(完整版)圆的一般方程教案(正式)

合集下载

圆的一般方程教案

圆的一般方程教案

圆的一般方程教案
一般方程(x-a)²+(y-b)²=r²表示圆的方程,其中(a,b)为圆心的坐标,r为半径。

以下是关于圆的一般方程的教案:
教学目标:
1. 了解圆的一般方程的含义和作用;
2. 掌握圆的一般方程的使用方法;
3. 能够根据已知条件写出圆的一般方程。

教学步骤:
1. 引入:通过观察多个圆的图形,引导学生思考如何表示圆的方程;
2. 解释一般方程的含义:解释方程中的各个部分的含义,比如(x-a)表示x坐标与圆心x坐标的差值,(y-b)表示y坐标与圆心y坐标的差值;
3. 讲解一般方程的形式:讲解一般方程的标准形式,即(x-
a)²+(y-b)²=r²;
4. 演示如何写出一般方程:通过给定圆心和半径的坐标,演示写出一般方程的步骤;
5. 练习一:给出圆心和半径的坐标,要求学生自行写出一般方程;
6. 解释一般方程的应用:解释一般方程的应用,比如通过一般方程可以求圆的周长和面积;
7. 练习二:给出圆的一般方程,要求学生求出圆的半径和圆心的坐标;
8. 总结和评价:帮助学生总结所学内容,并对学生进行评价。

教学资源:
1. 圆的图形;
2. 圆的一般方程的示意图;
3. 练习题。

教学评价:
1. 学生能否准确理解圆的一般方程的含义;
2. 学生能否熟练运用一般方程求解问题;
3. 学生对于一般方程的应用是否有深入理解。

(完整word版)圆的一般方程教学案例

(完整word版)圆的一般方程教学案例

圆的一般方程教学案例方井兰王冠军东平明湖中学圆的一般方程教学案例东平明湖中学方井兰王冠军教学目标1.讨论并掌握圆的一般方程的特点,并能将圆的一般方程化为圆的标准方程,从而求出圆心的坐标和半径.2.能分析题目的条件选择圆的一般方程或标准方程解题,解题过程中能分析和运用圆的几何性质.3.通过对圆的一般方程的特点的讨论,培养学生严密的逻辑思维和严谨的科学态度;通过例题的分析讲解,培养学生分析问题的能力.教学重点与难点圆的一般方程的探求过程及其特点是教学重点;根据具体条件选用圆的方程为教学难点.教学过程一、复习并引入新课师:请大家说出圆心在点(a,b),且半径是r的圆的方程.生:(x-a)2+(y-b)2=r2.师:以前学习过直线,直线方程有哪几种?生:直线方程有点斜式、斜截式、两点式、截距式和一般式.师:直线方程的一般式是Ax+By+C=0吗?生A:是的.生B:缺少条件A2+B2≠0.师:好!那么圆的方程有没有类似“直线方程的一般式”那样的“一般方程”呢?(书写课题:“圆的一般方程”的探求)二、新课师:圆是否有一般方程?这是个未解决的问题,我们来探求一下.大家知道,我们认识一般的东西,总是从特殊入手.如探求直线方程的一般形式就是通过把特殊的公式(点斜式,两点式……)展开整理而得到的.想求圆的一般方程,怎么办?生:可仿照直线方程试一试!把标准形式展开,整理得x 2+y 2-2ax -2by+a 2+b 2-r 2=0.令D=-2a ,E=-2b ,F=a 2+b 2-r 2,有:x 2+y 2+Dx+Ey+F=0.(*)师:从(*)式的得来过程可知,只要是圆的方程就可以写成(*)的形式.那么能否下结论:x 2+y 2+Dx+Ey+F=0就是圆的方程?生A :不一定.还得考虑:x 2+y 2+Dx+Ey+F=0能否写成标准形式.生B :也可以像直线方程一样,要有一定条件.师:那么考虑考虑怎样去寻找条件?生:配方.师;请大家动手做,看看能否配成标准形式?(放手让同学讨论,教师适当指导,然后由同学说,教师板书.) ()∆-+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+.4422:*2222F E D E y D x )式配方得将( 1.当D 2+E 2-4F >0时,比较(△)式和圆的标准方程知:(*)式表示以 为半径的圆;为圆心,F E D E D 4212,222-+⎪⎭⎫ ⎝⎛--2.()()()有时也叫点圆,式表示一个点即式只有实数解时,当⎪⎭⎫ ⎝⎛--*-=-=*=-+22,2,204.22E D E y D x F E D 3.当D 2+E 2-4F <0时,(*)式没有实数解,因而它不表示任何图形.教师总结:当D 2+E 2-4F >0时,方程x 2+y 2+Dx+Ey+F=0叫圆的一般方程. 师:圆的一般方程有什么特点?生A :是关于x 、y 的二元二次方程.师:刚才生A 的说法对吗?生B :不全对.它是关于x 、y 的特殊的二元二次方程.师:特殊在什么地方?(通过争论与举反例后,由教师总结)师:1.x 2,y 2系数相同,且不等于零.2.没有xy 这样的二次项.(追问):这两个条件是“方程Ax 2+By 2+Dx+Ey+F=0表示圆”的什么条件?生:必要条件.师:还缺什么?生:D 2+E 2-4F >0.练习:判断以下方程是否是圆的方程:①x 2+y 2-2x+4y -4=0②2x 2+2y 2-12x+4y=0③x 2+2y 2-6x+4y -1=0④x 2+y 2-12x+6y+50=0⑤x 2+y 2-3xy+2y+5y=0⑥x 2+y 2-12x+6y+F=0三、应用举例师:先请大家比较一下圆的标准方程(x -a)2+(y -b)2=r 2与一般方程x 2+y 2+Dx+Ey+F=0在应用上各有什么优点?生:标准方程的几何特征明显——能看出圆心、半径;一般方程的优点是能从一般的二元二次方程中找出圆的方程.师:怎样判断用“一般方程”表示的圆的圆心、半径. 生:.4212222F E D r E D -+=⎪⎭⎫ ⎝⎛--,,圆心 生B :不用死记,配方即可.师:两种形式的方程各有特点,我们应对具体情况作具体分析、选择.四.例题讲解例1.求过三点12(0,0),(1,1),(4,2)O M M 的圆的方程;分析:由于12(0,0),(1,1),(4,2)O M M 不在同一条直线上,因此经过12,,O M M 三点有唯一的圆.解:法一:设圆的方程为220x y Dx Ey F ++++=,∵12,,O M M 三点都在圆上,∴12,,O M M 三点坐标都满足所设方程,把12(0,0),(1,1),(4,2)O M M 代入所设方程, 得:02042200F D E F D E F =⎧⎪+++=⎨⎪+++=⎩解之得:860D E F =-⎧⎪=⎨⎪=⎩所以,所求圆的方程为22860x y x y +-+=.法二:也可以求1OM 和2OM 中垂线的交点即为圆心,圆心到O 的距离就是半径也可以求的圆的方程:22860x y x y +-+=.法三:也可以设圆的标准方程:222()()x a y b r -+-=将点的坐标代入后解方程组也可以解得22(4)(3)25x y -++=例2.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,求线段AB 中点M 的坐标(,)x y 中,x y 满足的关系?并说明该关系表示什么曲线? 解:设点A 的坐标是00(,)x y ,由于点B 的坐标是(4,3),且M 是AB 的中点,所以0043,22x y x y ++==(*) 于是,有0024,23x x y y =-=-因为点A 在圆22(1)4x y ++=上运动,所以点A 的坐标满足方程22(1)4x y ++=,即2200(1)4x y ++=(**)将(*)式代入(**),得22(241)(23)4x y -++-=, 整理得2233()()122x y -+-=所以,x y 满足的关系为:2233()()122x y -+-= 其表示的曲线是以33(,)22为圆心,1为半径的圆.说明:该圆就是M 点的运动的轨迹;所求得的方程就是M 点的轨迹方程:点M 的轨迹方程就是指点M 的坐标(,)x y 满足的关系式.五、小结注意一般式的特点:1°x2,y2系数相等且不为零;2°没有xy这样的项;3°D2+E2-4F>0.另外,大家考虑:D2+E2-4F有点像什么?像判别式,它正是方程x2+y2+Dx+Ey+F=0是否是圆的方程的判别式.如D、E确定了,则与F的变化有关.六、作业:1.求下列各圆的一般方程:①过点A(5,1),圆心在点C(8,-3);②过三点A(-1,5),B(5,5),C(6,-2).2.求下列各圆的圆心坐标和半径:①x2+y2-2x-5=0②x2+y2+2x-4y-4=0③x2+y2+2ax=0④x2+y2-2by-2b2=0设计思想这是一节介绍新知识的课,而且这节课还非常有利于展现知识的形成过程.因此,在设计这节课时,力求“过程、结论并重;知识、能力、思想方法并重”在整个探求过程中充分利用了“旧知识”及“旧知识的形成过程”,并用它探求新知识.这样的过程,既是学生获得新知识的过程,更是培养学生能力的过程.。

4.1.2圆的一般方程(教案)

4.1.2圆的一般方程(教案)

特征
化.
A 是主动点, B 是被动点.
推导 将几何条件直接坐标化
将主动点坐标用被动点坐标
过程
表示,带入圆的方程.
(3)轨迹与轨迹方程不同,前者是曲线,后者是方程,但要求轨迹往往先求轨
迹方程.如例 5,若改为求线段 AB 的中点 M 的轨迹,我们根据题意看不出 M 的轨
迹是什么曲线,但先求出点 M 的轨迹方程 (x 3)2 ( y 3)2 1,根据方程就能知
问题解决最佳方案
【方法总结】
【自我检测】
1.方程 x2 y2 2ax 2by a2 b2 0 表示的图形是( ).
(A)以 (a, b) 为圆心的圆
(B)以 (a,b) 为圆心的圆
(C)点 (a, b)
(D)点 (a,b)
2.圆的方程为 (x 1)(x 2) ( y 2)(y 4) 0 ,则圆心坐标为( ).
.
【典型例题】
例 1 求过三点 O(0,0), M1(1,1), M 2 (4,2) 的圆的方程,并求这个圆的半径长和
圆心坐标.
【方法总结】
2
必修 2 第四章 圆与方程
例 2 已知线段 AB 的端点 B 的坐标是 (4,3) ,端点 A 在圆 (x 1)2 y2 4 上运 动,求线段 AB 的中点 M 的轨迹方程.

).
(A) x y 3 0 (B) x 2y 4 0 (C) x y 1 0 (D) x 2 y 0
7. 已 知 圆 x2 y2 kx 2 y k 2 , 当 该 圆 的 面 积 取 最 大 值 时 , 圆 心 坐 标

.
8.设圆 x2 y2 4x 2 y 11 0 的圆心为 A ,点 P 在圆上,则 PA的中点 M 的

《圆的一般方程》教学设计和教案

《圆的一般方程》教学设计和教案

《圆的一般方程》教学设计和教案教学设计教学目标:1.知识目标:掌握圆的一般方程的概念和求解方法;2.能力目标:能够正确理解和应用圆的一般方程解决相关问题;3.情感目标:培养学生对几何图形的兴趣,激发学生学习数学的积极性。

教学内容:1.圆的一般方程的定义和性质;2.使用圆的一般方程解决相关问题;教学步骤:Step 1 引入新知1.引导学生回顾圆的定义和性质,并回忆圆的直角坐标的一般方程;2.提出一个问题:“如何表示任意圆的方程?”引导学生思考。

Step 2 探究圆的一般方程1.结对讨论,指导学生以模仿法找出圆心在原点的圆的一般方程,并让学生将结论进行总结;2.通过实例引导学生进一步推广到圆心不在原点的情况,让学生发现圆的一般方程的一般表达形式。

Step 3 练习巩固1.给学生提供一些圆心在不同位置的圆的方程,让学生推算出对应的方程;2.带领学生分析和讨论解题过程,并纠正学生可能出现的错误。

Step 4 拓展应用1.引导学生思考如何利用圆的一般方程求圆的切线和法线;2.分组合作,让学生收集相关问题并解答;3.学生展示解题过程和结果,并带领全班讨论。

Step 5 总结归纳1.小组成员合作撰写一篇关于圆的一般方程的总结性文章;2.整理学生的思路,总结圆的一般方程的概念和方法,以及应用。

Step 6 练习检测1.布置一些练习题,让学生独立完成;2.教师检查学生的答题情况,并与学生一起讨论解题过程中的疑问。

Step 7 总结反思1.学生回顾所学内容,自评自己的学习效果,并写下自己的学习感想;2.教师对本节课进行总结和反思,并对学生的学习进行评价。

教案教案一:圆的一般方程的引入教学目标:明确圆的一般方程的定义和性质。

教学步骤:Step 1 引入新知1.引导学生回归几何的基本概念,复习圆的基本定义和性质;2.引出一个问题:“如何用方程表示圆?”Step 2 引入问题1. 使用ppt展示一个以原点为圆心的圆,采用不同的半径和圆心坐标方程;2.让学生思考圆的方程与圆的性质之间的关系。

圆的一般方程教案-【精品通用教辅文档】

圆的一般方程教案-【精品通用教辅文档】

圆的一般方程【一】教学背景分析1、教材结构分析《圆的一般方程》安排在高中数学必修2第四章第一节第二课时。

圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。

圆的一般方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是思想方法上都有着深远的意义,所以本课内容在整个解析几何中起着承前启后的作用。

2、学情分析圆的一般方程是学生在掌握了求曲线方程一般方法的基础上,在学习过圆的标准方程之后进行研究的,但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。

另外学生在探究问题的能力,合作交流的意识等方面有待加强。

根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定了如下教学目标:3、教学目标知识与技能:(1)掌握圆的一般方程及一般方程的特点;(2)能将圆的一般方程化成圆的标准方程,进而求出圆心和半径;(3)能用待定系数法由已知条件求出圆的方程;(4)能用相关点法求动点的轨迹方程。

过程与方法:(1)进一步培养学生用代数方法研究几何问题的能力;(2)加深对数形结合思想的理解和加强对待定系数法的运用,认识研究问题中由简单到复杂,由特殊到一般的化归思想,充分了解分类思想在数学中的重要地位,强化学生的观察、思考能力;(3)增强学生应用数学的意识。

情感、态度与价值观:(1)培养学生主动探究知识、合作交流的意识;(2)培养学生勇于思考,探究问题的精神;(3)在体验数学美的过程中激发学生的学习兴趣。

根据以上对教材、学情及教学目标的分析,我确定如下的教学重点和难点:4、教学重点与难点重点: (1)圆的一般方程;(2)待定系数法求圆的方程;(3)相关点法求动点的轨迹方程。

难点:圆的一般方程的应用,待定系数法求圆的方程及对坐标法思想的理解。

【二】教法学法分析1、教法分析为了充分调动学生学习的积极性,本节课采用“诱思探究”教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。

圆的一般方程教案(正式)讲课讲稿

圆的一般方程教案(正式)讲课讲稿

4.2.1圆的一般方程一、复习提问,引入课题问题:求过三点(0,0),(1.1),(4,2)的圆的方程?【师生互动】学生在教师指导下展开小组讨论,回顾旧知识,最后得出运用圆的知识很难解决问题。

因为圆的标准方程很麻烦,用直线的知识解决又有其简单的局限性。

于是老师提问,有没有其他的解决方法呢?带着这个问题我们共同研究圆的一般方程。

【辅助手段】:多媒体课件幻灯片展示问题。

二、探索研究,讲授新课 请同学们写出圆的标准方程:222()()x a y b r -+-=、圆心(a ,b)、半径r把圆的标准方程展开,并整理:22222220x y ax by a b r +--++-= 取D=-2a E=-2b F=222a b r +-220x y Dx Ey F ++++=这个方程就是圆的方程.反过来给出一个形如220x y Dx Ey F ++++=的方程,它表示的曲线一定是圆吗?把220x y Dx Ey F ++++=配方得: 222224()()224D E D E Fx y +-+++= 【师生互动】配方和展开由学生完成,教师最后展示结果。

问题:这个方程是不是表示圆?⑴当2224D E F +-﹥0时,方程表示以(-2D ,2E)为圆心,以22142D E F +-为半径的圆. ⑴以复习回顾的形式提出新难题,引出新课程,指出本节课的主要内容. ⑵质疑提问,小组讨论,提高了学生学习的兴趣.⑴学生动笔、思考,老师引导、启发,让学生学会独立分析问题,解决问题,初步体会数学的魅力.⑵引导学生自己探索寻找圆的一般方程在什么时候表示圆,形成分类讨论、等价转化等数学思想,培养学生思维的多样性、创造性,体验成功解决问题的喜悦.⑶通过对一个方程的讨论,得出圆的一般方程,并指出不是所有的方程都可以 表示圆。

使得学生的认识不断加深,同时一般方程则只需确定三个系数,而条件给出了三个坐标,不妨试着先写出圆的一般方程。

【教师讲解】设圆的方程为220x y Dx Ey F ++++=∵A(0,0),B(1,1),C(4,2)在圆上,所以它们的坐标是方程的解,代入方程得到:2042200F D E F D E F =⎧⎪+++=⎨⎪+++=⎩即D=-8 E=6 F=O∴所求的方程为22860x y x y +-+=222142r D E F =+-=5、2D -=4、2E-=-3∴圆心坐标为(4,-3)或将220x y Dx Ey F ++++=化为圆的标准方程: 22(4)(3)25x y -++=【归纳总结】应用待定系数法的一般步骤 ⑴根据条件,选择是标准方程还是一般方程。

圆的一般方程教学设计

圆的一般方程教学设计

圆的一般方程教学设计一、教学目标:1.理解圆的基本定义及其性质;2.掌握圆的一般方程的基本形式和推导方法;3.运用一般方程求解圆的相关问题。

二、教学重点:1.理解圆的一般方程的基本形式;2.学会如何根据已知条件推导圆的一般方程;3.运用一般方程解决实际问题。

三、教学难点:1.掌握如何根据已知条件推导圆的一般方程;2.运用一般方程解决实际问题。

四、教学准备:1.教师准备:教案、教具、多媒体设备;2.学生准备:课本、笔记本、作业本。

五、教学过程:Step 1:导入新知(10分钟)教师通过引导学生回顾圆的概念和性质,巩固学生对圆的认识。

然后,教师提问:如何确定一个圆的位置?学生回答:需要知道圆的圆心和半径。

教师进一步引导学生思考:是否可以通过圆心和半径来表示一个圆的方程?为什么?Step 2:引入一般方程(10分钟)教师出示一个圆和一个坐标系图,解释和展示如何通过圆心和半径来确定一个圆的方程。

然后,教师给出圆的一般方程的基本形式:(x-a)²+(y-b)²=r²,解释方程中各项的含义:(a,b)为圆心的坐标,r为半径的长度。

Step 3:推导圆的一般方程(20分钟)教师提供一个具体的圆,如圆心为(2,3),半径为5、教师引导学生思考如何根据已知条件推导出圆的一般方程。

教师和学生一起完成推导过程,并解释每一步的推理过程和原理。

Step 4:练习与讨论(20分钟)教师提供一些习题,让学生分组讨论和解答。

每个小组完成后,教师选一组展示答案,并引导学生讨论解题思路和方法。

Step 5:应用实践(20分钟)教师设计一些实际问题,让学生运用一般方程解决。

例如:已知两个圆的方程为(x-2)²+(y-3)²=16和(x-6)²+(y+2)²=4,问两个圆的位置关系是什么?教师引导学生从方程中提取圆心和半径的信息,用几何图形表示圆的位置关系。

Step 6:拓展练习(10分钟)教师提供一些较难的练习题,让学生检验对一般方程的理解程度和应用能力。

圆的一般方程教案

圆的一般方程教案

圆的一般方程教案
教案标题:圆的一般方程教案
教学目标:
1. 理解圆的一般方程的概念和含义。

2. 掌握如何根据已知条件写出圆的一般方程。

3. 能够利用圆的一般方程解决与圆相关的问题。

教学准备:
1. 教师准备:教案、电脑、投影仪、白板、白板笔。

2. 学生准备:课本、笔记本、铅笔、橡皮擦。

教学过程:
引入:
1. 教师通过投影仪展示一个圆,并引导学生回顾圆的定义和性质。

2. 教师提问:你们知道如何表示一个圆吗?请思考并回答。

探究:
1. 教师引导学生思考如何根据已知条件写出圆的一般方程,并解释一般方程的含义。

2. 教师通过演示和解释,以一个具体的例子来说明如何写出圆的一般方程。

3. 学生个体或小组合作,完成练习题,巩固掌握写出圆的一般方程的方法。

拓展:
1. 教师提供更多的例子,让学生自主尝试写出圆的一般方程。

2. 学生个体或小组合作,解决与圆相关的问题,运用圆的一般方程求解。

总结:
1. 教师总结本节课的重点内容,并强调圆的一般方程的重要性和应用。

2. 学生回答教师提出的问题,检查他们对本节课内容的掌握程度。

作业:
1. 学生个体完成课后练习题,巩固对圆的一般方程的掌握。

2. 学生预习下节课的内容,准备相关的学习材料。

教学反思:
1. 教师根据学生的学习情况,调整教学步骤和方法,确保学生能够理解和掌握圆的一般方程的写法和应用。

2. 教师鼓励学生积极参与课堂讨论和练习,提高他们的学习兴趣和动力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2.1圆的一般方程
一、复习提问,引入课题
问题:求过三点(0,0),(1.1),(4,2)的圆的方程?
【师生互动】学生在教师指导下展开小组讨论,回顾旧知识,最后得出运用圆的知识很难解决问题。

因为圆的标准方程很麻烦,用直线的知识解决又有其简单的局限性。

于是老师提问,有没有其他的解决方法呢?带着这个问题我们共同研究圆的一般方程。

【辅助手段】:多媒体课件幻灯片展示问题。

二、探索研究,讲授新课 请同学们写出圆的标准方程:
222()()x a y b r -+-=、圆心(a ,b)、半径r
把圆的标准方程展开,并整理:
22222220x y ax by a b r +--++-= 取D=-2a E=-2b F=2
2
2
a b r +-
220x y Dx Ey F ++++=
这个方程就是圆的方程.
反过来给出一个形如22
0x y Dx Ey F ++++=的方程,它表示的曲线一定是圆吗?
把220x y Dx Ey F ++++=配方得: 2
2
2
224()()224
D E D E F
x y +-+
++= 【师生互动】配方和展开由学生完成,教师最后展示结果。

问题:这个方程是不是表示圆?
⑴当2224D E F +-﹥0时,方程表示以(-2D ,2
E
)为圆心,以
22142
D E F +-为半径的圆. ⑴以复习回顾的形式提出新难题,引出
新课程,指出本节课的主要内容. ⑵质疑提问,
小组讨论,提高了学生学习的兴趣.
⑴学生动笔、思考,老师引导、启发,让学生学会独立分析问题,解决问题,初步体会数学的魅力.
⑵引导学生自己探索寻找圆的一般方程在什么时候表示圆,形成分类讨论、等价转化等数学思想,培养学生思维的多样性、创造性,体验成功解决问题的喜悦.
⑶通过对一个方程的讨论,得出圆的一
般方程,并指出不是
所有的方程都可以 表示圆。

使得学生的认识不断加深,同时
一般方程则只需确定三个系数,而条件给出了三个坐标,不妨试着先写出圆的一般方程。

【教师讲解】设圆的方程为220x y Dx Ey F ++++=
∵A(0,0),B(1,1),C(4,2)在圆上,所以它们的坐标是方程的解,代入方程得到:
2042200F D E F D E F =⎧⎪
+++=⎨⎪+++=⎩
即D=-8 E=6 F=O
∴所求的方程为22860x y x y +-+=
222142
r D E F =+-=5、2D -=4、2E
-=-3
∴圆心坐标为(4,-3)
或将220x y Dx Ey F ++++=化为圆的标准方程: 22(4)(3)25x y -++=
【归纳总结】应用待定系数法的一般步骤 ⑴根据条件,选择是标准方程还是一般方程。

⑵根据条件列出关于a 、b 、r 或D 、E 、F 的方程组。

⑶解出a 、b 、r 或D 、E 、F 并将其代入其相关方程。

例3 已知线段AB 的端点B 的坐标是(4,3),端点A 在圆上 22(1)4x y ++=运动,求线段AB 的中点M 的轨迹方程。

分析:如图点A 运动引起M 运动,而点A 在圆上运动点A
的坐标满足方程22(1)4x y ++=,建立点M 与点A 的关系, 就可以建立点M 的坐标满足的条件,也就出了M 的方程。

⑴进一步熟悉圆的一般方程. ⑵通过本题的练习,使学生掌握待定系数法求解圆的一般方程的步骤.
⑴总结题目方法,提炼出解决一般问题的方法,形成类型题的方法.
⑵强调方法的本质,加深学生对方法的理解应用.
3 如图,等腰梯形ABCD 的底边长分别为6和4,高为3, 求这个等腰梯形的外接圆的方程,并求出圆心坐标和半径. 提示:待定系数法的应用.
【师生互动】⑴第一二题练习课让学生通过抢答的形式进行. ⑵第三题练习是待定系数法方法的运用,教师
可叫几个同学上黑板进行板演,教师适当点评,最后教师讲解解题过程.
【辅助手段】多媒体课件幻灯片展示,学生自练或板演,教师讲评解题过程. 四、课堂小结,反馈回授
1、对方程220x y Dx Ey F ++++=的讨论和圆的一般方程的代数特征理解.
2、圆的一般方程和标准方程的互化.
3、待定系数法求解圆的一般方程.
4、代入法求解曲线的轨迹方程. 五、分层作业,巩固提高 必做题:教材134页3、4 选做题:
1.已知点M 与两个定点O(0,0)、A(3,0)的距离的比为1
2
,求点M 的轨迹方程。

【辅助手段】多媒体课件幻灯片展示作业
问题.
⑵进一步巩固代入法等数学方法,提高学生的思维能力和运用知识解答问题的能力.
⑴有利于学生理清
本节课的重难点,深
化对圆的一般方程的理解,帮助学生从
感性认识上升为理性认识. ⑵有利于学生把知识转化为能力,形成数学方法和数学思维.
⑶启发引导学生进行归纳整理,培养学生宏观掌握知识的
能力.
⑴必做题与选做题 相结合,面向全体学 生,激发学生兴趣.。

相关文档
最新文档