混凝土重力坝.
混凝土重力坝工程施工方案

混凝土重力坝工程施工方案一、工程概况混凝土重力坝是一种采用混凝土建造的重力式水坝。
它主要依靠自身重量和抗倾覆能力来抵抗水压力和外力作用,具有结构稳定、造价低等优点。
本工程为一座混凝土重力坝,位于XXXX大坝建设项目中,主要承担水库的蓄水和防洪功能。
本施工方案旨在对混凝土重力坝的建造过程进行全面规划和安排,确保工程质量、进度和安全。
二、工程内容本工程包括以下几个主要方面的施工内容:1. 土地平整及基础处理:根据设计要求,对坝址区域进行地面整平,清理遗留物,准备基础工作。
2. 坝基础开挖:开挖混凝土重力坝的坝基,按照设计要求进行挖掘,确保基础结构的承载能力和稳定性。
3. 地基处理:根据地质勘察报告要求进行地基处理,包括加固处理、填筑处理等。
4. 混凝土浇筑:按照设计要求,对混凝土重力坝的主体进行浇筑施工。
5. 防渗处理:对混凝土重力坝本体和坝基进行防渗处理,确保水库的密封性和防渗效果。
6. 辅助设施建设:包括护坡、排水系统、坝顶护栏等辅助设施的建设。
7. 安全设施建设:包括监测设备、报警设备等安全设施的建设。
三、施工组织1. 组织结构:本工程将设立项目经理部、施工部、质量部、安全部、技术部等部门,负责分工协作、监督管理和技术保障。
2. 人员配置:将安排项目经理、总工程师、施工员、监理工程师、施工队长等人员参与本工程的施工和管理。
3. 设备配置:将配置混凝土搅拌站、起重机、挖掘机、压路机、打桩机等设备,在保障施工质量和进度的同时,最大程度保障工人安全。
四、施工工艺1. 土地平整及基础处理:进行坝址区域的场地清理和地面整平工作,清除障碍物,确保施工场地清洁整齐。
2. 坝基础开挖:按设计要求进行开挖工作,确保坝基础的稳定和承载能力。
3. 地基处理:根据地质勘察报告,进行地基处理工作,包括地基加固、填筑等,确保地基的承载能力和稳定性。
4. 混凝土浇筑:依据设计要求进行混凝土浇筑,确保混凝土重力坝的主体结构质量和稳定性。
水工建筑课程课程设计-混凝土重力坝设计

设计防浪墙顶高程H设=70.8+3.25=74.05m,校核防浪墙顶高程H校=72.1+1.90=74m。
防浪墙顶高程取以上两者中的最大值,故四舍五入取大值,将防浪墙顶高程取为74.10m,完全符合“高出静水位最小超高1m”的要求。在现场条件允许的情况下,为了安全起见,本坝的坝基考虑下到微风化层顶部,故本坝的最大坝高为50.1m。
微风化岩顶面:150—160Mpa
3、坝体混凝土与岩基的摩擦系数
坝体混凝土与弱风化岩的抗剪断摩擦系数:0.85;抗剪断粘聚力1.0Mpa。
坝体混凝土与微风化岩的抗剪断摩擦系数:1.05;抗剪断粘聚力1.3Mpa。
二、水库特征
表1水库特征值
正常高水位
死水位
淤积高程
总库容
正常设计吹程
校核水位吹程
70.0m
为防止波浪漫过坝顶,防浪墙顶在各种水位以上还应有相应的超高
1、安全超高:
Δh正=hl+hz+hc(m)
式中:
hL——波浪高度,坝顶部上游面多为竖直方向,垂直方向传来的波浪在此坝面产生的驻波,浪顶高出波浪中心线的高度是其余波浪的两倍。
hz——波浪中心线至静水位的高度。
hc——安全加高,参照《水工建筑物》坝顶安全加高选取表,选坝的设计安全加高为0.5m,校核安全加高为0.4m。
47.0m
42.0m
9.21×108m3
4km
4.5km
表2各种频率下的水位和流量
频率(%)
5
1
0.1
0.05
上游水位(m)
70.0
70.8
72.1
72.8
下游水位(m)
35.0
浅议混疑土重力坝施工难点及应对策略

浅议混疑土重力坝施工难点及应对策略重力坝是大型水利坝体中重要的组成部分,在我国修建的大型坝体中占有较大的比重。
這种坝体形式主要是依靠自身的重力,抵抗来自于水压以及相关压力,保证坝体的稳定,结构相对简单,能够满足防洪、发电等水利工程需求。
现阶段,我国水利工程正处于快速发展的新阶段,加强对混凝土重力坝施工技术的研究具有十分现实的意义。
1.混凝土重力坝的优缺点分析混凝土重力坝具有以下几个方面的优势:(1)具有很强的稳定性,重力坝在抗地震、防洪、抗渗漏等方面具有很强的能力,所以能够保证水利工程整体的安全性;(2)重力坝施工技术、施工设计相对简答,并且能够适用于机械化施工;(3)重力坝能够适用于各种地质条件以及地形,在各种形状的河谷中都适合修建重力坝;(4)在重力坝坝体中,可以设置泄水孔口、引水孔口等,有效的解决了施工导流、泄洪、发电等问题。
同样重力坝也存在以下几个方面的缺点:(1)重力坝坝体的应力较弱,不能充分发挥材料的强度;(2)重力坝坝体整体体积较大,在施工中会消耗大量的水泥等原材料;(3)混凝土重力坝施工期间,存在较大的收缩应力以及温度应力,对施工温度的控制要求较高。
2.混凝土重力坝施工技术要点在混凝土重力坝工程施工过程中,施工技术要点主要体现在施工前准备、钢筋与模板工程、混凝土工程中,具体体现在以下几个方面:2.1 施工前的准备工作在工程施工前,需要根据工程具体的施工特点、施工企业设备基础等,做好施工导流、基础面的处理、施工缝处理、选择科学的模板、钢筋及预埋件安设等。
施工导流:分为分段与全段围堰法导流,要根据不同时期、现场实际条件选择不同的施工导流方式。
分段围堰法导流采用得较多,包括束窄河床导流(适用于分期导流的前期阶段)和通过建筑物导流(适用于分期导流的后期阶段)。
全段围堰法导流适用于枯水期流量不大,河道狭窄的河流,分为明渠导流、隧洞导流和涵管导流。
明渠导流一般适用于岸坡平缓或一岸具有较宽的台地、垭口或古河道的地形;隧洞导流适用于河谷狭窄、两岸地形陡峻、山岩坚实的山区河流;涵管导流适用于导流流量较小的河流或只用来担负枯水期的导流,大面积表面为直立面坝体适宜采用悬臂大块模板以及钢模板;结构较为复杂的表面,适宜采用木制模板;施工接缝接触面适宜采用灌浆盒以及键槽模板。
重力坝构造的原理

重力坝构造的原理
重力坝是一种建筑结构,基于重力原理而设计。
其基本原理是利用坝体自身的重量来抵抗水压力,从而稳定地阻挡水流。
重力坝由大块的混凝土或石块构成,通常呈三角形或梯形的形状。
坝底较宽,逐渐向上收缩,顶部较窄。
坝体底部通常加入泄洪孔和泄水闸门,用于控制水位和洪水排放。
重力坝的工作原理可以描述如下:
1. 自重作用:重力坝由厚重的混凝土或石块构成,这些材料本身具有较大的质量和重量。
这些重物通过自身的重力效应使坝体保持稳定,防止水流对坝体施加的上游和下游水压力使其倒塌。
2. 反力作用:坝体以基础为支撑点,通过受到的水压力产生的反力来保持平衡。
水流对坝体施加的压力将被坝体的自重通过基础传递到地面上,地面上的地基承受这部分压力,从而保持稳定。
3. 水密性:重力坝的斜面通常非常陡峭,这种设计可以减小水压力对坝体的影响,因为坝体与水的接触面积较小。
同时,重力坝通常使用层叠的混凝土构建,以增加整体结构的密封性,减少水渗透。
重力坝是一种简单且可靠的建筑结构,适用于中小型水库和河流的水电站。
然而,它也有一些局限性,如对基础地质条件的要求较高,施工成本较高等。
碾压混凝土重力坝经验交流

二、碾压混凝土坝设计
2.1 坝体设计与快速施工 设计应尽量考虑碾压混凝土“通仓薄层快速施工”的技术特点,合理安排 枢纽其他建筑物的布置,主要从以下几方面考虑: (1)挡水坝段与泄水建筑物、发电建筑物尽可能分开布置; (2)坝体碾压混凝土部位应相对集中; (3)尽可能减少坝内空洞,简化坝体结构;
碾压混凝土坝下游坡的楼梯以往一般采用现浇,对碾压混凝土整体上 升影响很大,而坝后楼梯又非主要建筑物,可以采用在坝体施工完成后, 再在下游坡安装不锈钢坝后楼梯,既不影响其使用功能,又可以大大加快 坝体施工速度。
(7)廊道现浇
现浇廊道可以减少施工干扰,提高坝体浇筑速度,另一方面,采用预 制廊道,一旦发现廊道内有渗漏水现象,不易准确找到渗漏点的位置,对 渗漏处理带来难度。
三、碾压混凝土坝快速施工技术
3.2 最快捷的运输方案
碾压混凝土入仓运输历来是制约快速施工的关键因素之一。大量工程实践 表明,在比较了汽车入仓、皮带机运输、负压溜槽、集料斗周转、缆机运 输、塔机运输等运输方法后,发现汽车运输是快速施工最有效的方式,可 以极大的减少中间环节,减少混凝土温升。
目前,碾压混凝土坝的高度越来越高,对于狭窄河谷,上坝道路高差很大, 布置施工道路确有困难,汽车无法直接入仓,碾压混凝土中间环节垂直运 输可以采用满管溜槽进行,即采用仓外汽车+满管溜槽+仓面汽车运输。
二、碾压混凝土坝设计
2.3 碾压混凝土配合比设计
传统的施工组织设计多采用类比法确定控制性进度,这种粗线条的勾勒难 以全面考虑水文气象的随机性、运输系统的不确定性等因素的影响,且编 制施工方案计算工程量大,精度低,设计效率较低,难以进行多方案的比 选。
施工三维动态可视化仿真技术可模拟复杂的施工过程,具有科学、高 效、经济、可靠、安全、灵活和可重复的优点,使施工参数的分析、选择 从凭施工经验和类比分析进入到施工过程仿真试验、施工方案优化等科学 领域,实现高混凝土坝施工组织设计的数字化、可视化、智能化,可为建 设管理人员提供实时、科学的施工指导,提高建设管理水平。
重力坝知识点总结

重力坝知识点总结一、重力坝的分类根据不同的特点和用途,重力坝可以分为多种不同的类型。
常见的重力坝类型包括:1. 混凝土重力坝:这是最常见的重力坝类型,由混凝土块构成,能够承受水压力并抵抗地震力。
混凝土重力坝通常用于大型水利工程中,如水电站和灌溉工程。
2. 石块重力坝:这种重力坝由大块石头或石块构成,通过石块之间的摩擦力和重力来抵抗水压力。
石块重力坝通常用于较小规模的水利工程和防洪工程中。
3. 土坝:土坝是一种以土壤和岩石为主要材料构成的重力坝,具有一定的柔性和可塑性,能够适应地基变形和水压力的影响。
土坝常用于较低的水位和较小规模的水利工程中。
二、重力坝的结构特点1. 基础结构:重力坝的基础结构通常由混凝土块或大块石头构成,能够承受来自坝体的重力和水压力。
合理的基础结构设计是重力坝安全稳定运行的基础。
2. 坝体结构:重力坝的坝体由混凝土或石块构成,以抵御水压力和抗震力。
坝体结构的设计和施工质量对重力坝的安全运行至关重要。
3. 泄洪设施:重力坝通常需要配备泄洪设施,用于调节坝体和下游水位,保护坝体和下游地区免受洪水侵袭。
4. 式样结构:重力坝的式样结构包括坝头、坝身和坝尾三个部分,其中坝头通常设有溢流坝段,坝身是坝的主体部分,坝尾则通常设有泄洪设施。
5. 加强结构:为了提高重力坝的安全性和稳定性,通常需要在坝体和基础结构中设置加强措施,如锚杆、钢筋混凝土板等。
三、重力坝的设计原则1. 安全性原则:重力坝的设计必须以安全为首要考虑,保证其在水压力和地震力的作用下不发生破坏和滑坡。
2. 稳定性原则:重力坝的设计必须保证其稳定性,不受地基沉降和水压力的影响,能够长期安全运行。
3. 经济性原则:重力坝的设计必须兼顾成本和效益,尽可能降低建设和维护成本,提高水资源的综合利用效益。
4. 耐久性原则:重力坝的设计必须考虑其耐久性,能够在长期使用和恶劣环境的情况下保持良好的结构性能。
5. 灵活性原则:重力坝的设计必须具有一定的灵活性,能够适应地基变形和水位变化的影响,保证其安全稳定运行。
混凝土重力坝施工技术

混凝土重力坝施工技术摘要:混凝土重力坝的施工是水利工程建设中的一项重要工程。
目前,仍有在我国混凝土重力坝施工仍存在的许多问题。
本文从混凝土重力坝特点和混凝土重力坝的施工现状出发,分析了混凝土重力坝施工的关键内容和相关参数,并结合目前混凝土重力坝设计实例,最后提出了一些具体的重力坝施工思路,希望能对同行有所帮助。
关键词:混凝土重力坝;施工技术;应用前言目前,世界上各个国家修筑在宽阔河谷上的大坝,大多数都是采用的碾压混凝土重力坝设计,混凝土重力坝的轴线大多是直线,断面的型式一般也比较简单,这样就便于大坝机械化的快速施工,减少施工时间上的损耗。
另外,混凝重力坝的所需量比较大,所以在施工中需要严格控制施工温度,同时,混凝土重力坝的坝顶在特殊时期可以溢流和泄洪,坝体中也能够布置用来泄流的孔洞。
1 混凝土重力坝的建设现状仔细分析目前已经建成并投入使用的混凝土重力坝,大坝的上游面只要是在修筑时布置了能够有效防止大坝渗水的装置,重力坝在投入使用后混凝土一般都是干燥的。
鉴于此,凡是已经配置了有效的防渗结构的坝体的混凝土,就不需要再继续承担大坝防渗的功能。
所以,混凝土重力坝筑坝技术的革命可以由此着笔。
目前,国内外新修筑的混凝土重力坝,大多采用碾压混凝土技术来浇筑,碾压混凝土筑坝技术的气候适应性较强,在国内外的高温和低温地区都已有建筑,从材料以及施工技术上讲碾压混凝土筑坝技术都是混凝土筑坝技术的改革。
2 混凝土重力坝施工技术要点2.1钢筋模板工程图 1 某混凝土重力坝受力分析图在模板安装过程中,需要做好临时固定设施的设置工作,避免模板出现倾覆、变形等现象,以满足模板工程对刚度、强度等方面的具体要求。
在安装前,需要将表面的杂物清理干净,并矫正发生变形的模板,采用脱模剂保证模板表面的光滑与整洁;如果采用的模板为钢模板,需要在其表面涂抹一定的防锈涂料,但必须保证油料对混凝土不会造成污染,不能影响钢筋、混凝土整体的质量;如果采用木质模板,需要在其表面涂抹石蜡等涂料,并按照一定的分类标准进行编号保存。
混凝土重力坝设计

XXXXXX继续教育学院毕业论文题目 XXX水库混凝土重力坝枢纽设计专业水工层次专升本姓名学号前言关键词:重力坝剖面稳定应力细部构造地基处理本次设计内容为河南南潘家口水利枢纽,坝型选择为混凝土重力坝,坝轴线选择和枢纽布置见1号图SG-01潘家口水库平面图所示。
整座重力坝共分53个坝段,主要有非溢流挡水坝段、溢流表孔坝段、溢流底孔坝段和电站厂房坝段。
其中非溢流挡水坝段每坝段宽15米,分布于大坝两端;厂房坝段每段宽16米,布置在靠近右岸的主河床上,装机3台机组;底孔坝段每段宽22米,布置在厂房坝段左侧的主河床上;溢流坝段每段宽18米,布置在滦河主河床上。
详见1号图SG-02下游立视图。
挡水坝段最大断面的底面高程为128米,坝顶高程为228米,防浪墙高1.2米,最大坝高为101.2m,属高坝类型。
坝顶宽12米,最优断面的上游坝坡坡率为1:0.2,上游折坡点高程为181米,下游坝坡坡率为1:0.7,下游折坡点高程688.98英尺,详细情况参见1号图SG-03挡水坝剖面图。
溢流坝段最大断面的底面高程为126米,堰顶高程210米,溢流堰采用WES曲线设计,直线段坡率为1:0.7,反弧段半径取25.0米,鼻坎高程取159米,上游坝坡坡率取1:0.2,折坡点高程为181米,上游坝面与WES曲面用1/4椭圆相连,详细情况见1号图SG-02溢流堰标准横断面图所示。
本枢纽溢流堰采用挑流方式消能,挑角取250。
止水采用两道紫铜中间加沥青井的形式。
坝基防渗处理(主要依据上堵下排的原则),上游帷幕灌浆(两道),下游侧设置排水管。
以非溢流挡水坝段为计算选择断面,进行了抗滑稳定分析和应力分析,分别采用抗剪断计算法和材料力学法计算法进行计算,最终验算满足抗滑稳定,上游坝踵没有出现拉应力,设计剖面合理可行。
本次设计只是部分结构物设计,考虑问题较单一,采用基础资料一般以书本为主,跟实际情况难免有出入,敬请读者批评指正。
编者2008.9目录第一部分设计说明书第一章潘家口混凝土重力坝枢纽基本资料 (2)一、枢纽概况及工程目的 (2)二、设计基本资料(参见附录一)………………………………………………………………………2附录一 (3)附录二水市库规划及建筑特性指标 (12)第二章坝轴线、坝型选择和枢纽布置方案比较.............................................14第一节、坝轴线选择 (14)第二节、坝型选择 (17)第三节、枢纽布置方案 (20)第三章坝工设计 (26)第一节、挡水坝剖面设计 (26)第二节、挡水坝剖面设计 (28)第三节、溢流坝剖面拟定 (33)第四节、挡水坝稳定计算 (43)第四章细部构造设计 (56)第一节、坝顶构造 (56)第二节、分缝止水 (56)第三节、混凝土标号分区 (58)第四节、排水 (60)第五节、廊道系统 (61)第五章地基处理 (63)第一节、清基开挖 (63)第二节、防渗措施 (64)第三节、断层破碎带的处理 (66)第四节、软弱夹层处理 (67)第二部分计算书表 1 设计水位作用情况设计值计算表 (69)表2 荷载计算表(设计水位情况) (70)表3校核水位作用情况设计值计算表 (71)表4 荷载计算表(校核洪水位情况) (72)第一部分设计说明书第一章潘家口混凝土重力坝枢纽基本资料一、枢纽概况及工程目的:潘家口水库位于河北省唐山市和承德市两地区交界处,坝址位于迁西县洒河桥上游十公里扬查子村的栾河干流上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节
概述
一、基本认识 二、重力坝的工作原理及特点 三、重力坝的类型 四、重力坝的设计内容
一、基本认识
• 公元前2900年,古埃及在尼罗河上修建了 一座高15m,顶长240m挡水坝 • 我国在2000多年前于广西的灵渠修建了一 座高5m的砌石溢流坝 • 据统计,我国在1949-1985年间已建的坝高 30m以上的113座坝中,重力坝达58座,占 总数的51%
2)缺点: 坝体剖面尺寸大,材料用量多; 坝体应力低,材料强度不能充分发挥; 扬压力分大,对坝体稳定不利; 大体积混凝土施工,需有严格的温控措施。
三、重力坝的类型
1.按坝高来分:高坝:大于70m 中坝:30m—70 碾压混凝土重力坝 3.按泄水条件: 溢流重力坝 非溢流重力坝
4.按坝的内部结构分:实体重力坝 宽缝重力坝 空腹重力坝
5. 按坝轴线型式分: 直线型重力坝 折线型重力坝 拱型重力坝
四、重力坝的设计内容
1.剖面设计 2.稳定分析 3.应力分析 4.构造设计 5.地基处理 6.溢流重力坝和泄水孔的孔口设计 7.监理设计
三峡枢纽工程
2006年5月,全长2309米 的三峡大坝全线建成,全 线浇筑达到设计高程海拔 185米,最大坝高181米, 坝顶宽度15米,底部宽度 为124米,从右岸非溢流 坝段起点至左岸非溢流坝 段终点,大坝轴线全长 2309米,是世界上规模 最大的混凝土重力坝。
二、 重力坝的工作原理及特点
1、工作原理
(1)依靠坝体自重产生的抗滑力来抵抗水压而 维持稳定; ( 2)依靠坝体自重产生的压应力来抵消由水压力 产生的拉应力以满足强度要求。
2、工作特点 1)优点: 结构作用明确,设计方法简便,安全可靠 对地形、地质条件适应性强 枢纽泄洪问题容易解决 便于施工导流 施工方便
三峡混凝土重力坝近景
葛洲坝水利枢纽全景
中国长江干流上的第一座大型水利 枢纽,葛洲坝水利枢纽主要由大坝、 船闸、发电站、泄水闸、冲沙闸及 挡水建筑物组成。坝顶全长2606.5 米,最大坝高53.8米。
丹江口电站大坝下游图
湖北省丹江口工程由挡水坝、坝后发电厂、通航建筑物、泄 洪建筑物工程四部分组成。挡水建筑物全长2468m。其中混凝土 重力坝全长1141m,最大坝高97m,