人教版八年级上册数学教案

合集下载

最新人教版八年级数学上册教案(全册 共168页)

最新人教版八年级数学上册教案(全册 共168页)

最新人教版八年级数学上册教案(全册共168页)第十一章三角形一、课标要求(1)理解三角形及三角形有关的线段(边、高、中线、角平分线)的概念,证明三角形两边的和大于第三边,了解三角形的重心的概念,了解三角形的稳定性。

(2)理解三角形的内角、外角的概念,探索并证明三角形内角和定理,探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的和。

(3)了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并掌握多边形的内角和与外角和公式。

二、教材分析第1节研究与三角形有关的线段。

首先结合引言中的实际例子给出三角形的概念,进而研究三角形的分类。

对于三角形的边,证明了三角形两边的和大于第三边。

然后给出三角形的高、中线与角平分线的概念。

结合三角形的中线介绍三角形的重心的概念。

最后结合实际例子介绍三角形的稳定性。

第2节研究与三角形有关的角,对于三角形的内角,证明了三角形内角和定理。

然后由这个定理推出直角三角形的性质:直角三角形的两个锐角互余。

最后给出三角形的外角的概念,并由三角形内角和定理推出:三角形的外角等于与它不相邻的两个内角的和。

第3节介绍多边形的有关概念与多边形的内角和、外角和公式。

三角形是多边形的一种,因而可以借助三角形给出多边形的有关概念,如多边形的边、内角、外角、内角和都可由三角形的有关概念推广而来。

三角形是最简单的多边形,因而常常将多边形分为若干个三角形,利用三角形的性质研究多边形。

多边形的内角和公式就是利用上述方法得到的。

将多边形的有关内容与三角形的有关内容紧接安排,可以加强它们之间的联系,便于学生学习。

三、教学建议1.把握好教学要求与三角形有关的一些概念在本章中只要求达到理解的程度就可以了,进一步的要求可通过后续学习达到。

如对于三角形的角平分线,在本章中只要知道它的定义,能够从定义得出角相等就可以了,学生在画角平分线时发现三条角平分线交于一点,可直接肯定这个结论,在下一章“全等三角形”中再证明这个结论,同样,三角形的三条中线交于一点的结论也可直接点明。

人教版八年级数学上册全册教案

人教版八年级数学上册全册教案

人教版八年级数学上册全册教案目标本教案的目标是为人教版八年级数学上册提供全册教学计划,包含各单元的教学目标、教学内容、教学方法和评估方式。

教学计划第一单元:有理数- 教学目标:了解有理数的概念和性质,掌握有理数的加减运算规则。

- 教学内容:有理数的概念、有理数的运算规则、有理数的绝对值。

- 教学方法:讲解、示范、练、讨论。

- 评估方式:课堂练、小测、作业。

第二单元:代数方程与不等式- 教学目标:掌握代数方程的解法和不等式的求解方法,能够解决实际问题。

- 教学内容:一元一次方程的解法、二元一次方程的解法、一元一次不等式的解法。

- 教学方法:讲解、示范、练、实际问题分析。

- 评估方式:课堂练、小测、作业、解决实际问题。

第三单元:图形的认识与运用- 教学目标:认识常见图形的性质和特点,能够进行图形的判定和计算。

- 教学内容:平面图形的分类、圆的性质和计算、三角形的性质和计算。

- 教学方法:讲解、示范、练、实际问题分析。

- 评估方式:课堂练、小测、作业、解决实际问题。

第四单元:全等与相似- 教学目标:了解全等和相似的概念,能够进行全等和相似三角形的判定和计算。

- 教学内容:全等三角形的判定和性质、相似三角形的判定和性质、相似三角形的计算。

- 教学方法:讲解、示范、练、实际问题分析。

- 评估方式:课堂练、小测、作业、解决实际问题。

第五单元:三角函数- 教学目标:掌握正弦、余弦、正切的概念和计算方法,能够解决与三角函数相关的实际问题。

- 教学内容:角的概念、正弦、余弦、正切的概念和计算、实际问题中的应用。

- 教学方法:讲解、示范、练、实际问题分析。

- 评估方式:课堂练、小测、作业、解决实际问题。

总结本文档提供了人教版八年级数学上册的全册教案,包含各单元的教学目标、教学内容、教学方法和评估方式。

教案的设计旨在通过简单的教学策略和明确的教学目标,帮助学生轻松理解和掌握数学知识。

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)新人教版八班级数学上册名师教案(篇1)教学目标:1、经受数据离散程度的探究过程2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

教学重点:会计算某些数据的极差、标准差和方差。

教学难点:理解数据离散程度与三个差之间的关系。

教学预备:计算器,投影片等教学过程:一、创设情境1、投影课本P138引例。

(通过对问题串的解决,使同学直观地估量从甲、乙两厂抽取的20只鸡腿的平均质量,同时让同学初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究假如丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?(在上面的情境中,同学很简单比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。

这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致同学思想熟悉上的冲突,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:方差:各个数据与平均数之差的平方的平均数,记作s2 设有一组数据:x1, x2, x3,,xn,其平均数为则s2= ,而s= 称为该数据的标准差(既方差的算术平方根)从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

四、做一做你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?(通过对此问题的解决,使同学回顾了用计算器求平均数的步骤,并自由探究求方差的具体步骤)五、巩固练习:课本第172页随堂练习六、课堂小结:1、怎样刻画一组数据的离散程度?2、怎样求方差和标准差?七、布置作业:习题5.5第1、2题。

2023最新-八年级数学上册教案【优秀5篇】

2023最新-八年级数学上册教案【优秀5篇】

八年级数学上册教案【优秀5篇】作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。

我们应该怎么写教案呢?以下是人见人爱的分享的5篇《八年级数学上册教案》,如果能帮助到亲,我们的一切努力都是值得的。

人教版八年级上数学教案篇一一、教学目的:1、掌握菱形概念,知道菱形与平行四边形的关系。

2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积。

3、通过运用菱形知识解决具体问题,提高分析能力和观察能力。

4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

二、重点、难点1、教学重点:菱形的性质1、2.2、教学难点:菱形的性质及菱形知识的综合应用。

三、课堂引入1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念。

菱形定义:有一组邻边相等的平行四边形叫做菱形。

【强调】菱形(1)是平行四边形;(2)一组邻边相等。

让学生举一些日常生活中所见到过的菱形的例子。

四、例习题分析例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∠四边形ABCD是菱形,∠ CB=CD,CA平分∠BCD.∠∠BCE=∠DCE.又CE=CE,∠∠BCE∠∠COB(SAS)。

∠∠CBE=∠CDE.∠ 在菱形ABCD中,AB∠CD,∠∠AFD=∠FDC∠ ∠AFD=∠CBE.例2(教材P108例2)略五、随堂练习1、若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为。

2、已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积。

3、已知菱形ABCD的周长为20cm,且相邻两内角之比是1∠2,求菱形的对角线的长和面积。

八年级上册数学教案 八年级上册数学教案(9篇)

八年级上册数学教案 八年级上册数学教案(9篇)

八年级上册数学教案八年级上册数学教案(9篇)作为一名为他人授业解惑的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。

那么大家知道正规的教案是怎么写的吗?下面是细致的小编帮大家收集整理的9篇八年级上册数学教案的相关范文,欢迎参考阅读,希望能够帮助到大家。

八年级上册数学教案篇一第11章平面直角坐标系11.1平面上点的坐标第1课时平面上点的坐标(一)教学目标【知识与技能】1.知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。

2.理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。

已知点的坐标,能在平面直角坐标系中描出点。

3.能在方格纸中建立适当的平面直角坐标系来描述点的位置。

【过程与方法】1.结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。

2.学会用有序实数对和平面直角坐标系中的点来描述物体的位置。

【情感、态度与价值观】通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。

重点难点【重点】认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。

【难点】理解坐标系中的坐标与坐标轴上的数字之间的关系。

教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位。

生乙:我在第4行第7列。

师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。

二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号。

师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。

人教版八年级上册数学教案(5篇)

人教版八年级上册数学教案(5篇)

人教版八年级上册数学教案(5篇)人教版八年级上册数学教案(5篇)人教版八年级上册数学教案1 一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的才能;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探究的思想感情。

理解三角形高、角平分线及中线概念到用几何语言准确表述,这是学生在几何学习上的一个深化.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.本节的重点是理解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.二、目的和目的解析1.教学目的(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2.教学目的解析(1)经历画图理论过程,理解三角形的高、中线与角平分线等概念.(2)可以纯熟用几何语言表达三角形的高、中线与角平分线的性质.(3)掌握三角形的高、中线与角平分线的画法.(4)理解三角形的三条高、三条中线与三条角平分线分别相交于一点.三、教学问题诊断分析^p三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联络又有本质的区别.人教版八年级上册数学教案2 一、教学目的1、认识中位数和众数,并会求出一组数据中的众数和中位数。

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。

2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。

依据教学大纲安排,重点讲解第一种状况问题的解决。

安排一个课时讲授。

教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。

2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。

(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。

3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。

三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。

教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。

由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。

四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。

教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。

八年级上册数学教案人教版【优秀8篇】

八年级上册数学教案人教版【优秀8篇】

八年级上册数学教案人教版【优秀8篇】篇一:人教版八年级上册数学教案篇一一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。

因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。

而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。

所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析1、教材P140探究栏目的意图。

(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

2、教材P140的思考的意图。

(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册数学教案人教版八年级上册数学教案【5篇】数论是数学的一个分支,研究整数的性质和关系,包括素数、因子分解和数的性质。

这里给大家分享一些关于人教版八年级上册数学教案,供大家参考学习。

人教版八年级上册数学教案篇1教学目标:1. 通过生活中的事例,使学生初步体会什么是轴对称图形。

2. 让学生通过看一看,折一折,剪一剪来加深对轴对称图形的理解。

3. 让学生应用所学知识来解决实际生活中简单的问题,初步培养学生的应用意识和实践能力。

教学重点:1. 了解轴对称图形的特征,能在方格纸上画出简单图形的轴对称图形。

2. 能正确判断轴对称图形。

教学难点:画出轴对称图形。

教学准备:课件剪刀彩色卡纸平行四边形纸一、情境导入1. 谈话:看到同学们一张张可爱的笑脸,老师非常开心。

课件出示不对称“脸图”问:“这张脸可爱吗?”生:不可爱!课件演示脸图由不对称变为对称,问:现在呢?生:可爱!师:看来,人人都喜欢美丽的东西。

今天老师给大家带来了一些美丽的图片,请欣赏。

2.图片欣赏(课件出示对称图形图片)看完图片后师问:这些图片中的图形有什么特点?(指名回答)学生可能会说,它们两边完全一样。

教师归纳学生的回答后说明:它们都是对称图形(板书:对称图形)二、探究新知1.认识轴对称图形师:在我们的生活中,还有很多事物都是对称的。

看,这是笑笑自己剪的一棵对称的小松树,你们想不想也动手剪一剪呢?(课件出示小松树的剪纸图形)生:想!师:老师和你们来一场比赛,看谁剪的又快又好,开始!师生同时动手剪,完成后教师把自己剪的贴在黑板上。

请剪的最快的学生拿剪出的小松树展示,并让他给到大家说说是怎么剪的。

(指导学生演示方法)问演示学生:你怎么让大家知道你剪的小松树是对称的呢?生:我把它对折(生边说边演示)(师板书:对折)师:同学们跟他一起把自己剪的小松树对折,对折后你们有什么发现?生:左右两边完全重合(师板书:完全重合)师演示左右对折并讲解,像这样把图形沿一条直线对折,图形的两边能够完全重合,我们就说这个图形是轴对称图形。

(出示概念,补充课题:轴对称图形)生齐读概念2.认识对称轴师:把你们的对称图形打开,观察图形中间有什么?生:有一条直直的折痕。

师:这条折痕所在的这条直线叫做对称轴(板书:对称轴)出示感念,生齐读。

师演示并带领学生画对称轴(强调用虚线)我们认识了新朋友轴对称图形,现在这位新朋友在和我们玩捉迷藏呢!三、实际应用1.看一看,说一说,下面哪些图形是轴对称图形?(课件出示课本13页图)生应用所学知识判断,教师点评。

师:这位新朋友留给大家的印象非常深刻,我们很容易就发现了它,你们能把这些对称图形的对称轴画出来吗?生动手画对称轴,师巡视指导,完成后订正。

师:轴对称的图形不单单生活中有,在我们天天接触的数字、汉字、字母中也同样存在,看,这儿还有轴对称图形吗?2.找出下列图形中的轴对称图形(课件出示课本14页第1题)生找出轴对称图形,并说说每个图形的对称轴在哪儿。

师:聪明的同学们能找轴对称图形,聪明的你们会画轴对称图形吗?3.出示课本14页第3题师用第一个图演示讲解画轴对称图形的要点:一看对称轴;二找关键点;三定对应点;四画对称图。

生在剩下的两个图形中选择一个动手画,完成后展示成果,全班点评。

师:同学们既能找,也能画,那肯定也能判断了。

请看(课件出示)4.下面哪些图形中的红线是对称轴?师:看来同学们已经知道了很多轴对称图形(出示导课时的“脸图”可爱的笑脸也是轴对称图形,你们有没有发现我们的身边还有许多的轴对称事物呀?)生找身边的轴对称事物。

四、全课小结我们身边轴对称的事物还有很多,轴对称的图形是美丽的,漂亮的,请同学们谈谈通过这节课的学学习,你有什么收获?生:畅谈收获。

师:你们想知道老师有什么收获吗?(想)老师今天收获了一份愉快的心情!板书设计:完全轴对称图形对称轴重合人教版八年级上册数学教案篇2课程内容边边边判定定理选用教材人教版数学八年级上册授课人崔志伟授课章节第十二章第二节学时1教学重点掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。

教学难点探索三角形全等的条件,以及运用边边边定理画一角等于已知角教学方法学生合作探究法、教师讲解结合谈话法等综合教学方法教学手段黑板板书教学课堂教学设计阶段教学内容导入部分采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。

学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。

阶段课堂教学设计课程新授教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。

但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的情况。

接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的同学,教师即使揭示在一组边与一组角相等的情况下,边与角的关系可以为相邻,也有可能为相对。

学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。

接下来直接考虑三组对应相等关系的情况。

首先引导学生对三组对应关系相等进行分类。

预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。

本节课将引导学生探索三边相等的情形,有了前面两组对应相等的经验,预设学生根据尺规作图可以画出三边等于已知三角形的三角形,接下来通过三角形全等的定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。

即SSS,教师解释S为英文边,side的首字母。

接下来请同学说出已知三角形与所作三角形之间存在的对应相等关系,预设学生可以很轻易说出。

由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作图画一角等于已知角。

接下来,教师稍作解释,请学生探究讨论作图步骤。

看谁的最简便。

学生探索过后,教师请学生回答自己的作图步骤,最后由教师板书最简易的作图步骤。

之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。

作业作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。

板书设计采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。

小结本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。

人教版八年级上册数学教案篇3教学目标:1、知识目标:(1)熟记边角边公理的内容;(2)能应用边角边公理证明两个三角形全等。

2、能力目标:(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;(2) 通过观察几何图形,培养学生的识图能力。

3、情感目标:(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:学会运用公理证明两个三角形全等。

教学难点:在较复杂的图形中,找出证明两个三角形全等的条件。

教学用具:直尺、微机教学方法:自学辅导式教学过程:1、公理的发现(1)画图:(投影显示)教师点拨,学生边学边画图。

(2)实验让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合)这里一定要让学生动手操作。

(3)公理启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)作用:是证明两个三角形全等的依据之一。

应用格式:强调:1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看。

3、平面几何中常要证明角相等和线段相等,其证明常用方法:证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地。

证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质。

2、公理的应用(1)讲解例1。

学生分析完成,教师注重完成后的总结。

分析:(设问程序)“SAS”的三个条件是什么?已知条件给出了几个?由图形可以得到几个条件?解:(略)(2)讲解例2投影例2:例2如图2,AE=CF,AD∥BC,AD=CB,求证:学生思考、分析,适当点拨,找学生代表口述证明思路让学生在练习本上定出证明,一名学生板书。

教师强调证明格式:用大括号写出公理的三个条件,最后写出结论。

(3)讲解例3(投影)证明:(略)学生分析思路,写出证明过程。

(投影展示学生的.作业,教师点评)(4)讲解例4(投影)证明:(略)学生口述过程。

投影展示证明过程。

教师强调证明线段相等的几种常见方法。

(5)讲解例5(投影)证明:(略)学生思考、分析、讨论,教师巡视,适当参与讨论。

师生共同讨论后,让学生口述证明思路。

教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

3、课堂小结:(1)判定三角形全等的方法:SAS(2)公理应用的书写格式(3)证明线段、角相等常见的方法有哪些?让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业a书面作业P56#6、7b上交作业P57B组1思考题:板书设计:探究活动人教版八年级上册数学教案篇4一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理.2.了解四边形的不稳定性及它在实际生产,生活中的应用.(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.2.通过推导四边形内角和定理,对学生渗透化归思想.3.会根据比较简单的条件画出指定的四边形.4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美.二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.第一课时七、教学步骤复习引入在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的.关系,并运用有关四边形的知识解决一些新问题.引入新课用投影仪打出课前画好的教材中p119的图.师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗(启发学生找上述图形,最后教师用彩色笔勾出几个图形).讲解新课1.四边形的有关概念结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:(1)要结合图形.(2)要与三角形类比.(3)讲清定义中的关键词语.如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点.我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系.(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.(6)在判定一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.2.四边形内角和定理教师问:(1)在图4-3中对角线ac把四边形abcd分成几个三角形(2)在图4-6中两条对角线ac和bd把四边形分成几个三角形(3)若在四边形abcd如图4-7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形.我们知道,三角形内角和等于180°,那么四边形的内角和就等于:①2×180°=360°如图4—6;②4×180°-360°=360°如图4-7.例1已知:如图4—8,直线于b、于c.求证:(1) ; (2) 。

相关文档
最新文档