第三章——流体流动特性

合集下载

第三章 流体的运动

第三章 流体的运动

x x
P1
s1

t+t
v1
y
v1 S 1 t = v2 S 2 t = V
y 得:
h1
t
s2
h2
v2 P2
A = ( P 1 - P 2) V
对于稳定流动来 说,由于在 x y 之间的 P1 流体的动能和重力势能 保持不变,所以机械能
x x
v1
s1

t+t
y
y
的增量仅由 x x 和 两段流体决定。
x x
P1
s1

t+t
v1
y
y
h1
t
s2
A = E 2 - E1
h2
v2 P2
1 2 1 2 (P1 P2 ) V V ( v 2 gh2 ) ( v1 gh1 ) 2 2
即:
1 1 2 2 P v1 gh1 P2 v 2 gh2 1 2 2

S2
连续性方程
1 v 1 S 1 t = 2 v 2 S 2 t
V2
S1
V1
2
1
1 v 1 S 1 = 2 v 2 S 2 即: v S = 常量 流体作稳定流动时,单位时间内流过同
一流管中任一截面的流体质量相等。
对于不可压缩的流体,由于它的密度不变 1v1S1= 2v2S2 即 : 1= 2 v 1S 1 = v 2S 2 说 明: (1)定义: 流量 Q = Sv (2)S与v 成反比。 (3)v 取截面S上流速的平均值。 (4)连续性方程的实质:流体在流动中质量守恒。 不可压缩流体的连续性方程
层与层之间的阻 力称为内摩擦力或粘 滞力。 ƒ = dv S dx

第三章 流体力学

第三章 流体力学
1、理想流体:
完全不可压缩的无粘滞流体称为理想流体。
液体不易被压缩,而气体的可压缩性大。但当气体可自由流 动时,微小的压强差即可使气体快速流动,从而使气体各部 分的密度差可以忽略不计。
流体内各部分间实际存在着内摩擦力,它阻碍着流体各部分 间的相对运动,称为粘滞性。但对于很“稀”的流体,可近 似看作是无粘滞的。
4l
dQ=vdS
流量
R
Q R4 ( P1 P2 )
8l
泊肃叶定律推导(略)
流速分布: r
r
v P1 P2 ( R2 r 2 )
4l
各流层流速沿径向呈抛 物线分布
v 管轴中心处,流速最大
vmax

P1 P2
4l
R2
管壁处,流速最小 vmin 0
v
平均速度 v P1 P2 R2
由伯努利方程:
p0

gh

p0

1 2
v2
由上式求得:
v 2 gh
p0
A h
B p0 v
习例题题5-1:1 直径为0.10m,高为0.20m的圆筒形容器底部有1cm2的小 孔。水流入容器内的流量为1.4×10-4m3/s 。求:容器内水面能
上升多高?
D
由伯努利方程: v 2 gh
h 当水面升至最高时: QV v S S 2 ghm
若1 < 2 , 小球(气泡)上浮

1 2
V

v
2 1

gh2V


gh1V
即:
p1

1 2

v
2 1

gh1

第三章一元流体动力学基础

第三章一元流体动力学基础
2
d (gz p 1 u 2 ) 0
2
积分后得 gz p 1 u 2 常数
2
考虑到重度γ=ρg,将上式两端除以重力加速度g,得: z p u 2 常数 (3)
2 . 通过某一空间点在给定瞬间只能有一条流线,一般情况流 线不能相交和分支。否则在同一空间点上流体质点将同时 有几个不同的流动方向。只有在流场中速度为零或无穷大 的那些点,流线可以相交,这是因为,在这些点上不会出 现在同一点上存在不同流动方向的问题。速度为零的点称 驻点,速度为无穷大的点称为奇点。
)
再看右端三式相加: 由于是在重力场中,故流体
dx
u x t
u x x
ux
u x y
uy
u x z
uz
X
1
p x
的质量力只是重力,则 X=0, Y=0, Z=-g。
dy
u y t
u y x
ux
u y y
uy
u y z
uz
Y
1
p y
所以: Xdx+Ydy+Zdz=-gdz
dz
u z t
u z x
非定常流动(unsteady flow) :流动物理参数随时间而变化
如:p f (x, y, z,t),u f (x, y, z,t)
定常流动
非定常流动
有旋流动(rotational flow):流体在流动中,流场中有若干处 流体微团具有绕通过其自身轴线的旋转运动
无旋流动(irrotational flow):在整个流场中各处的流体微团 均不绕自身轴线的旋转运动
欧拉法与拉格朗日法区别:
欧拉法:以固定空间为研究对象,了解质点在某一位置时 的流动状况
拉格朗日法:以质点为研究对象,研究某一时刻质点全 部流动过程

化工原理(上册)—化工流体流动与传热第三版柴诚敬习题答案

化工原理(上册)—化工流体流动与传热第三版柴诚敬习题答案

化工原理(上册) - 化工流体流动与传热第三版柴诚敬习题答案第一章:引言习题1.1答案:该题为综合性问题,回答如下:根据流体力学原理,液体在容器中的自由表面是一个等势面,即在平衡时,液体表面上各点处的压力均相等。

所以整个液体处于静止状态。

习题1.2答案:该题为计算题。

首先,根据流速的定义:流体通过某个截面的单位时间内通过的体积与截面积之比,可得流速的公式为:v = Q / A,其中v表示流速,Q表示流体通过该截面的体积,A表示截面积。

已知流速v为10m/s,截面积A为0.5m²,代入公式计算得:Q = v × A = 10m/s × 0.5m² = 5m³/s。

所以,该管道内的流体通过的体积为5立方米每秒。

习题1.3答案:该题为基础性知识题。

流体静压头表示流体的静压差所能提供的相当于重力势能的高度。

根据流体的静压力与流体的高度关系可知,流体静压力可以通过将流体的重力势能转化为压力单位得到。

由于重力势能的单位可以表示为m·g·h,其中m为流体的质量,g为重力加速度,h为高度。

而流体的静压头就是将流体静压力除以流体的质量得到的,即流体静压力除以流体的质量。

所以,流体静压头是等于流体的高度。

第二章:流体动力学方程习题2.1答案:该题是一个计算题。

根据题意,已知流体的密度ρ为1.2 kg/m³,截面积A为0.4 m²,流速v为2 m/s,求流体的质量流量。

根据质量流量公式:Q = ρ × A × v,代入已知数值计算得:Q = 1.2 kg/m³ × 0.4 m² × 2 m/s = 0.96 kg/s。

所以,流体的质量流量为0.96 kg/s。

习题2.2答案:该题为综合性问题,回答如下:流体动量方程是描述流体运动的一个重要方程,其中包含了流体的质量流量、速度和压力等参数。

第3章流体流动特性

第3章流体流动特性

z)
cos(,
z)
第三章 流体流动特性
3.2流体流动的速度场
三、迹线和流线
流线微分方程
即:
ud,x d,y dz
v ds v ds v ds
或写成:
d sd,x vu
d v sd ,y
d v sd z
得: u(x,d y,zx ,t)(x,d y,zy ,t)(x,d y,zz,t) (3-10**)
3.2流体流动的速度场
例3-1: u x t
已知:




y

t
0
求:t=0 时,A(-1,1)点流线的方程。
解:将已知条件代入流线微分方程式(3-10)
u(x,d y,zx ,t)(x,d y,zy ,t)(x,d y,zz,t)
得: dx dy xt yt
第三章 流体流动特性
了解流动特性是研究流体运动规律的第一步
本章内容:
关于流场 流体流动的速度场 粘性流体的运动形态 流体流动的分类
3.1流场及其描述方式
一、流场 由流体流动所占据的全部空间称为流场。
二、流场研究的两种方法
拉格朗日(Larange)法-跟随质点法
研究对象为流体质点。着眼于流体各质 点的运动情况,研究各质点的运动历程,通 过综合所有被研究流体质点的运动情况来获 得整个流体运动的规律。
3.4粘性流体的流动形态
水箱A注满水,利用溢水管H 保持水箱中的水位恒定。微 微打开调节阀C,水流以很小 速度沿玻璃管流出。再打开 颜色水瓶D上的小阀K,使颜 色水沿细管E流入玻璃管B中。 观察管中颜色水的流动形状。
3.4粘性流体的流动形态
粘性流体的流型对流体流动的能量损 失有很大关系。

第三章 流体的运动(幻)

第三章 流体的运动(幻)

二、 稳定流动
研究流体运动通常有两种方法: 拉格朗日法——以流体的各个质元为 研究对象,根据牛顿定律研究每个质 元的运动状态随时间的变化。
5
欧拉法——研究各个时刻在流体流经过 的空间每一个点上流体质元的运动速度 的分布。
1、 稳定流动
流体在流动过程中的任一时刻,流体所占 据的空间中的每一个点都具有一定的流速, 其函数表达式为υ(x,y,z,t)。
Sυ是单位时间内通过任一截面S的
流体体积,常称为体积流量。
所以上式又称体积流量守恒定律。
13
对于不可压缩的流体来说,不仅质 量流量守恒,体积流量也是守恒的。 体积流量又可简称为流量,用Q来表示 Q=Sυ Q —— 指单位时间内通过流管中任一截 面的流体体积,其单位为(m3·-1)。 s
四、血流速度分布
1 1 2 2 p1 1 gh P2 2 2 2
则液体从小孔处流出的速度 为:
2 2 gh
与其从高度为h处自由下落时的速度 相等。上式就称为“托里折利公式”。
33
第三节 粘性流体的流动 一、 层流和湍流
粘性——实际流体在流动过程中总 是具有内摩擦力,表现出粘滞性, 简称粘性。因而它在流动过程中需 要克服内摩擦力作功而消耗能量。 粘性流体在运动时主要具有层流、湍 流和过渡流动三种运动形态。

2 gh

30
3、体位对血压的影响
若流体在等截面管中流动,若 其流速不变,由 伯努利方程得
P gh1 P2 gh2 1
P +ρgh = 常量
结论:高处的压强较小,而低处的 压强则较大。
31
压强与高度间的关系,可用来解释体 位因素对血压的影响。
32

第三章流体流动的基本概念和方程

第三章流体流动的基本概念和方程

第三章流体流动的基本概念和方程引言:流体流动的特点1、流体的变形运动2、描述流体运动的主要物理量流体运动学研究流体的运动规律,如速度、加速度等运动参数的变化规律,而流体动力学则研究流体在外力作用下的运动规律,即流体的运动参数与所受力之间的关系l 3.1研究流体运动的两种方法连续介质模型:我们可以把流体看作为由无数个流体质点所组成的连续介质,并且无间隙地充满它所占据的空间。

描述流体运动的各物理量(如速度、加速度等)均应是空间点的坐标和时间的连续函数流场(flow field ):流体质点运动的全部空间。

流体力学中研究流体的运动有两种不同的方法,一种是拉格朗日(Lagrange )方法,另一种是欧拉(Euler )方法。

一、拉格朗日方法1、分析方法:又称随体法,是从分析流场中个别流体质点着手来研究整个流体运动的。

2、位置表示:这种研究方法,最基本的参数是流体质点的位移,在某一时刻t ,任一流体质点的位置可表为:(velocity )和加速度(acceleration )为:4、密度表示:流体的密度(density )、压强(pressure )和温度(temperature ) 写成a 、b 、t 的函数,即ρ= ρ( a , b , c , t ) , p = p ( a , b , c , t ) , t = t ( a , b , c , t)二、欧拉法1、分析方法:又称局部法,是从分析流场中每一个空间点上的流体质点的运动着手,来研究整个流体的运动的,即研究流体质点在通过某一空间点时流动参数随时间的变化规律。

2、表示:流体质点的流动是空间点坐标(x , y , z )和时间t 的函数,流体质点的三个速度分量表示为:流体质点密度表示:(3——6)式( 3 一 6 )是流体质点的运动轨迹方程,将上式对时间t 求导就可得流体质点沿运动轨的三个速度分量根据矢量分析的点积公式间的变化而产生的,即式( 3 一 8 )中等式右端的第一项tw t v t u ∂∂∂∂∂∂、、 ○2第二部分,迁移加速度( acceleration of transport ):是某一瞬时由于流体质点速度随空间点的变化而引起的,即式( 3 一 8 )中等式右端的后三项z u w y u v x u u ∂∂∂∂∂∂、、等 当地加速度和迁移加速度之和称为总加速度( total acceleration )5、流体质点的加速度的物理意义如图 3 一 1 所示,不可压缩流体流过一个中间有收缩形的变截面管道,截面 2 比截面 1 小,则截面 2 的速度就要比截面 1 的速度大。

环境工程原理第03章流体流动

环境工程原理第03章流体流动

pa

101.3
J/kg
E3 E2 所以药剂将自水槽流向管道
第一节 管道系统的衡算方程
本节思考题
(1)用圆管道输送水,流量增加1倍,若流速不变或 管径不变,则管径或流速如何变化?
(2)当布水孔板的开孔率为30%时,流过布水孔的 流速增加多少?
(3)拓展的伯努利方程表明管路中各种机械能变化 和外界能量之间的关系,试简述这种关系,并 说明该方程的适用条件。
p2d p p
p1

1
2
um2
+ gz +
p2 dp
p1

We

hf
1
2
um2
+
gz
+
p


We

hf
(3.1.16)
在流体输送过程中,流体的流态几乎都为湍流,令α=1
1
2
um2
+
gz
+
p


We

hf
1
2
um2 1
+
um

1 A
udA
A


1 2
u
2
m

1 A
A
1 u2dA 2

1 2
u2
m

1 2
um2
由于工程上常采用平均速度,为了应用方便,引入动能
校正系数α,使

1 2
u2
m

1 2

um
2
α的值与速度分布有关,可利用速度分布曲线计算得到。经证
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于具体的流体质点来说x,y,z有双重意义:一方面它代表 流场的空间坐标,另一方面它代表流体质点在空间的位移。 也就是说,空间坐标x,y,z也是流体质点位移的变量,它也 是时间t的函数
x= x (t) y= y (t) z= z (t)
——流体质点的运动轨迹方程
5
3.2 流体流动的速度场
上式对时间求导就可得流体质点沿运动轨迹的三个速度分量
(2)由流线微分方程式,
dx dy t 1 1
积分可得 x y c
(b)
t 1
在 t = 0时刻,流线通过原点 x = y = 0,可得C = 0,相应的流线方程为
x=y
(c)
这是过原点的一、三象限角平分线,与质点A的迹线在原点相切(见图)。
18
3.2 流体流动的速度场
(3)为确定t = 1时刻质点A的运动方向,需求此时刻过质点A所在位置的 流线方程。由迹线方程可确定,t =1时刻质点 A位于x =3/2,y =1位置, 代入流线方程
x,y,z值不变, 改变t,表示空间某固定点的速度随时间的变
化规律。
t不变 ,改变x,y,z,代表某一时刻,空间各点的速度分布。
3
3.1 流场及其描述方法
3. 两种方法的比较
拉格朗日法
欧拉法
表达式复杂
表达式简单
不能直接反映参数的空 直接反映参数的空间分
间分布

不适合描述流体元的运 适合描述流体元的运动
3/2 1C 11
可得C = -1/4
t = 1时刻过流体质点A所在位置的流线方程为
x = 2 y-1/2
(d)
上式是一条与流体质点 A的迹线相切于(3/2,1)点的斜直线,运动方向
为沿该直线朝 x, y值增大方向。
讨论:以上可见,不定常流动中迹线与流线不重合;不同时刻通过某固定
点的流线可以不同(见b式),通过某流体质点所在位置的流线也可以不
与各点以真实流速流动时所得到的体积流量相同。
r
V QV
VdA
A
AA
对于非圆截面管道引入湿周 、水力半径和当量直径概念
湿周χ :在总流的有效截面上,流体与固体边界接触的长度
水力半径Rh :总流的有效截面面积与湿周之比
A
Rh 当量直径Dh :4倍的水力半径
23
3.2 流体流动的速度场
t
位移时,物理量对时间的变化率
r (V
g)
迁移导数或位变导数,表示流体处于不同位置时物理量
对时间的变化率。
注:1. 迁移导数虽然是参数在空间的分布,但并不是参数对 坐标的导数,变量仍然是t, 通过中间变量x,y,z 对时间求导。
2. 与拉格朗日坐标系下质点导数的比较
9
3.2 流体流动的速度场
【例】已知用欧拉法表示的流场速度分布规律为 u x t, v y t
dx dy dz u(x, y, z, t) v(x, y, z, t) w(x, y, z, t)
13
3.2 流体流动的速度场
14
3.2 流体流动的速度场
流线的基本特性 (1) 在定常流动时,因为流场中各流体质点的速度不随时间 变化,所以通过同一点的流线形状始终保持不变,因此流线 和迹线相重合。而在非定常流动时,一般说来流线要随时间 变化,故流线和迹线不相重合。 (2) 通过某一空间点在给定瞬间只能有一条流线,一般情况 流线不能相交和分支。(驻点或奇点除外) (3) 流线不能突然折转,是一条光滑的连续曲线。 (4) 流线密集的地方,表示流场中该处的流速较大,稀疏的 地方,表示该处的流速较小。
对于在流管有效截面上流速不等的流动,其体积流量为
r
QV
VdA
A
当流速与截面A不垂直时,体积流量变为
QV
r V

nr
A
dA
V cosdA
A
式中n 是截面的外法线单位矢量
22
3.2 流体流动的速度场
平均流速:平均流速是一个假想的流速,即假定在有效截面上
各点都以相同的流速流过,这时通过该有效截面上的体积流量
同(见c和d式)。
19
3.2 流体流动的速度场
3. 流管、流束和总流
流管:在流场中任取一条不是流线的封闭曲线,通过曲线上各
点作流线,这些流线组成一个管状表面,称之为流管。
流管表面上流体的速度与流管表面平行,即流管表面法向
单位向量n 与该点的速度V相垂直。流管方程为:
nr
r V

0
流体质点不能穿过流管流入或流出。
随a、b、c的变化,得到不同流体质点参数B的变化 a、b、c=const时, 表示某个确定的流体质点的运动规律。
1
3.1 流场及其描述方法
在t时刻,某质点a,b,c 的位置可表示为:
x x(a,b,c,t) y y(a,b,c,t) z z(a,b,c,t)
该流体质点的速度场为: u x u(a, b, c, t) t v y v(a, b, c, t) t w z w(a, b, c, t) t
M0 平移速度
M 相对M0的速度
【解】
(1)直径为d 的圆管 (2)边长为a 正方形 (3)高为h的长方形
d=0.20(m)
d=0.177(m)
h=0.102(m)
χ=πd=0.628(m)
χ=4a=0.708(m)
χ=0.816(m)
Rh =A0/χ=0.05(m) Dh=4Rh=0.2(m) =d
Rh =A0/χ=0.044(m) Dh=4Rh=0.177(m)
流束:过流管横截面上各点作流线,则得到充满流管的一束 流线簇,称为流束。
有效截面:在流束中与各流线相垂直的横截面称为有效截面。
也称为过流 断面。
20
3.2 流体流动的速度场
21
3.2 流体流动的速度场
4. 流量和平均流速 流量:单位时间内通过有效截面的流体的量
体积流量 :以Qv表示。单位为m3/s 质量流量 :以Qm表示。单位为kg/s
动变形特性
变形特性
拉格朗日观点是重要的 流体力学最常用的解析 方法
分别描述有限质点的轨 同时描述所有质点的瞬

时参数
4
3.2 流体流动的速度场
速度场——任一瞬时由空间点上速度矢量构成的场, 又称速度分布。
1. 流体质点运动的速度和加速度
在直角坐标系中采用欧拉方法描述的速度函数为
r
r
r
r
V u(x, y, z,t)i v(x, y, z,t) j w(x, y, z,t)k
3.1 流场及其描述方法
流场——流体质点在流动中所占据的空间
1. 拉格朗日法
拉格朗日法又称随体法:着眼于流体质点,通过跟踪每 一个流体质点的运动过程,研究流体质点物理量随时间变化 规律,进而确定整个流场内流体质点的运动参数。
B=B (a,b,c,t)
式中a、b、c,t称为拉格朗日变量,是初始时刻对质点的标识
az

w t
u
w x
v
w y

w
w z
6
3.2 流体流动的速度场
表示成矢量形式,即
a DV V V V
3-7
Dt t
欧拉方法中,流体质点的加速度由两项构成
(a)当地加速度 V : 固定点上流体质点的速度随时间的变 t 化率,反映了流场的非定常性引起
(b) 迁移加速度V V : 流体质点运动改变了空间位置而引起
A
R 0
um
1
r2 R2

2
rdr

2
um
R 0

r

r3 R2

dr

2 um

r2 2

r4 4R2

R 0

0.5um R2
其平均速度为:
V

Q
R2
0.5um
24
3.2 流体流动的速度场
【例3-3】直径为d的圆形管道,边长为a的正方形管道和高为h, 宽为3h 的矩 形管道,具有相同的有效截面积A0=0.0314m2,分别求出这三种充满流体的 管道的湿周χ 、水力半径Rh 和当量直径Dh,并说明那种管道最省材料
Rh =A0/χ=0.038(m) Dh=4Rh=0.153(m)
圆形截面湿周最小,过流截面积最大,最省料
25
3.3 流体微团运动分析
1. 亥姆霍兹速度分解定理
在 xy 平面流场中,M0 点的速度为在x方 向上的速度为u0,则利用流体参数的连 续性用泰勒展开可以得到邻近 的M 点的 速度在 x 方向的分量u可表示为
【例】已知:粘性流体在圆管(半径R)内作定常流动。设圆截面上速度分布
呈抛物线分布
u

um
1

r R
2


其中um截面速度分布的最大速度。
求:(1)流量Q的表达式;(2)截面上平均速度V
【解】流量计算时dA = 2πrdr,抛物线分布的流量为
Q1
V ndA
求:在t = 0时刻位于点(a, b)的流体质点的运动轨迹。
【解】由流体质点的运动轨迹方程得
u dx x t dt
v dy y t dt
积分得:
x et c1
t
et
d
t

et
c1

(t
1)e t


c1et
t
1


y et c2
类似的方法可得到该流体质点的加速度场
相关文档
最新文档