捷联惯导系统

合集下载

捷联惯性导航系统的解算方法

捷联惯性导航系统的解算方法

捷联惯性导航系统的解算方法捷联惯性导航系统(Inertial Navigation System,简称INS)是一种利用陀螺仪和加速度计等惯性测量单元测量物体的加速度和角速度,然后通过对这些测量值的积分计算出物体的速度和位置的导航系统。

INS广泛应用于航空航天、无人驾驶车辆和船舶等领域,具有高精度和自主性等特点。

INS的解算方法一般分为初始对准、运动状态估计和航位推算三个主要过程。

初始对准是指在启动导航系统时,通过利用外部辅助传感器(如GPS)或静态校准等方法将惯性传感器的输出与真实姿态和位置进行初次校准。

在初始对准过程中,需要获取传感器的初始偏差和初始姿态,一般采用标定或矩阵运算等方法进行。

运动状态估计是指根据惯性传感器的测量值,使用滤波算法对物体的加速度和角速度进行实时估计。

常用的滤波算法包括卡尔曼滤波、扩展卡尔曼滤波和粒子滤波等。

其中,卡尔曼滤波是一种最优估计算法,通过对观测值和状态进行线性组合,得到对真实状态的最佳估计。

扩展卡尔曼滤波则是基于卡尔曼滤波的非线性扩展,可以应用于非线性INS系统。

粒子滤波是一种利用蒙特卡洛采样技术进行状态估计的方法,适用于非高斯分布的状态估计问题。

航位推算是指根据运动状态估计的结果,对物体的速度和位置进行推算。

INS最基本的航位推算方法是利用加速度值对速度进行积分,然后再对速度进行积分得到位置。

但是,在实际应用中,由于传感器本身存在噪声和漂移等误差,导致航位推算过程会出现积分漂移现象。

为了解决这个问题,通常采用辅助传感器(如GPS)和地图等数据对INS的输出进行校正和修正。

当前,还有一些先进的INS解算方法被提出,如基于深度学习的INS 解算方法。

这些方法利用神经网络等深度学习模型,结合原始传感器数据进行端到端的学习和预测,以实现更高精度的位置和姿态估计。

综上所述,捷联惯性导航系统的解算方法主要包括初始对准、运动状态估计和航位推算三个过程。

其中,运动状态估计过程利用滤波算法对传感器的测量值进行处理,得到物体的加速度和角速度的估计。

§3.9捷联式惯导系统介绍

§3.9捷联式惯导系统介绍

G G dωie G dr 对上式求导,假定地球旋转角速度是常矢量, = 0且 = ve ,可得 dt dt e G K dv e G G d 2r K K G = + ωie × ve + ωie × [ωie × r ] 2 dt i dt i

K G G d 2r = f +G dt 2 i
G G G G G dv e K K G = f − ωie × ve − ωie × [ωie × r ] + G dt i
b 标系 Oe X iYi Z i 的角速度 ωib ,上角标 b 表示该角速度在 b 坐标系上的投 b 进行姿态矩阵 Cbi 计算。由于姿态矩阵 Cbi 中的元素是 影。利用 ωib
OX bYb Z b 相对 OX iYi Z i 的航向角、横滚角、俯仰角的三角函数构成,
所以当求得了姿态矩阵 Cbi 的即时值,便可进行加速度计信息的坐标 变换和提取姿态角的大小。 这三项功能实际上就代替了平台式惯性导 航系统中的稳定平台的功能, 这样计算机中的这三项功能也就是所谓
哥氏校正
fb
比力测量值 的分解
fi


速度v e和 位置的估 计值
i
导航计算
Cbi
固连于载体 的陀螺
ω
b ib
速度和位置的初始估计值 姿态计算
姿态的初始估值
图 捷联式惯导系统——惯性坐标系机械编排
3、当地地理坐标系的机械编排
在这种机械编排中,地理坐标系表示的地速是 vet ,它相对于地理 坐标系的变化率可通过其在惯性坐标系下的变化率表示 G G dv e dv e G G G = − [ wie + wet ] × ve dt t dt i G G G G G G dv e dve 用 ,得 = f − ωie × ve + g1 替代 dt t dt i G G dv e G G G K = f − [2 wie + wet ] × ve + g1 dt t 表示在选定的导航坐标系(地理坐标系)中,有

捷联惯导系统算法.ppt

捷联惯导系统算法.ppt
b Eby

cos


b Ebz

注意事项:当 θ= 90 度时,方程出现奇点
姿态计算 矩阵方程精确解1
二、方向余弦矩阵微分方程及其解 C C
其中
C bE

CbE

b Eb
0

b Eb


z
z
0
y
x

y x
0
由于陀螺仪直接测得的是载体 相对惯性空间的角速度,所以:

CbE

b ib


E iE
C
E b
或四元数微分方程:
q(t)

(
b ib


b iE
)q(t)
注意事项: 1、上述两个方程中的角速度表达式不一样 2、方程第二项较小,计算时速度可以低一些
增量算法 矩阵方程精确解
一、角增量算法
角增量:陀螺仪数字脉冲输出,每个脉冲代表一个角增量
一个采样周期内,陀螺输出脉冲数对应的角增量为:

C


0
0
c os
0 0 0 sin
sin
sin

c os


cos cos
求解欧拉角速率得
1 0



0
cos
0 sin
惯性器件的误差补偿
姿态计算 欧拉角微分方程1
姿态矩阵的计算 假设数学坐标系模拟地理坐标系 飞行器姿态的描述:
航向角ψ、俯仰角θ、滚动角γ 一、欧拉微分方程
从地理坐标系到载体坐标系 的旋转顺序:
Ψ →θ →γ

捷联惯导系统原理框图

捷联惯导系统原理框图

t t
t t
θ t dt Φ t ( )dt
表征旋转的另一种形式: Φ u
q cos Φ Φ sin Φ 2Φ 2
Φ&
b nb
(t
)
1 2
Φ
ωbnb
(t
)
1 12
Φ

ωbnb
(t
))
捷联惯导系统
泰勒级数展开、曲线拟合的方法(几个采样角就为几子样算法)
0 h
常数拟合:ωnbb (tk ) a
考系则 、 和 即为一组欧拉角。
& sin cos
&
sin
& cos cos
cos
0
sin
0 1
1
nnbbbbyx
sin cos cos
0 0
cos cos sin
nnbbbbxy
0 nbbz
sin tan
1
cos
tan
nbbz
当 90o时,方程退化,故不能全姿态工作。
q q q q n b(m)
n(m) n(m1)
n b(m1)
b(m) b(m1)
毕卡求解法(角增量) 1)定时采样增量法:采样时间间隔相同; 2)定量采样增量法:角增量达到一固定值时才更新;
Θ
Q(tk1) (I 2 )Q(tk )
捷联惯导系统 2.3.3 四元数初值的确定与归一化
q1
q2
T13 T23 T33
真值表判断
sin1(T32 )

tan 1 (
T31 T33
)

tan 1 ( T12 T22
)
捷联惯导系统

激光捷联惯导系统的一种系统级标定方法

激光捷联惯导系统的一种系统级标定方法

激光捷联惯导系统的一种系统级标定方法我折腾了好久激光捷联惯导系统的一种系统级标定方法,总算找到点门道。

说实话,刚开始的时候我真是瞎摸索。

我知道要对激光捷联惯导系统进行标定,这就好比给一个特别精密的仪器画像,要把它的各种特性都搞清楚。

最开始我以为只要按照一些传统的机械系统标定方法就行,结果那完全是个错误的方向,就像你想给猫喂狗粮一样,根本不对路。

我尝试的第一种方法是简单地从单个传感器开始标定。

我就想着,先把这个基石打稳,后面就好弄了。

我仔细研究每个传感器的参数,什么陀螺的零偏之类的。

但是后来我发现,光是单个传感器标定得再准,组合起来的时候却还是有偏差。

就好比你组装一个拼图,每块单独看都没问题,但是拼到一起就不对劲了。

后来我就意识到得从系统整体出发。

我在这个过程中啊,最头疼的就是怎么保证在整个标定过程中外界干扰最小。

这感觉就像是你在狂风里要拿着一根针准确无误地穿过线孔一样困难。

我试过在各种不同的环境下进行,在封闭性稍微好一点的小房间里,干扰稍微小一点,但是我又不确定这是不是最佳的。

而且每次做实验条件很难完全复制,今天的温度和明天的可能就有点差异,这也会影响结果。

我之前还犯过一个错误,就是没有充分考虑到传感器之间的耦合效应。

在标定的时候忽视了这个,得到的数据就忽上忽下,像坐过山车一样不稳定。

后来再次进行的时候,我就像照顾一群小动物一样,得同时兼顾各个传感器之间的联系。

确定最后的标定方法时,我先从整体的动态模型入手。

就像是先知道这个系统是怎么运转的一个大框架,是一个火车头拉着好几节车厢走,哪一节脱轨或者脱节了都不行。

模拟不同的运动状态,就像让火车慢慢走,快快走,走走停停一样,记录下系统的响应。

然后再根据这些记录的数据去调整标定的参数,这个过程就像是给这个系统这个大机器拧螺丝一样,松一点、紧一点都要恰到好处。

再就是数据处理这一块,得把那些干扰数据和有效数据分开。

我就用过一些简单的滤波方法,比如说均值滤波,就想象是给一锅食材去掉那些不合格的杂质一样。

捷联惯导系统

捷联惯导系统

作业思考题
1、简要说明捷联惯导系统的基本组成和原理。 2、什么是数学平台?它有什么作用?
惯性导航系统
第四十四讲 捷联惯导系统 力学编排方程(一)
捷联式惯导系统(SINS)
加速度计
fb
数学平台
姿态矩阵 Cbp
f p 导航 速度、位置
计算机 姿态、航向
姿态矩阵计算
陀螺
ibb
pbb
b ip
姿态航向
-
C11 C21 C31
Cep 1 Cep T
C12 C13 1 C11 C21
C22
C23
C12
C22
C32 C33 C13 C23
C11 C22C33 C23C32 C21 C13C32 C12C33 C31 C12C23 C22C13
C31
C32
C33
位置矩阵微分方程组
Cep 0 f 0,0,0
1
p p epx epy
g g egx egy
R VeggxVeggy
VeppxVeppy
三、位置速率方程
11
p p epx epy
g g egx egy
RN RE
捷联惯导的发展
1、1950年起,德雷珀实验室捷联系统得到成熟的探索; 2、1969年,在“阿波罗-13”宇宙飞船,备份捷联惯导系统; 3、20世纪80~90年代,波音757/767、A310民机以及F-20战 斗机上使用激光陀螺惯导系统,精度达到1.85km/h的量级; 4、20世纪90年代,美国军用捷联式惯导系统已占有90% 。光 纤陀螺的捷联航姿系统已用于战斗机的机载武器系统中及波 音777飞机上。 5、国内由90年代挠性捷联惯导到现在激光捷联惯导、光纤陀 螺捷联航姿系统。

捷联惯性导航原理

捷联惯性导航原理

捷联惯性导航原理捷联惯性导航(Inertial Navigation System,简称INS)是一种基于捷联惯性测量单元(Inertial Measurement Unit,IMU)的导航系统。

该系统通过测量物体在空间中的加速度和角速度,进而推导出它的位置、速度和航向等导航信息。

捷联惯性导航系统由三个主要组件组成:加速度计、陀螺仪和计算机。

加速度计用于测量物体的加速度,陀螺仪用于测量物体的角速度,而计算机则用于整合和处理这些测量数据。

加速度计和陀螺仪通常被组合在一起形成IMU,IMU被安装在导航系统的载体上。

加速度计是用来测量物体的线性加速度的设备。

它的作用类似于测力仪,通过测量物体所受的力,可以计算出物体的加速度。

加速度计一般使用压电传感器或气泡级感应器来测量物体的加速度。

陀螺仪则是用来测量物体的角速度的设备。

它的原理基于陀螺效应,通过测量物体围绕轴线旋转的角速度来推导物体的旋转状态。

陀螺仪分为一体式陀螺仪和光纤陀螺仪两种类型,一体式陀螺仪主要使用电子仪器的原理,而光纤陀螺仪则使用光学原理。

在捷联惯性导航系统中,加速度计和陀螺仪的输出数据会被输入到计算机中进行处理。

计算机通过积分和滤波等算法,对加速度和角速度进行处理,推导出物体的位置和速度等导航信息。

计算机还会结合其他传感器如GPS等,以提高导航系统的精度和稳定性。

然而,捷联惯性导航也存在一些局限性。

首先,由于加速度计和陀螺仪的精度和稳定性有限,导致导航系统随着时间的推移会产生累积误差。

其次,在长时间的运动过程中,加速度计和陀螺仪可能受到震动、振动和温度变化等外界因素的影响,进而导致导航系统的精度下降。

为了解决这些问题,通常将捷联惯性导航系统与其他导航系统如GPS进行组合导航。

通过将两种导航系统的输出数据进行融合,可以克服各自的缺点,提高导航系统的精度和鲁棒性。

总结起来,捷联惯性导航是一种基于物体惯性特性的导航系统,通过测量物体的加速度和角速度,推导出物体的位置、速度和航向等导航信息。

LH20光纤陀螺惯导系统使用说明书

LH20光纤陀螺惯导系统使用说明书

帧头
X 轴角速度数字量 Y 轴角速度数字量 Z 轴角速度数字量 X 轴加速度数字量 Y 轴加速度数字量 Z 轴加速度数字量
经度×106 纬度×106 高度×102 东向速度×102 北向速度×102 天向速度×102 俯仰角×102 横滚角×102 航向角×102 温度数字量 帧计数器 校验和(第 3-54 字节累加)
文件编号: 密 级: 阶段标记: 总 页 数:
LH20.QW12 非密 S 6
LH20 光纤陀螺捷联惯导系统 使用说明书
编写 校对 审核 批准
青岛智腾微电子有限公司
青岛智腾微电子有限公司 一、 简介
LH20 光纤陀螺捷联惯导系统是针对战术级应用背景研制的惯性导航产品,可满足载体全 天候全自主三轴姿态、速度及位置测量需求,具备自对准/传递对准、短期惯导及组合导航功 能。LH20 由三个全固态光纤陀螺、三个石英挠性加速度计、信号处理电路、系统结构件和相 关软件等组成,并预留接口可与 GPS/BD 等进行组合,导航结果通过 RS232/422 串行总线输 出。LH20 具有体积小、重量轻、快响应、全固态、高可靠性、寿命长、环境适应性强和抗干 扰能力强等优点。
2、维护、保养
使用过程中应指定专人负责系统的日常维护。 系统的输入电源为+28V 电源,不容许任何人进行改动。 使用及维护过程中不得改变光路、电路中电器元件的型号、规格及参数,出现故障请
与研制单位联系。 安装一定要牢固,不得脱落。 系统的运输应符合水路、陆路运输及装载的要求,避免碰撞、水淋和腐蚀。 系统安装后,可在温度-55℃ ~ +65℃,干燥无腐蚀性物质的环境中存放两年。长期存
3.2 姿态保持精度 ➢ 1h 纯惯性状态: 水平姿态(俯仰、横滚)保持精度(1σ):≤0. 1º;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
捷联惯导系统
捷联惯导系统原理框图
捷联惯导系统
• • • • 姿态更新算法 速度更新算法 位置更新算法 系统误差方程
捷联惯导系统
2. 姿态更新算法(核心)
基本思想:刚体的定点转动 2.1 欧拉角法(三参数法)
( - )
b nb b ib b in
Cbn
一个动坐标系相对参考坐标系的方位,可以完全由动坐标系一次绕三 个不同的轴的三个角度来确定。把载坐标系作动坐标系,导航系为参 和 即为一组欧拉角。 考系则 、
2.4 几种姿态算法的比较
欧拉角法:概念直观;只适应水平姿态角变化不大的情况,不能全姿态 解算。 方向余弦法:可全姿态工作;但计算量大,不实用。 四元数法:算法简单,计算量小;存在不可交换误差,适应于低动态运 载体。(等效旋转矢量的单子样) 等效旋转矢量法:可对不可交换性误差进行补偿,算法简单,适应于高 动态环境。
Vrotm 旋转效应:rotation 载体线运动在空间的旋转,角速度与线速度不共线; Vsculm 划桨效应:scull 绕一轴做线振动同时绕另一轴做同频角振动; (根本原因:更新周期内姿态角的变化引起) n Vg /corm 有害加速度:g/Coriolis
捷联惯导系统
2. 位置更新算法
-Q cos

2
u sin

cos( ) u sin( ) cos 2 2 2


2 2 u sin 2 2
表征旋转的四元数应该是规范四元数; Q 1 计算误差,失去规范性,需归一化处理;
qi ˆi q
2 2 2 ˆ0 ˆ12 q ˆ2 ˆ3 q q q
姿态误差方程:
n n n b in in Cb ([ KG ] [ G])ωib εn
N N’
E in U
U

N in U
E’ E
捷联惯导系统
捷联惯导系统误差方程
n n f n C n ([ K ] [ A]) f b V n (2ωn ωn ) 速度误差方程: V b A ie en
Θ
2
Q (tk 1 ) ( I
)Q ( t k )
捷联惯导系统
2.3.3 四元数初值的确定与归一化
q1 q2 q3 q0 1 2 1 2 1 2 1 2 1 T11 T22 T33 1 T11 T22 T33 1 T11 T22 T33 1 T11 T22 T33
数字递推形式:
n (l ) n(l 1) Cen(l ) Cn C (l 1) e
n n n (l ) en F (t )V n (t ) l en dt F R n C n ( l 1)
sin C en sin L cos cos L cos
θ
t t
t
dt Φ
t t
t
( )dt
q cos Φ 2 Φ Φ sin Φ 2
表征旋转的另一种形式:
Φ u
b (t ) 1 Φ ωb (t ) 1 Φ (Φ ωb (t )) Φ nb nb nb 2 12
捷联惯导系统
捷联惯导中的姿态更新实质上是如何计算四元数。
捷联惯导系统
2.3.2 四元数微分方程
n b q
1 n b qb ωnb 2
n n ( m) n b ( m) qb ( m) qn ( m1) qb ( m1) qb ( m 1)
毕卡求解法(角增量) 1)定时采样增量法:采样时间间隔相同; 2)定量采样增量法:角增量达到一固定值时才更新;
b nb x b 0 nby b 1 cos tan nb z 0
cos cos sin
当 90 时,方程退化,故不能全姿态工作。
捷联惯导系统
2.2 方向余弦法(九参数法)
n C n ωbk C b b nb
MATLAB仿真
1、轨迹生成仿真 2、惯导器件输出信息的仿真 3、捷联惯导解算仿真 4、基本函数
, v ] [
[ (t ), a (t )]
t
[ , v ]
,v , pos ] [att
捷联解算
航迹仿真
加误差
[att , v, pos ]
MATLAB仿真
1、轨迹生成仿真
sin cos sin cos cos cos 0 sin 0 1 0
1

b nbx b nby b nbz

sin cos cos sin tan
目的:航迹仿真的目的是生成惯性器件信息源(比力和角速度) ,并给出
相应航迹点的航行参数(姿态、速度和位置) 1)航行轨迹微分方程 姿态角微分方程:
ω(t )
cos ω(t ) 0 sin sin cos b 1 sin ω nb (t ) 0 cos cos 0
L arcsin P33
0 sin L sin cos L cos L sin sin L
主 arctg
P32 P31
cos
捷联惯导系统
4. 捷联惯导系统误差方差
捷联惯导系统误差源 • 惯性仪表的安装误差和刻度因子误差 b b • 陀螺漂移 ε 和加速度计零位 • 初始条件误差 • 计算误差
0 [ G ] Gz Gy
Gz
0 Gx
Gy Gx 0
K x [ K ] 0 0
0
Ky
0
0 0 Kz
捷联惯导系统
捷联惯导系统误差方程
b b b n n ib in ωnb ω Cn Cnω
b 直线拟合:ωnb (t k ) a 2b 3c 2 抛物线拟合:
b 2 3 ω ( t ) a 2 b 3 c 4 d nb k 三次抛物线:
Φ (h) θ1 θ2 θ3 θ4
T11 T21 T31 C bn T T T 12 22 32 T13 T23 T33
1 sin (T32 ) T31 1 tan ( ) 主 T 33 1 T 主 tan ( 12 ) T22
4q1 q 0 T32 T23 4q 2 q 0 T13 T31 4 q q T T 21 12 3 0
sign(q1 ) sign(q 0 )[sign(T32 T23 )] sign(q 2 ) sign(q 0 )[sign(T13 T31 )] sign(q ) sign(q )[sign(T T )] 3 0 21 12
矢量的方向余弦表示姿态矩阵的方法; 可全姿态工作,但需要解含有九个未知量的线性方程组,计算量大, 工程上不实用。
捷联惯导系统
2.3 四元数法(四参数法)
2.3.1 四元数基本概念 四元数是由一个实数单位1和一个虚数单位i、j、k组成的含有四个 元的数。(超复数) Q q0 , q1, q2 , q3 q0 q1i q2 j q3k 四元数的大小——范数
2 2 2 Q q0 q12 q2 q3
四元数表达方式 三角式
Q cos

2
u sin

2
基本运算
捷联惯导系统
动坐标系相对于参考坐标系的转动,等效于动坐标系绕某一个等效转 轴转动一个角度(θ,u)
四元数描述转动:
2 2 四元数是刚体转动的一种描述形式。 结论: • 四元数可以描述刚体的定点转动,Q包含了等 效旋转的全部信息; • 四元数与姿态矩阵的关系; • 描述刚体转动的四元数是规范化四元数;
n n V n (2 ωie ωen ) n
位置误差方程: L
VN
RM h
VE
RN h
h
VN ( RM h) 2
VE V sec L tan L sec L h E RN h ( RN h) 2

sec L L
V h U
捷联惯导系统
2.3.4 从姿态矩阵中提取姿态角 θ∈﹙-90,90﹚度 γ∈﹙-180,180﹚度 Ψ∈﹙-180,180﹚度 或 Ψ∈﹙0,360﹚度
cos cos sin sin sin Cbn cos sin sin cos sin sin cos sin cos cos cos sin sin cos cos sin sin sin sin cos cos sin cos cos
2 2 2 q0 q12 q2 q3 CbR 2(q1q2 q0 q3 ) 2(q1q3 q0 q2 )
Q cos

u sin

2(q1q2 q0 q3 )
2 2 q0 q12 q22 q3
2(q2 q3 q0 q1 )
2(q1q3 q0 q2 ) 2(q2 q3 q0 q1 ) 2 2 q0 q12 q2 q32
Φ(h) θ1 θ2
2 Φ (h) θ1 θ2 θ1 θ2 3
• 算法思路不同; 等效旋转矢量法思路:
n n ( m) n b ( m) qb ( m) qn ( m1) qb ( m1) qb ( m 1)
相关文档
最新文档