单管放大器实验报告实验总结
晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告一、实验目的:1.掌握晶体管共射极单管放大器的工作原理;2.通过实验验证晶体管共射极单管放大器的放大特性。
二、实验仪器与器件:1.功能发生器;2.直流稳压电源;3.2N3904NPN型晶体管;4.脉冲发生电路;5.负载电阻;6.示波器等。
三、实验原理:四、实验步骤与过程:1.搭建晶体管共射极单管放大器电路,根据实验原理连接好各个器件与仪器;2.将直流稳压电源的正极接入收集端,负极接入基极,并合理调节稳压电源的电压和电流;3.通过功能发生器向基极注入正弦信号,调节发生器频率和幅值;4.同时连接示波器,观察输入信号与输出信号的波形;5.改变输入信号的频率和幅值,记录输出信号的变化;6.对比输入信号与输出信号,确定放大倍数。
五、实验数据记录与分析:1.在不同频率下,记录输入信号与输出信号的幅值,并计算放大倍数;2.提取数据,绘制频率与放大倍数的关系曲线;3.分析曲线特点,讨论晶体管放大器的工作频率范围;4.对比不同输入信号幅值下的输出信号,分析并解释放大器的失真情况。
六、实验结果与结论:1.经过实验数据的分析和计算,可以得出晶体管共射极单管放大器在一定频率范围内具有较好的放大效果;2.放大倍数随频率的增加而下降,且存在失真现象;3.实验结果与理论相符,验证了晶体管共射极单管放大器的放大特性。
七、实验心得与体会:通过本次实验,我深入了解了晶体管共射极单管放大器的工作原理和特性,并且掌握了实验操作技巧。
实验中遇到了一些问题,如输出信号失真、调节电源电压等,但通过耐心地调试和思考,最终取得了满意的实验结果。
通过这次实验,我不仅提高了对电路放大器的理解,还锻炼了实验操作和数据分析能力。
晶体管单管放大器实验报告

一、实验目的1. 理解晶体管单管放大器的基本原理和组成。
2. 掌握晶体管单管放大器静态工作点的调试方法。
3. 熟悉晶体管单管放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
4. 提高对常用电子仪器及模拟电路实验设备的使用能力。
二、实验原理晶体管单管放大器是一种常见的放大电路,主要由晶体管、偏置电阻、负载电阻和耦合电容等组成。
实验电路采用共射极接法,通过输入信号u_i在晶体管的基极输入,放大后的信号u_o从集电极输出。
实验电路中,偏置电阻Rb1和Rb2组成分压电路,为晶体管提供合适的静态工作点。
负载电阻Rl接收放大后的信号,耦合电容C1和C2分别对输入信号和输出信号进行耦合,抑制交流干扰。
三、实验仪器与材料1. 晶体管(例如:3DG6)2. 偏置电阻(例如:Rb1=10kΩ,Rb2=20kΩ)3. 负载电阻(例如:Rl=10kΩ)4. 耦合电容(例如:C1=0.01μF,C2=0.01μF)5. 函数信号发生器6. 双踪示波器7. 万用电表8. 直流稳压电源9. 实验电路板四、实验步骤1. 按照实验电路图连接电路,将各元件和导线接到实验电路板上。
2. 将函数信号发生器输出端连接到双踪示波器,设置信号频率为1kHz,幅值为1V。
3. 将直流稳压电源连接到电路板,调节输出电压为12V。
4. 调节偏置电阻Rb1和Rb2,使晶体管处于合适的静态工作点。
使用万用电表测量晶体管的集电极电流Ic和集电极电压Uc,使其满足Ic=2mA,Uc=6V。
5. 在晶体管基极输入信号,观察双踪示波器上输入信号和输出信号的波形,记录电压放大倍数。
6. 测量输入电阻Ri和输出电阻Rl,计算放大器的输入电阻和输出电阻。
7. 调节输入信号幅值,观察输出波形,记录最大不失真输出电压。
五、实验数据及分析1. 静态工作点调试结果:Ic=2mA,Uc=6V。
2. 电压放大倍数:A_v=20。
3. 输入电阻:Ri=2kΩ。
单管放大器实验报告实验总结

竭诚为您提供优质文档/双击可除单管放大器实验报告实验总结篇一:单管放大电路实验报告单管放大电路一、实验目的1.掌握放大电路直流工作点的调整与测量方法;2.掌握放大电路主要性能指标的测量方法;3.了解直流工作点对放大电路动态特性的影响;4.掌握射极负反馈电阻对放大电路特性的影响;5.了解射极跟随器的基本特性。
二、实验电路实验电路如图2.1所示。
图中可变电阻Rw是为调节晶体管静态工作点而设置的。
三、实验原理1.静态工作点的估算将基极偏置电路Vcc,Rb1和Rb2用戴维南定理等效成电压源。
开路电压Vbb?Rb2Vcc,内阻Rb1?Rb2Rb?Rb1//Rb2则IbQ?Vbb?VbeQRb?(??1)(Re1?Re2),IcQ??IbQVceQ?Vcc?(Rc?Re1?Re2)IcQ可见,静态工作点与电路元件参数及晶体管β均有关。
在实际工作中,一般是通过改变上偏置电阻Rb1(调节电位器Rw)来调节静态工作点的。
Rw调大,工作点降低(IcQ 减小),Rw调小,工作点升高(IcQ增加)。
一般为方便起见,通过间接方法测量IcQ,先测Ve,IcQ?IeQ?Ve/(Re1?Re2)。
2.放大电路的电压增益与输入、输出电阻?u???(Rc//RL)Ri?Rb1//Rb2//rbeRo?Rcrbe式中晶体管的输入电阻rbe=rbb′+(β+1)VT/IeQ ≈rbb′+(β+1)×26/IcQ(室温)。
3.放大电路电压增益的幅频特性放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。
电压增益的大小与频率的函数关系即是幅频特性。
一般用逐点法进行测量。
测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。
由曲线确定出放大电路的上、下限截止频率fh、fL和频带宽度bw=fh-fL。
需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。
单管共射放大电路实验总结

单管共射放大电路实验总结引言本文是对单管共射放大电路实验的总结与分析。
单管共射放大电路是一种常见的放大电路,其具有放大倍数高、输入阻抗低、输出阻抗高等特点,在电子电路中应用广泛。
本文将从实验目的、实验原理、实验步骤和实验结果四个方面进行详细介绍。
实验目的本次实验的主要目的是掌握单管共射放大电路的工作原理和性能特点,熟悉放大电路的设计和调试过程,培养实际动手操作的能力,以及对实验数据的分析能力。
通过本实验,进一步了解电子器件的基本特性和工作原理,为电子电路设计和实际应用打下坚实基础。
实验原理单管共射放大电路是一种三极管作为放大元件的单级放大电路,其工作原理如下:1.输入信号经耦合电容传入三极管的基极,通过输入电阻Ri控制基极电流。
2.当输入信号为正弦波时,基极电流也为正弦波,进而控制三极管的发射极电流。
3.通过放大作用,使得输出信号的幅度得到放大。
4.由于共射放大电路是由共射极输出的,因此输出信号与输入信号之间存在180°的相位差。
5.通过耦合电容Ce将输出信号取出。
实验步骤1. 实验准备准备实验所需要的材料和仪器设备:三极管、耦合电容、负载电阻、信号源、示波器等。
2. 电路搭建按照给定的电路图,将电阻、电容和三极管等元器件按正确的位置连接好,注意接线的准确性和可靠性。
3. 实验参数设定根据实验要求,设置输入信号源的幅度和频率,选择合适的放大倍数。
4. 电源接入将实验电路接入电源,确认电源电压是否符合要求,并注意应用调压电路稳定电源。
5. 信号测量使用示波器测量输入信号源和输出信号的波形,注意设置好示波器的纵横坐标范围和触发模式。
6. 数据记录与分析记录实验测量到的数据,包括电压、电流和波形等信息。
通过对实验数据的分析,得出分析结论,进一步了解单管共射放大电路的性能特点。
7. 电路调试与改进根据实验数据的分析结果,对电路进行调试和改进,以提高电路的性能和稳定性。
8. 实验总结根据实验结果和观察,总结实验过程中遇到的问题和解决办法,总结实验的结果和得到的经验教训。
单管电压放大器实验报告

一、实验目的1. 学习调试和测量单管电压放大器的静态工作点。
2. 掌握单管放大器的电压放大倍数Au、输出电阻Ro和输入电阻Ri的测试方法。
3. 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理单管电压放大器是模拟电子技术中的一种基本放大电路,主要由晶体管、电阻、电容等元件组成。
本实验采用共射极单管放大器电路,通过调节基极电阻,可以调整晶体管的静态工作点,使晶体管工作在放大区,从而实现电压放大。
三、实验设备1. 单管电压放大器实验电路板2. 信号发生器3. 示波器4. 电压表5. 电流表6. 万用表7. 电阻箱8. 电容箱四、实验步骤1. 搭建单管电压放大器实验电路,按照电路图连接好各个元件。
2. 使用电阻箱和电容箱,根据电路图设置合适的静态工作点。
首先,调节电阻箱,使基极电阻RB的阻值符合要求;然后,调节电容箱,使电容C1的容值符合要求。
3. 使用万用表测量晶体管的静态工作点,即测量晶体管的基极电压U_B、集电极电压U_C和集电极电流I_C。
4. 在放大器的输入端接入信号发生器,输出频率为1kHz的正弦波信号。
5. 使用示波器观察放大器的输出波形,记录输出电压U_O。
6. 使用电压表测量放大器的输入电压U_I和输出电压U_O,计算电压放大倍数Au。
7. 使用电流表测量放大器的输入电流I_I和输出电流I_O,计算输入电阻Ri和输出电阻Ro。
8. 根据实验数据,分析静态工作点对放大器性能的影响,以及电压放大倍数、输入电阻和输出电阻与电路参数的关系。
五、实验结果与分析1. 静态工作点对放大器性能的影响实验结果表明,当静态工作点Q过低时,晶体管进入截止区,输出电压U_O接近于0,放大倍数Au接近于0;当静态工作点Q过高时,晶体管进入饱和区,输出电压U_O接近于电源电压VCC,放大倍数Au也接近于0。
因此,合适的静态工作点对于保证放大器的正常工作至关重要。
2. 电压放大倍数、输入电阻和输出电阻与电路参数的关系实验结果表明,电压放大倍数Au与晶体管的β(放大倍数)和集电极电阻Rc有关,与基极电阻RB和发射极电阻RE关系不大。
晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告实验报告:晶体管共射极单管放大器摘要:本实验通过搭建晶体管共射极单管放大器电路,研究其放大特性和工作原理。
通过测量输入输出特性曲线和计算放大倍数,得出合适的工作点、负载电阻和偏置电压,以实现较大的放大倍数和线性放大的目标。
【关键词】晶体管、共射极、放大特性、工作点、负载电阻、偏置电压、放大倍数、线性放大一、引言晶体管是一种重要的电子器件,在电子电路中广泛应用于放大、开关等功能。
共射极单管放大器是一种常见的放大器电路,具有简单、灵活及放大效果较好等特点。
本实验旨在通过搭建共射极单管放大器电路,研究其放大特性和工作原理,并通过实际测量及计算,确定合适的工作参数,实现最佳的放大效果。
二、实验原理共射极单管放大器由晶体管、负载电阻、输入电阻、偏置电阻和耦合电容等组成。
输入信号经耦合电容C1传递到基极,与偏置电阻R1和R2形成偏置电压,控制晶体管的工作状态。
负载电阻RL连接于集电极,输出信号从集电极提取。
三、实验步骤2.给定直流电源VCC和VE,通过调节R1和R2,使得基极电压为合适的偏置电压。
3.连接信号发生器,设置正确的输入信号频率和信号幅度。
4.连接示波器,分别测量输入和输出信号波形,并记录幅度。
5.逐步调节负载电阻RL,测量不同负载情况下的输出信号波形和幅度。
6.分析实验数据,计算放大倍数。
四、实验结果3. 放大倍数:利用实验数据计算放大倍数Av=Vout/Vin。
五、讨论与总结通过实验搭建晶体管共射极单管放大器电路,并测量了输入输出特性曲线。
根据实验结果,我们可以得出以下结论:1.在合适的工作点和偏置电压下,共射极单管放大器可以实现较大的放大倍数。
当输出信号达到晶体管的饱和区时,放大倍数会有所下降。
2.负载电阻的选择对放大倍数和线性放大效果有较大影响。
较大的负载电阻可以得到较大的放大倍数,但也会降低线性放大效果。
3.输入特性曲线的斜率代表输入电阻,输出特性曲线的斜率代表输出电阻,可以通过斜率计算电阻值。
单管放大器实验报告实验总结

单管放大器实验报告实验总结竭诚为您提供优质文档/双击可除单管放大器实验报告实验总结篇一:单管放大电路实验报告单管放大电路一、实验目的1.掌握放大电路直流工作点的调整与测量方法;2.掌握放大电路主要性能指标的测量方法;3.了解直流工作点对放大电路动态特性的影响;4.掌握射极负反馈电阻对放大电路特性的影响;5.了解射极跟随器的基本特性。
二、实验电路实验电路如图2.1所示。
图中可变电阻Rw是为调节晶体管静态工作点而设置的。
三、实验原理1.静态工作点的估算将基极偏置电路Vcc,Rb1和Rb2用戴维南定理等效成电压源。
开路电压Vbb?Rb2Vcc,内阻Rb1?Rb2Rb?Rb1//Rb2则IbQ?Vbb?VbeQRb?(??1)(Re1?Re2),IcQ??IbQVceQ?Vcc?(Rc?Re1?Re2)IcQ可见,静态工作点与电路元件参数及晶体管β均有关。
在实际工作中,一般是通过改变上偏置电阻Rb1(调节电位器Rw)来调节静态工作点的。
Rw调大,工作点降低(IcQ 减小),Rw调小,工作点升高(IcQ增加)。
一般为方便起见,通过间接方法测量IcQ,先测Ve,IcQ?IeQ?Ve/(Re1?Re2)。
2.放大电路的电压增益与输入、输出电阻u?(Rc//RL)Ri?Rb1//Rb2//rbeRo?Rcrbe式中晶体管的输入电阻rbe=rbb′+(β+1)VT/IeQ ≈rbb′+(β+1)×26/IcQ(室温)。
3.放大电路电压增益的幅频特性放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。
电压增益的大小与频率的函数关系即是幅频特性。
一般用逐点法进行测量。
测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。
由曲线确定出放大电路的上、下限截止频率fh、fL和频带宽度bw=fh-fL。
需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。
单管电压放大器实验报告

单管电压放大器实验报告单管电压放大器实验报告引言:单管电压放大器是一种常见的电子电路,它能够将输入信号的电压放大到更高的电压级别,以便驱动负载电阻或其他电路。
在本次实验中,我们将研究并实现一个基本的单管电压放大器电路,以了解其工作原理和性能。
实验目的:1. 理解单管电压放大器的基本原理;2. 掌握单管电压放大器的电路设计和实现方法;3. 测量和分析单管电压放大器的增益、频率响应和失真等性能指标。
实验器材:1. NPN型晶体管(如2N3904);2. 电阻器(如1kΩ、10kΩ);3. 电容器(如10μF、100μF);4. 变压器(如12V/220V);5. 示波器;6. 功率放大器。
实验步骤:1. 搭建单管电压放大器电路。
根据所给电路图,按照正确的连接方式将晶体管、电阻器和电容器等元件连接在一起,确保电路连接正确无误。
2. 调整电路的偏置电压。
通过调整电阻器的阻值,使得晶体管的基极电压处于适当的工作区间,以确保电路的线性放大性能。
3. 连接示波器。
将示波器的探头连接到电路的输入端和输出端,以便测量输入和输出信号的波形和幅度。
4. 测量电压增益。
在输入端施加一个小幅度的正弦信号,通过示波器测量输入和输出信号的幅度,计算电压增益的大小。
5. 测量频率响应。
逐渐增加输入信号的频率,测量输出信号的幅度,并记录频率和幅度之间的关系。
6. 分析失真程度。
通过观察输出信号的波形,分析是否存在失真现象,并记录失真的类型和程度。
实验结果:1. 电压增益:根据实验测量结果,我们可以计算出电压增益的大小。
电压增益是指输出信号的电压与输入信号的电压之间的比值。
通过实验,我们可以了解到单管电压放大器的放大倍数。
2. 频率响应:通过测量输出信号在不同频率下的幅度,我们可以绘制出单管电压放大器的频率响应曲线。
这个曲线可以告诉我们在不同频率下,电压放大器的放大性能如何。
3. 失真分析:通过观察输出信号的波形,我们可以判断是否存在失真现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竭诚为您提供优质文档/双击可除单管放大器实验报告实验总结篇一:单管放大电路实验报告单管放大电路一、实验目的1.掌握放大电路直流工作点的调整与测量方法;2.掌握放大电路主要性能指标的测量方法;3.了解直流工作点对放大电路动态特性的影响;4.掌握射极负反馈电阻对放大电路特性的影响;5.了解射极跟随器的基本特性。
二、实验电路实验电路如图2.1所示。
图中可变电阻Rw是为调节晶体管静态工作点而设置的。
三、实验原理1.静态工作点的估算将基极偏置电路Vcc,Rb1和Rb2用戴维南定理等效成电压源。
开路电压Vbb?Rb2Vcc,内阻Rb1?Rb2Rb?Rb1//Rb2则IbQ?Vbb?VbeQRb?(??1)(Re1?Re2),IcQ??IbQVceQ?Vcc?(Rc?Re1?Re2)IcQ可见,静态工作点与电路元件参数及晶体管β均有关。
在实际工作中,一般是通过改变上偏置电阻Rb1(调节电位器Rw)来调节静态工作点的。
Rw调大,工作点降低(IcQ 减小),Rw调小,工作点升高(IcQ增加)。
一般为方便起见,通过间接方法测量IcQ,先测Ve,IcQ?IeQ?Ve/(Re1?Re2)。
2.放大电路的电压增益与输入、输出电阻?u???(Rc//RL)Ri?Rb1//Rb2//rbeRo?Rcrbe式中晶体管的输入电阻rbe=rbb′+(β+1)VT/IeQ ≈rbb′+(β+1)×26/IcQ(室温)。
3.放大电路电压增益的幅频特性放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。
电压增益的大小与频率的函数关系即是幅频特性。
一般用逐点法进行测量。
测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。
由曲线确定出放大电路的上、下限截止频率fh、fL和频带宽度bw=fh-fL。
需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。
三、预习计算1.当=时由实验原理知计算结果如下:IeQ=IbQ=β+1β1βIcQ=1mAIcQ=4.878μAucQ=Vcc?IcQ×Rc=8.7VueQ=IeQ×Re=1×1.2=1.2VuceQ=ucQ?ueQ=8.7?1.2=7.5Vrbe=rbb′+1+βuT26=650+206×=6.006kΩeQubQ=ueQ+0.7=1.9VVcc?ubQubQ=IbQ+wb1b2可以解出Rw=40.78kΩ由此可以计算出该放大电路的输入电阻Ri=Rw+Rb1∥Rb2∥rbe=4.06kΩ输出电阻为Ro≈Rc=3.3kΩ=uo=?β电压增益AuuiRc∥RLrbe=?68.392.当=时由实验原理知计算结果如下:IeQ=β+1β1βIcQ=2mAIbQ=IcQ=9.76μAucQ=Vcc?IcQ×Rc=5.4VueQ=IeQ×Re=2×1.2=2.4VuceQ=ucQ?ueQ=5.4?2.4=3Vrbe=rbb′+1+βuT26=650+206×=3.328kΩeQubQ=ueQ+0.7=3.1V利用回路的分压特性ubQ≈可以解得Rw=5.12kΩ由此可以计算出该放大电路的输入电阻Ri=Rw+Rb1∥Rb2∥rbe=2.5kΩ输出电阻为Ro≈Rc=3.3kΩ=uo=?β电压增益AuuiRb2Rw+Rb1+Rb2×VccRc∥RLrbe=?123.43.当与并联时IcQ=1mA时,可知Rw=40.78kΩ仍然成立,而此时:=??0??Rc∥RL=?=?8.7be+β+1??e1Ri=Rw+Rb1∥Rb2∥rbe+β+11=9.91kΩRo≈Rc=3.3kΩ四、仿真结果搭建电路如下:1.静态工作点的调整用参数扫描找到静态时使IcQ=1mA的电阻Rw=38.9kΩ篇二:单管放大器实验报告共发射极放大电路的分析与综合(计算与设计)实验报告1、实验时间10月24日(周五)17:50-21:002、实验地点实验楼9023、实验材料电阻:100Ω、1kΩ、5kΩ、10kΩ、51kΩ、220kΩ电容:47μF电阻箱电源:12V直流电压源,50mV1Khz0°交流电压源bJT:2n5551示波器、万用表4、电路原理图5、分析过程及结果一、直流分析1.画出直流通路图中,晶体管β=2102.欲使ucQ=6V,求:pot1由ucQ?ucc?IcQR3可得IbQ?IcQ??5.7?10?3mAR2ubb?uccpot1?R1?R2ubb?ube(on)IbQ?Rb?(1??)Re可解得pot1?120k?又Rb?(pot1?R1)||R23.求解静态工作点Q由上可知IcQ?1.2mAuceQ?ucc?IcQ(R3?R4?R5)?4.68V4.改变偏置电阻阻值对晶体管工作状态有何影响?偏置电阻用来调节基极偏置电流,使晶体管有一个适合的工作点。
在(电阻大)偏置小到一定程度后其基极电位已不足以维持最小静态基区电流,而此时的工作偏流则依靠输入信号的某半值电压,因而此时的输出信号失真是无静态的断续。
而在(电阻小)偏置过高引起的失真则是非线性阻塞失真。
由此可见晶体管的静态工作点只有在合理的区间才能做到最小的失真,最大的输出。
区域内改变偏值电阻会影响增益!超区域改变偏值电阻会增加失真。
5.用multisim仿真静态工作点6.根据仿真电压值计算出直流工作点ucQ?6.763Vucc?ucQR3IcQ??1.05mA误差不是很大uceQ?ucc?IcQ(R3?R4?R5)?5.6V7.直流工作点不合适会产生怎样的严重后果?过高产生饱和失真,过低产生截止失真。
二、根据原理图选择元器件,在如下实验板上搭建电路。
1.写出详细搭建步骤在器件盒中挑选需要使用的电容电阻及三极管,并将引脚插入电路板上对应的位置,电源及其它需要的部分用导线接好。
2.如果晶体管β值实际测量值有变,怎样调试出合适静态工作点?应调节pot1,使ucQ保持在6V左右。
3.写出调整步骤在实验中具体的电阻箱器件用电阻代替。
具体的方法是直接将pot1和R1用一个电阻代替,阻值由计算确定。
4.实验前,测量晶体管β值,根据β值重新计算、仿真Q点实验报告上述部分已根据实际测得的β值进行的修改,包括对Q点的计算和仿真。
5.将Q值填入下表晶体管型号:2n5551β:210三、交流分析1.画出交流通路2.画出交流微变等效电路3.求:篇三:晶体管共射极单管放大器实验报告实验二晶体管共射极单管放大器班级:姓名:学号:日期:20XX年11月28日地点:实验大楼206室课程名称:模拟电子技术基础指导老师:同组学生姓名:成绩:一、实验目的1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
3、熟悉常用电子仪器及模拟电路实验设备(:单管放大器实验报告实验总结)的使用。
二、实验设备与器件1、+12V直流电源;2、函数信号发生器;3、双踪示波器;4、交流毫伏表5、直流电压表;6、直流毫安表;7、频率计;8、万用电表;9、晶体三极管3Dg6×1(β=50~100)或9011×1(管脚排列如图2-7所示);10、电阻器、电容器若干。
三、实验原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。
它的偏置电路采用Rb1和Rb2组成的分压电路,并在发射极中接有电阻Re,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。
图2-1共射极单管放大器实验电路在图2-1电路中,当流过偏置电阻Rb1和Rb2的电流远大于晶体管T的基极电流Ib时(一般5~10倍),则它的静态工作点可用下式估算ub?Rb1uccRb1?Rb2Ie?ub?ube?IcReuce=ucc-Ic(Rc+Re)电压放大倍数AV??βRc//RLrbe输入电阻Ri=Rb1//Rb2//rbe输出电阻Ro≈Rc由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。
在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。
一个优质放大器,必定是理论设计与实验调整相结合的产物。
因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。
放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。
1、放大器静态工作点的测量与调试1)静态工作点的测量测量放大器的静态工作点,应在输入信号ui=0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流Ic以及各电极对地的电位ub、uc和ue。
一般实验中,为了避免断开集电极,所以采用测量电压ue或uc,然后算出Ic 的方法,例如,只要测出ue,即可用Ic?Ie?ueu?uc算出Ic(也可根据Ic?cc,由uc确定Ic),ReRc同时也能算出ube=ub-ue,uce=uc-ue。
为了减小误差,提高测量精度,应选用内阻较高的直流电压表。
2)静态工作点的调试放大器静态工作点的调试是指对管子集电极电流Ic(或uce)的调整与测试。
静态工作点是否合适,对放大器的性能和输出波形都有很大影响。
如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时uo的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即uo的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。
这些情况都不符合不失真放大的要求。
所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压ui,检查输出电压uo的大小和波形是否满足要求。
如不满足,则应调节静态工作点的位置。
(a)(b)图2-2静态工作点对uo波形失真的影响改变电路参数ucc、Rc、Rb(Rb1、Rb2)都会引起静态工作点的变化,如图2-3所示。
但通常多采用调节偏置电阻Rb2的方法来改变静态工作点,如减小Rb2,则可使静态工作点提高等。
图2-3电路参数对静态工作点的影响最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。
所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。
如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。