° B.125° C.127° D.104°2.如图,线段与交于点,且,,则下面的结论中不正确的是()A.≌ B. C. D.3.在和中,已知,,则补充条件____________,可得到≌.4.如图,在四边形中,,.求证:①;②.5.如图,已知,,求证:.6.如图,与交于点,,、是上两点,且,.ACAB=DCDB=ABD∆ACD∆A C F D DCAF=DEAB=EFBC=DEAB//AADAB=CDCB=︒=∠30B︒=∠46BAD ACD∠AD BC O BDAC=BCAD=ABC∆BAD∆DBACAB∠=∠OCOB=DC∠=∠ABC∆111CBA∆11BAAB=11CBBC=ABC∆111CBA∆ABCD CDAB=BCAD=CDAB//BCAD//CDAB=BDAC=DA∠=∠AC BD O CBAD=E F BD CFAE= BFDE=第1题第2题求证:⑴;⑵7.如图,已知,.求证:.B D ∠=∠CF AE //DC AB =DB AC =12∠=∠。
全等三角形的判定(SSS)

全等三角形第5课时 全等三角形的判定(SSS )一、学习目标1、掌握判定三角形全等的“SSS ”条件,能运用“SSS ”证明简单的三角形全等问题2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.学习重点:利用SSS 判定两个三角形全等.学习难点:学会正确选择判定三角形全等的方法二、自主学习阅读课本第81至82页内容,并自主探究下列问题: 三边对应相等的两个三角形 ,简写为“ ”或“ ”.用数学语言表述:在△ABC 和'''A B C ∆中,∵''AB A B AC BC =⎧⎪=⎨⎪=⎩ ∴△ABC ≌ ( )三、合作探究1、如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .证明:∵D 是BC ∴ = ∴在△ 和△ 中AB=BD=AD=∴△ABD △ACD( )温馨提示:证明的书写步骤:①准备条件:证全等时需要用的条件要先证好;②三角形全等书写三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来,C 、写出全等结论。
2、如图,OA =OB ,AC =BC.求证:∠AOC =∠BOC.四、基础演练1、下列说法中,错误的有( )个(1)周长相等的两个三角形全等。
(2)周长相等的两个等边三角形全等。
(3)有三个角对应相等的两个三角形全等。
(4)有三边对应相等的两个三角形全等C 'B 'A 'C B A C O A BA 、1B 、2C 、3D 、42.如图,点B 、E 、C 、F 在同一直线上,且AB=DE ,AC=DF ,BE=CF ,请将下面说明ΔABC ≌ΔDEF 的过程和理由补充完整。
解:∵BE=CF (_____________)∴BE+EC=CF+EC即BC=EF 在ΔABC 和ΔDEF 中 AB=________ (________________)__________=DF (_______________)BC=__________∴ΔABC ≌ΔDEF (_____________)3、如图,AB DC =,AC DB =,△ABC ≌△DCB 全等吗?为什么?4、已知:如图,AD=BC,AC=BD. 求证:∠OCD=∠ODC﹡5.如图,在△ABC 中,AB =AC ,D 是BC 的中点,点E 在AD 上,找出图中全等的三角形,并说明它们为什么是全等的.A B C D E F E D C B A D C B A。
《全等三角形的判定(SSS)》教案

全等三角形的判定(SSS)教学目标(1)掌握边边边条件的内容;能初步应用边边边条件判定两个三角形全等。
(2)会使用边边边条件证明两个三角全等。
教学重点难点教学重点:能应用边边边条件判定两个三角形全等。
教学难点:探究三角形全等的条件。
(一)知识回顾,提出问题已知△ABC ≌△ A ′B ′ C ′,找出其中相等的边与角:思考:满足这六个条件能够保证△ABC ≌△A ′B ′C ′吗? 师生活动:师提出问题,学生回答。
问题1、当满足一个条件时, △ABC 与△ABC ′全等吗?一个条件(1)一条边(2)一个角师生活动:让学生经历画图的过程后,总结经验。
达成共识:不一定全等。
如下列图:一条边分别相等时:AB C C ′B ′A ′一个角分别相等时:问题2:当满足两个条件时, △ABC 与△A ′B ′C ′全等吗? 两个条件(1)两条边(2)一边一角(3)两个角 师生活动:让学生通过画图、展示交流后得出结论。
达成共识:不一定全等。
如下列图: 两条边分别相等时:两个角分别相等时: AB C4cm45°BCAA ’B ’C ’45° A ’B ’45°65°A BCB ’C ’A ’45°65°9cm5cmA ’B ’C ’9cm5cm AC一边一角分别相等时:问题3:当满足三个条件时, △ABC 与△A ′B ′C ′全等吗?满足三个条件时,又分为几种情况呢?师生活动:让学生交流讨论后、得到以下几种情况。
三个条件(1)三条边(2)两边一角(3)两角一边(4)三个角 师问:我们现在研究第①种情况。
当两个三角形满足三边对应相等时,这两个三角形全等吗?设计意图:先提出“全等判定”问题,构建出三角形全等条件的探索路径,然后以问题串的方式表现探究过程,引导学生层层深入地思考问题。
(二)动手操作,感悟新知活动:尺规作图,探究“边边边”判定方法先任意画出一个△ABC ,再画出一个△A ′B ′C ′,使A ′B ′= AB ,B ′C ′= BC ,A ′C ′= AC .把画好的△A ′B ′C ′剪下,放到△ABC 上,它们全等吗?ABCA ’C ’’4cmACB4cm解:画法(1)画线段B ′C ′=BC ;(2)分别以B ′、C ′为圆心,BA 、BC 为半径画弧,两弧交于A ′; (3)连接线段A ′B ′,A ′C′。
【数学课件】三角形全等的判定(SSS)

如 何 用 符 号 语 言 来 表 达 呢
A
D
B
C
E
F
在△ABC与△DEF中 AB=DE AC=DF BC=EF ∴△ABC≌△DEF(SSS)
思考:你能 用“边边边” 解释三角形 具有稳定性 吗?
例1 已知:如图,AB=AD,BC=CD, 求证:△ABC≌ △ADC
A B D
证明:在△ABC和△ADC中 AB=AD (已知) BC=CD (已知) AC = AC (公共边)
失 败
(2)一个角 (1)两边 4cm
6cm 4cm 6cm
2.给定两个条件: (2)一边一角
30º 6cm
失 败
30º 6cm
(3)两角
30º 20º 30º 20º
俗话说:失败是成功之母! 我们继续探究: 千万别泄气哦! 探究二
(1)三边 给定三个条件: (2)两边一角 (3)一边两角 (4)三角 [动手画一画]
画出一个三角形,使它的三边长分别为3cm、 4cm、6cm , 把你画的三角形与小组内画的进 行比较,它们一定全等吗?
画法: 1.画线段AB=3㎝; 2.分别以A、B为圆心,4㎝和6㎝长为半径画弧,两 弧交于点C; 3. 连接线段AC、BC.
结论:三边对应相等的两个三角形全等. 可ቤተ መጻሕፍቲ ባይዱ写为”边边边”或SSS
课堂小测
2.如图,已知 AB DC,AC DB .求证: △ABC≌△DCB.
A
D
O B C
1.课本P15习题11.2的第1、2题(一号本)
能力提升题:
课本16页第9题(一号本)
1、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之毁灭。——卢梭 2、教育人就是要形成人的性格。——欧文 3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种 最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身 上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱 心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知
12.2.1三角形全等的判定(sss)(教案)

4.通过实际操作和例题解析,加深对三角形全等判定sss公理的理解和运用。
二、核心素养目标
《12.2.1三角形全等的判定(sss)(教案)》
本节课的核心素养目标旨在培养学生的以下能力:
1.空间观念与几何直观:通过sss全等判定的学习,使学生能够建立起三角形全等的直观认识,提高空间想象能力。
其次,在小组讨论和实验操作环节,学生们表现出了很高的积极性。他们通过合作交流,共同探讨三角形全等判定的应用,不仅加深了对知识点的理解,还提高了合作能力和解决问题的能力。但我也注意到,有些小组在讨论过程中,对于如何运用sss判定仍然存在一些疑问。这提示我在今后的教学中,需要更加关注学生的个体差异,给予他们针对性的指导。
举例:在复杂图形中,找到与题目相关的三角形,并从图中获取已知和求证的信息,进而运用sss判定解决问题。
(4)培养几何直观和空间观念,尤其在解决实际问题时,能够通过观察、分析图形,找到解题的关键信息。
举例:在实际问题中,通过观察和思考,发现隐藏在图形中的全等关系,从而找到解题思路。
四、教学流程
《12.2.1三角形全等的判定(sss)(教案)》
举例:在解决具体问题时,判断哪些信息是已知的,哪些需要求证,从而选择合适的全等判定方法。
(2)正确使用几何符号和术语,避免在证明过程中出现逻辑错误或符号错误。
举例:在证明过程中,要注意区分“=”、“≌”等符号,以及正确使用“对应边”、“对应角”等术语。
(3)在复杂图形中,识别并提取出全等三角形的相关信息,将实际问题转化为几何问题进行解决。
2.逻辑推理与证明能力:通过分析、归纳和推理,让学生掌握sss全等判定的逻辑基础,培养严谨的逻辑推理能力和几何证明技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、已知:如图.AB = AD ,BC = DC 求证:∠B= ∠D
证明:连结AC 在△ABC与△ADC中 (公共边) ∴ △ABC≌△ADC (SSS)
B
A
D C
∴∠B=∠D(全等三角形对应角相等)
课堂小结
请说出目前有哪几种判定三角 形全等的方法?
课后作业: 课本P76页 习题13.2
全等
3、归纳;由上面的画图和实验可以得出全等三角形判定:三边分别对应相等的两个三角 形 ”或“ 边边边 ”) 全等 (可以简写成“ S.S.S 4、如图1所示,在四边形ABCD中,AD=CB,AB=CD,求证: ∠B=∠D(请同学们写出推导过程)
5、归纳总结:(请同学补充完整表格中的内容)
两边一角 对应相等的 元素 简记 两边及其夹 角 两边及其中 一边的对角 两角一边 两角及其夹 边 两角及其中 一角的对边 三角 三边
1、第1、6题 2、课程导报第10期 13.2.5
全等三角形的判定(sss)
边边边公理: 三边 对应 相等的两个三角形 全等. (SSS) 应用表达式:(如图) 在△ABC与△DEF中
B
A
C D F
E
∴ △ABC≌△DEF (SSS)
1. 根据条件分别判定下面的三角形是否全等. (1) 线段AD与BC相交于点O,AO=DO, BO=CO. 全等(SAS) △ABO与△BCO;
全等三角形的判定
情景导入:有一块三角形板材 要∠MAN 平分开,现在只有一把直尺和一根细绳,怎么 办,说明理由有一块三角形板材 要把∠MAN平 分开,现在只有一把直尺和一根细绳,怎么办, 说明理由?
一、学习目标
1、理解和掌握 “S.S.S”判定方法;能运用其 判定两个三角形全等.
能运用“S.S.S”判定方法来证明角和线段相等
二、自学指导
请同学们阅读教材P71—72页,完成下列问题。
1、思考:如果两个三角形有三个角分别对应相等,那么这两个三角形一定全等吗?
不一定,如下面的两个三角形就不全等。
2、如果将上面的三个角换成三条边,结果又如何呢?请同学们完成课本P71的“做一做”,把 你画的三角形与组内同学和其他组同学画的三角形进行比较,或将你画的三角形剪下, 放到你同伴画的三角形上,看看是否完全重合,所画的三角形都全等吗?
三角形是否 一定全等
S.A.S 一定
S.S.A 不一定
A.S.A 一定
A.A.S 一定
A.A.A 不一定
S.S.S 一定
6、完成P73练习1 (5分钟时间,看看哪组完成的最好)
三、课堂反馈
例:如图1,在四边形ABCD中,AD=BC, AB=CD. 求证:△ABC≌△CDA.
证明:在△ABC和△CDA中, CB=AD (已知) AB=CD (已知) AC=CA (公共边) ∴ △ABC≌△CDA(S.S.S.). 图1
(2) AC=AD, BC=BD. △ABC与△ABD;
全等(SSS)
(3) ∠A=∠C, ∠B=∠D. △ABO与△) 线段AD与BC相交于点E,AE=BE, CE=DE, AC=BD. △ABC与△BAD? 全等(SSS等)
四、课堂达标
1、已知:如图,AB = DC , AD = BC。 求证: ∠A = ∠C
A D
B
C
提示:连结BC后,证△ABD≌△CDB,再根据全 等三角形对应角相等推出∠A = ∠C。
2、已知:如图.AB = DC , AC = DB 求证: ∠A = ∠D
A
D
提示:BC为公共边,由SSS 可得两三角形全等,全等三 角形对应角相等。