【数学】培优 易错 难题平行四边形辅导专题训练含答案

【数学】培优 易错 难题平行四边形辅导专题训练含答案
【数学】培优 易错 难题平行四边形辅导专题训练含答案

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.

例如:张老师给小聪提出这样一个问题:

如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?

小聪的计算思路是:

根据题意得:S△ABC=1

2

BC?AD=

1

2

AB?CE.

从而得2AD=CE,∴

1

2 AD CE

请运用上述材料中所积累的经验和方法解决下列问题:

(1)(类比探究)

如图2,在?ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,

求证:BO平分角AOC.

(2)(探究延伸)

如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA?PB=2AB.

(3)(迁移应用)

如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,

AB=34,BC=2,AC=26,又已知M、N分别为AE、BE的中点,连接DM、CN.求

△DEM与△CEN的周长之和.

【答案】(1)见解析;(2)见解析;(3)34

【解析】

分析:(1)、根据平行四边形的性质得出△ABF和△BCE的面积相等,过点B作OG⊥AF于

G,OH⊥CE于H,从而得出AF=CE,然后证明△BOG和△BOH全等,从而得出

∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线的性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出

AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF的勾股定理得出x的值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形的周长之和.

同理:EM+EN=AB

详解:证明:(1)如图2,∵四边形ABCD是平行四边形,

∴S△ABF=S?ABCD,S△BCE=S?ABCD,∴S△ABF=S△BCE,

过点B作OG⊥AF于G,OH⊥CE于H,∴S△ABF=AF×BG,S△BCE=CE×BH,

∴AF×BG=CE×BH,即:AF×BG=CE×BH,∵AF=CE,∴BG=BH,

在Rt△BOG和Rt△BOH中,,∴Rt△BOG≌Rt△BOH,∴∠BOG=∠BOH,

∴OB平分∠AOC,

(2)如图3,过点P作PG⊥n于G,交m于F,∵m∥n,∴PF⊥AC,

∴∠CFP=∠BGP=90°,∵点P是CD中点,

在△CPF和△DPG中,,∴△CPF≌△DPG,∴PF=PG=FG=2,

延长BP交AC于E,∵m∥n,∴∠ECP=∠BDP,∴CP=DP,

在△CPE和△DPB中,,∴△CPE≌△DPB,∴PE=PB,

∵∠APB=90°,∴AE=AB,∴S△APE=S△APB,

∵S△APE=AE×PF=AE=AB,S△APB=AP×PB,

∴AB=AP×PB,即:PA?PB=2AB;

(3)如图4,延长AD,BC交于点G,∵∠BAD=∠B,

∴AG=BG,过点A作AF⊥BC于F,

设CF=x(x>0),∴BF=BC+CF=x+2,在Rt△ABF中,AB=,

根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2,在Rt△ACF中,AC=,

根据勾股定理得,AF2=AC2﹣CF2=26﹣x2,

∴34﹣(x+2)2=26﹣x2,∴x=﹣1(舍)或x=1,∴AF==5,

连接EG,∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE),

∴DE+CE=AF=5,在Rt△ADE中,点M是AE的中点,∴AE=2DM=2EM,

同理:BE=2CN=2EN,∵AB=AE+BE,∴2DM+2CN=AB,∴DM+CN=AB,

同理:EM+EN=AB ∴△DEM与△CEN的周长之和=DE+DM+EM+CE+CN+EN=(DE+CE)

+[(DM+CN)+(EM+EN)]

=(DE+CN)+AB=5+.

点睛:本题主要考查的就是三角形全等的判定与性质以及三角形的等积法,综合性非常强,难度较大.在解决这个问题的关键就是作出辅助线,然后根据勾股定理和三角形全等得出各个线段之间的关系.

2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;

(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由

(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.

【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23

.

【解析】

【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;

(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;

(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,

∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,

∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,

∵△EFK是直角三角形,∴OF=1

2

EK=OE;

(2)如图2中,延长EO交CF于K,

∵∠ABC=∠AEB=∠CFB=90°,

∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,

∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,

∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,

∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;

(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,

∵|CF﹣AE|=2,3AE=CK,∴FK=2,

在Rt △EFK 中,tan ∠FEK=3

3

,∴∠FEK=30°,∠EKF=60°, ∴EK=2FK=4,OF=

1

2

EK=2, ∵△OPF 是等腰三角形,观察图形可知,只有OF=FP=2, 在Rt △PHF 中,PH=1

2

PF=1,HF=3,OH=2﹣3, ∴OP=()

2

2123

62+-=-.

如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°, ∴∠BOP=90°, ∴OP=

33OE=233

, 综上所述:OP 的长为62-或

23

. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.

3.已知:在菱形ABCD 中,E ,F 是BD 上的两点,且AE ∥CF . 求证:四边形AECF 是菱形.

【答案】见解析 【解析】 【分析】

由菱形的性质可得AB ∥CD ,AB =CD ,∠ADF =∠CDF ,由“SAS ”可证△ADF ≌△CDF ,可得

AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形的判定和菱形的判定可得四边形AECF是菱形.

【详解】

证明:∵四边形ABCD是菱形

∴AB∥CD,AB=CD,∠ADF=∠CDF,

∵AB=CD,∠ADF=∠CDF,DF=DF

∴△ADF≌△CDF(SAS)

∴AF=CF,

∵AB∥CD,AE∥CF

∴∠ABE=∠CDF,∠AEF=∠CFE

∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD

∴△ABE≌△CDF(AAS)

∴AE=CF,且AE∥CF

∴四边形AECF是平行四边形

又∵AF=CF,

∴四边形AECF是菱形

【点睛】

本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定.

4.如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.

求证:AF=BF+EF.

【答案】详见解析.

【解析】

【分析】

由四边形ABCD为正方形,可得出∠BAD为90°,AB=AD,进而得到∠BAG与∠EAD互余,又DE垂直于AG,得到∠EAD与∠ADE互余,根据同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出△ABF≌△DAE;利用全等三角的对应边相等可得出BF=AE,由AF-AE=EF,等量代换可得证.

【详解】

∵ABCD是正方形,

∴AD=AB,∠BAD=90°

∵DE⊥AG,

∴∠DEG=∠AED=90° ∴∠ADE+∠DAE=90°

又∵∠BAF+∠DAE=∠BAD=90°, ∴∠ADE=∠BAF . ∵BF ∥DE ,

∴∠AFB=∠DEG=∠AED . 在△ABF 与△DAE 中,

AFB AED ADE BAF AD AB ∠=∠??

∠=∠??=?

, ∴△ABF ≌△DAE (AAS ). ∴BF=AE . ∵AF=AE+EF , ∴AF=BF+EF .

点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.

5.已知90AOB ∠=?,点C 是AOB ∠的角平分线OP 上的任意一点,现有一个直角MCN ∠绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .

(1)如图1,若CD OA ⊥,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由.

(2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.

(3)如图3,若点D 在射线OA 的反向延长线上,且2OD =,8OE =,请直接写出线段

CE 的长度.

【答案】(1)详见解析;(2)详见解析;(3

【解析】 【分析】

(1)先证四边形ODCE 为矩形,再证矩形ODCE 为正方形,由正方形性质可得;(2)过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,证四边形OGCH 为正方形,再证

()CGD CHE ASA ???,可得;(3)根据()CGD CHE ASA ???

,可得

OE OD OH OG -=+=. 【详解】

解:(1)∵90AOB ∠=?,90MCN ∠=?,CD OA ⊥, ∴四边形ODCE 为矩形. ∵OP 是AOB ∠的角平分线, ∴45DOC EOC ∠=∠=?, ∴OD CD =,

∴矩形ODCE 为正方形,

∴OC =

,OC =.

∴OD OE +=

.

(2)如图,过点C 作CG OA ⊥于点G ,CH OB ⊥于点H , ∵OP 平分AOB ∠,90AOB ∠=?, ∴四边形OGCH 为正方形, 由(1

)得:OG OH +=,

在CGD ?和CHE ?中,

90CGD CHE CG CH

DCG ECH ??∠=∠=?

=??∠=∠?

, ∴()CGD CHE ASA ???, ∴GD HE =,

∴OD OE +=

.

(3

)OG OH +=,

()CGD CHE ASA ???,

∴GD HE =.

∵OD GD OG =-,OE OH EH =+,

∴2

-=+=,

OE OD OH OG OC

∴32

OC=,

∴34

CE=,

CE的长度为34.

【点睛】

考核知识点:矩形,正方形的判定和性质.熟练运用特殊四边形的性质和判定是关键. 6.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.

(1)求证:四边形DEFG为菱形;

(2)若CD=8,CF=4,求的值.

【答案】(1)证明见试题解析;(2).

【解析】

试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形;

(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.

试题解析:(1)由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;

(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=.

考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.

7.如图,点E是正方形ABCD的边A B上一点,连结CE,过顶点C作CF⊥CE,交AD延长线于F.求证:BE=DF.

【答案】证明见解析.

【解析】

分析:根据正方形的性质,证出BC=CD,∠B=∠CDF,∠BCD=90°,再由垂直的性质得到∠BCE=∠DCF,然后根据“ASA”证明△BCE≌△BCE即可得到BE=DF

详解:证明:∵CF⊥CE,

∴∠ECF=90°,

又∵∠BCG=90°,

∴∠BCE+∠ECD =∠DCF+∠ECD

∴∠BCE=∠DCF,

在△BCE与△DCF中,

∵∠BCE=∠DCF,BC=CD,∠CDF=∠EBC,

∴△BCE≌△BCE(ASA),

∴BE=DF.

点睛:本题考查的是正方形的性质,熟知正方形的性质及全等三角形的判定与性质是解答此题的关键.

8.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.

(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;

(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)

(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结

论还成立吗?请说明理由;

(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F 的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP 的最小值.

【答案】(1)AE=DF,AE⊥DF;

(2)是;

(3)成立,理由见解析;

(4)CP=QC﹣QP=.

【解析】

试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;

(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以

△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;

(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;

(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD 的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.

试题解析:(1)AE=DF,AE⊥DF.

理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.

在△ADE和△DCF中,,∴△ADE≌△DCF(SAS).

∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;

(3)成立.

理由:由(1)同理可证AE=DF,∠DAE=∠CDF

延长FD交AE于点G,

则∠CDF+∠ADG=90°,

∴∠ADG+∠DAE=90°.

∴AE⊥DF;

(4)如图:

由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,

设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,

在Rt△QDC中,QC=,

∴CP=QC﹣QP=.

考点:四边形的综合知识.

9.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.

(1)如图1,当AD=2OF时,求出x的值;

(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.

【答案】(1)x=﹣1;

(2)S=﹣(x﹣)2+(0<x<1),

当x=时,S的值最大,最大值为,.

【解析】

试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到

CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,

求得OF=OM=解方程,即可得到结果;

(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据

全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)?x,根据二次函数的性质即可得到结论.

试题解析:(1)过O作OM∥AB交CE于点M,如图1,

∵OA=OC,

∴CM=ME,

∴AE=2OM=2OF,

∴OM=OF,

∴,

∴BF=BE=x,

∴OF=OM=,

∵AB=1,

∴OB=,

∴,

∴x=﹣1;

(2)过P作PG⊥AB交AB的延长线于G,如图2,

∵∠CEP=∠EBC=90°,

∴∠ECB=∠PEG,

∵PE=EC,∠EGP=∠CBE=90°,

在△EPG与△CEB中,

∴△EPG≌△CEB,

∴EB=PG=x,

∴AE=1﹣x,

∴S=(1﹣x)?x=﹣x2+x=﹣(x﹣)2+,(0<x<1),

∵﹣<0,

∴当x=时,S的值最大,最大值为,.

考点:四边形综合题

10.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.

小明应用这个结论进行了下列探索活动和问题解决.

问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造

□APBQ,求对角线PQ的最小值及PQ最小时的值.

(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时

= _____ __;

(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n

为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;

问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.

(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值

和PQ最小时的值.

(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.

【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,

.(2)PQ的最小值为..

【解析】

试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形

APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC

中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以

=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边

形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB

时,的长最小,PQ的最小值为..

试题解析:问题1:(1)3,;

(2)过点C作CD⊥AB于点D.

由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,

BC=3,所以AB=5.所以CD=.所以PQ=.

在Rt△ACD中AC=4,CD=,所以AD=.

因为AE=nPA,所以PE==CQ=PD=AD-AP=.

所以AP=.所以=.

问题2:

(1)如图2,设对角线与相交于点.

所以G是DC的中点,

作QH BC,交BC的延长线于H,

因为AD//BC,所以.

所以.

又,所以Rt≌Rt.所以AD=HC,QH=AP.

由图知,当AB时,的长最小,即=CH=4.

易得四边形BPQH为矩形,所以QH=BP=AP.所以.

(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)

(2)PQ的最小值为..

考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.

相关主题
相关文档
最新文档