spice教程1.
spice用户指南

目录一、分析的类型 (3)1.直流分析 (3)2.交流小信号分析 (3)3.瞬态分析 (3)4.温度分析 (3)二、收敛性 (4)三、输入格式 (5)四、电路描述 (5)五、标题卡、结束卡和注释卡 (5)1.标题卡 (5)2.结束卡 (6)3.注释卡 (6)六、元件卡 (6)1.电阻 (6)2.电容和电感 (6)3.耦合电感 (6)4.无损耗传输线 (6)5.独立源 (7)A:脉冲源 (7)B:正弦源 (7)C:指数源 (7)D:分段线形源 (8)E:单频频率调制源 (8)6.线形受控源 (8)A:线形电压控制电流源 (8)B:线形电压控制电压源 (8)C:线形电流控制电流源 (8)D:线形电流控制电压源 (8)7.半导体器件 (9)A:结型二极管 (9)B:双极型晶体管 (9)C:结型场效应晶体管 (9)D:MOS场效应晶体管 (9)E:模型卡 (10)七、子电路 (10)1.子电路卡片 (10)2.终止卡 (10)3.子电路调用 (11)八、控制卡 (11)1.温度卡 (11)2.宽度卡 (11)3.可选项卡 (11)4.工作点卡 (11)5.直流卡 (11)6.节点电压设置卡 (11)7.初始条件卡 (12)8.转移函数卡 (12)9.灵敏度卡 (12)10.交流卡 (12)11.失真卡 (13)12.噪声卡 (13)13.瞬态分析卡 (13)14.傅立叶分析卡 (13)15.打印卡 (14)16.绘图卡 (14)附1:.OPTION可选项 (15)附2:三大分析流程 (16)Spice 通用电路模拟电路用户指南一、分析的类型1.直流分析SPICE 的直流分析用来决定电路的直流工作点,这时,电路中电感短路、电容开路。
在进行瞬态分析之前,SPICE 会自动先运行直流分析,用以决定瞬态的初始条件;同样,在交流小信号分析之前,也先自动运行直流分析,以决定非线性器件的线性化小信号模型参数。
也可用直流分析来产生直流转移曲线,即在用户规定的范围内直流输出变量值与某个指定的独立电压源或电流源步进变化之间的对应关系曲线。
spice使用简介

(1)电路图的绘制。绘制电路图,激 励为电压脉冲源,选用Source.olb库 中的VPULSE。
分别键入下面参数的名称和数值: V1=0V(初始值) TR=0.4μ s(上升时间) V2=5V(幅值) TF=0.5μ s(下降时间) TD=0(延迟时间) PER=20ms(周期) PW=10ms(脉冲宽度)
一个简单的RLC串联电路如图所示。试 用OrCAD对该电路电流频率响应进行交 流分析。
(1)电路图的绘制。
注意:信号源V1使用Source.olb库中的VAC模 型,幅值取1V。 在电路图中设置电流探针。单击 图标, 在欲测电流的元件(如R)支路上单击,放 置电流探针,如图所示。这样在执行PSpice 分析程序后不需要呼叫波形,探针测试的电 流便自动出现在波形输出窗口,支路电压、 节点电压和元件功率也可类似设置探针。
由图可知,流过电阻的电流会随着加在电阻 上的电压而随比例地增加。符合欧姆定律。
交流扫描分析(RLC电路的频率响应)
使用交流扫描分析(AC Sweep)来验
证R-L-C电路频谱图。 PSpice可对小信号线性电子电路进行交 流分析,此时半导体器件皆采用其线性 模型。它是针对电路性能因信号频率改 变而变动所作的分析,它能够获得电路 的幅频响应和相频响应以及转移导纳等 特性参数。
(2)创建新仿真文件,注意交流分析参数设 置方法,如下图所示。
(3)执行PSpice分析程序,其结果波形 见图所示。
标尺 上述的例题分析结果,如上图所示,如要想 从图形中得到精确的数值关系还需借助下面 要介绍的标尺(Cursors)的功能。其对应的 菜单如下图所示。
其快捷方式如下图所示,具体功能见表92。
一个电路设计能够使用PSpice分析 和优化的两个必备条件是:
案例1-Spice课程设计报告

Spice课程设计报告一、电路功能介绍差动放大器是一种将两个输入端电压的差以一固定增益放大的电子放大器。
差动放大器是一种常用的电子放大器(也称“功率放大器”,简称“功放”)和发射极耦合逻辑电路(ECL)的输入级。
若差放的两个输入为和,则它的输出为:其中是差模增益,是共模增益。
通常以差模增益和共模增益的比值共模抑制比(CMRR)衡量差动放大器消除共模信号的能力:由上式可知,当共模增益时,。
越大,就越低,因此共模抑制比也就越大。
因此对于完全对称的差动放大器来说,其,故输出电压可以表示为:差动放大器是普通的单端输入放大器的一种推广,只要将差放的一个输入端接地,即可得到单端输入的放大器。
很多系统在差动放大器的一个输入端输入输入信号,另一个输入端输入反馈信号,从而实现负反馈。
常用于电机或者伺服电机控制,以及信号放大。
在离散电子学中,实现差动放大器的一个常用手段是差动放大,见于多数运算放大器集成电路中的差动电路。
二、电路图绘制使用OrCAD下的Capture工具,基于Pspice库文件,绘制差动放大器原理图如图1。
图1三、直流工作点分析通过观察差动放大器电路各节的电压、电流值,验证该差动放大器是否正常工作。
新建Simulation Profile,命名为BIAS,参数设置如下图。
查看电路各节点直流工作点情况如下图,电路正常工作。
四、直流扫描分析通过设置V3变化,观察差动放大器两差动输入端在差模输入电压情况下两输出节点V(OUT1)、V(OUT2)的变化情况,验证电路差动放大功能的正确性。
新建Simulation Profile,命名为DC,参数设置如下图。
波形如下图所示,电路功能正确。
五、交流特性分析在电路直流工作点处建立交流小信号等效电路,使输入交流信号频率在一定范围变化,计算输出交流信号的变化。
新建Simulation Profile,命名为AC,参数设置如下图。
幅频、相频特性波形分别如下两图所示。
六、结论通过Pspice仿真,对差动放大器的基本特性进行了验证;熟悉了OrCAD软件;特别是Pspice软件的使用;对差动放大电路的特性和影响因素有一更进一步的认识。
LTspice 一 简介(中文教程)

免费电路图仿真软件LTspice 一简介(中文教程)欢迎转载,转载请说明出处-DPJ关键字:PSpice 仿真,电路图,LTspice仿真,pspice模型,spice,电路仿真,功放电路图仿真,信号放大仿真1. LTspice 电路仿真软件简介LTspice 电路图仿真软件简介(支持PSpice和Spice库的导入)LTspiceIV 是一款高性能Spice III 仿真器、电路图捕获和波形观测器,并为简化开关稳压器的仿真提供了改进和模型。
我们对Spice 所做的改进使得开关稳压器的仿真速度极快,较之标准的Spice 仿真器有了大幅度的提高,从而令用户只需区区几分钟便可完成大多数开关稳压器的波形观测。
这里可下载的内容包括用于80% 的凌力尔特开关稳压器的Spice 和Macro Model,200 多种运算放大器模型以及电阻器、晶体管和MOSFET 模型。
在电路图仿真过程中,其自带的模型往往不能满足需求,而大的芯片供应商都会提供免费的SPICE模型或者PSpice模型供下载,LTspice可以把这些模型导入LTSPICE中进行仿真。
甚至一些厂商已经开始提供LTspice模型,直接支持LTspice的仿真。
这是其免费SPICE 电路仿真软件LTspice/SwitcherCADIII所做的一次重大更新。
这也是LTspice 电路图仿真软件在欧洲,美国和澳大利亚,中国广为流传的根本原因。
LTspice IV 具有专为提升现有多内核处理器的利用率而设计的多线程求解器。
另外,该软件还内置了新型SPARSE 矩阵求解器,这种求解器采用汇编语言,旨在接近现用FPU (浮点处理单元) 的理论浮点计算限值。
当采用四核处理器时,LTspice IV 可将大中型电路的仿真速度提高3 倍,同等设置的精度,电路仿真时间远远小于PSpice的计算时间(本来你要等待3个小时,现在一个小时就结束了)。
功能强大而且免费使用仿真工具,何乐而不为呢?这里不是贬低pspice软件,cadence的Pspice软件具有更加丰富的配置和应用,可以进行更加繁多的电路仿真和设置,因为大多数工程师不需要非常复杂的应用,所以,免费的LTspice可以满足基本的应用。
电子线路模拟仿真:SPICE软件的基本使用方法

电子线路模拟仿真:SPICE软件的基本使用方法电子线路模拟仿真是现代电子工程中重要的工具之一,它通过计算机软件模拟电子线路的工作原理和性能,能够快速、准确地评估电路设计的有效性。
其中,SPICE软件是目前应用较广泛的一种电子线路仿真软件。
本文将介绍SPICE软件的基本使用方法,包括安装、建立电路模型、设定仿真参数和分析仿真结果等步骤。
一、安装SPICE软件1. 在SPICE软件的官方网站上下载最新版本的软件安装包;2. 双击安装包,按照软件安装向导的提示,选择安装路径并完成安装;3. 打开SPICE软件,确认软件已成功安装。
二、建立电路模型1. 新建电路文件:在SPICE软件的界面上选择“文件-新建”,创建一个新的电路文件;2. 添加元件:通过选择“元件”或“库”菜单,从库中选取所需的元件,并将其拖放到电路模型的工作区中;3. 连接元件:通过选择“连接”工具,在元件之间建立正确的连接关系;4. 设置元件参数:双击元件,弹出元件参数设置对话框,根据需要填写或修改参数值;5. 建立电源:选择适当的电源元件,连接到电路中的合适位置,并设定电源的电压或电流值。
三、设定仿真参数1. 选择仿真类型:在SPICE软件的界面上选择“仿真-仿真设置”,弹出仿真设置对话框;2. 设定仿真时间:根据仿真需求,设置仿真的起始时间和结束时间;3. 设定仿真步长:设置仿真的时间步长,即每个仿真数据点之间的时间间隔;4. 设定仿真类型:选择所需的仿真类型,如直流仿真、交流仿真或脉冲仿真;5. 设定其他仿真参数:根据仿真需求,可以设置其他相关的仿真参数,如温度、频率等。
四、分析仿真结果1. 运行仿真:选择“仿真-运行仿真”或点击运行仿真的工具按钮,开始进行电路仿真;2. 查看仿真结果:仿真结束后,选择“仿真-波形查看器”或点击波形查看器的工具按钮;3. 设置波形显示:在波形查看器中,选择所需显示的电压或电流波形,并设定波形的颜色和线型;4. 分析波形:对波形进行分析,如测量电压峰值、波形周期、频率等。
Spice基本语法 -

•无源器件:电阻、电感、电容1、电阻RXXX n1 n2 <mname> <R=>resistance <AC=val> 电阻值可以是表达式。
例:R1 1 2 10KRac 9 8 1 AC=1e10Rterm input gnd R=’sqrt(HERTZ) ’2、电容CXXX n1 n2 <mname> <C=>capacitance例:C1 1 2 1pF3、电感LXXX n1 n2 <L=>inductance例:L1 1 2 1nH•有源器件:Diode、BJT、JEFET、MOSFET1、Diode(二极管)DXXX N+ N- MNAME<AREA> <OFF> <IC=VD>可选项:AREA是面积因子,OFF是直流分析所加的初始条件,IC=VD 是瞬态初始条件注:模型中的寄生电阻串联在正极端2、BJT(双极性晶体管)QXXX NC NB NE <NS> MNAME<AREA> <OFF> <IC=VBE,VCE>NC、NB、NE、NS分别是集电极、基极、发射极和衬底节点,缺省时NS接地。
后面与二极管相同。
3、JFET(结型场效应晶体管)JXXX ND NG NS MNAME<AREA> <OFF> <IC=VDS,VGS>4、MOSFET(MOS场效应晶体管)MXXX ND NG NS NB MNAME <L=VAL> <W=VAL> <Other options>M为元件名称,ND、NG、NS、NB分别是漏、栅、源和衬底节点。
MNAME是模型名,L沟道长,W为沟道宽。
•子电路1、子电路定义开始语句.SUBCKT SUBNAM <node1 node2…>其中,SUBNAM为子电路名,node1…为子电路外部节点号,不能为零。
LTspice一简介中文教程

免费电路图仿真软件LTspice 一简介中文教程欢迎转载,转载请说明出处-DPJ关键字:PSpice仿真,电路图,LTspice仿真,pspice模型,spice,电路仿真,功放电路图仿真,信号放大仿真1.LTspice电路仿真软件简介LTspice电路图仿真软件简介支持PSpice和Spice库的导入LTspiceIV是一款高性能SpiceIII仿真器、电路图捕获和波形观测器,并为简化开关稳压器的仿真提供了改进和模型;我们对Spice所做的改进使得开关稳压器的仿真速度极快,较之标准的Spice仿真器有了大幅度的提高,从而令用户只需区区几分钟便可完成大多数开关稳压器的波形观测;这里可下载的内容包括用于80%的凌力尔特开关稳压器的Spice和MacroModel,200多种运算放大器模型以及电阻器、晶体管和MOSFET模型;在电路图仿真过程中,其自带的模型往往不能满足需求,而大的芯片供应商都会提供免费的SPICE模型或者PSpice模型供下载,LTspice可以把这些模型导入LTSPICE中进行仿真;甚至一些厂商已经开始提供LTspice模型,直接支持LTspice的仿真;这是其免费SPICE电路仿真软件LTspice/SwitcherCADIII所做的一次重大更新;这也是LTspice电路图仿真软件在欧洲,美国和澳大利亚,中国广为流传的根本原因;LTspiceIV具有专为提升现有多内核处理器的利用率而设计的多线程求解器;另外,该软件还内置了新型SPARSE矩阵求解器,这种求解器采用汇编语言,旨在接近现用FPU浮点处理单元的理论浮点计算限值;当采用四核处理器时,LTspiceIV可将大中型电路的仿真速度提高3倍,同等设置的精度,电路仿真时间远远小于PSpice的计算时间本来你要等待3个小时,现在一个小时就结束了;功能强大而且免费使用仿真工具,何乐而不为呢这里不是贬低pspice软件,cadence的Pspice软件具有更加丰富的配置和应用,可以进行更加繁多的电路仿真和设置,因为大多数工程师不需要非常复杂的应用,所以,免费的LTspice可以满足基本的应用;Pspice仿真工具还有一个大佬就是multisim,这也是一个非常优秀的软件,multisim软件也是非常强大的软件的,其示波器功能,非常适合学生和老师的教学示范功能,但是multisim和pspice都需要昂贵的license费用,ltspice在企业应用和小企业应用也是不错的替代方案,尤其设计任务和仿真需求不是很频繁的情况下,ltspice就凸现了独特的优势;2LTspice电路图仿真可以适用于那些应用教学与电路图演示仿真模拟电路图仿真开关电源电路图仿真信号处理和放大电路图仿真HIFI电路图仿真模拟电路图噪音分析线性电路图仿真PLL电路图仿真时钟电路图仿真基准电压源电流源仿真电路图讲解与仿真功放电路图仿真模拟滤波器电路图仿真模拟信号频谱分析大部分pspice,multisim的应用可以用ltspice替代免费电路图仿真软件LTspice 二软件的安装和仿真入门中文教程欢迎转载,转载请说明出处-DPJ关键字:PSpice仿真,电路图,LTspice仿真,pspice模型,spice,电路仿真,功放电路图仿真,信号放大仿真1.LTspice电路图仿真安装和入门1LTspice电路图仿真软件的下载和安装LTspice电路图仿真软件下载地址:LTspice电路图仿真软件安装:执行,按照普通的安装软件流程安装即可,完成电路图仿真软件的安装既可进行下一步的例程仿真,可能安装后,提示你升级数据库,直接升级即可,没有特殊的设置,也可以不选择升级;2LTspice电路图仿真打开例程LTspice已经内置了很多编辑好的电路图仿真例程,可以直接打开例程进行仿真入门实验,所有的参数已经设置好,不需要配置就可以运行;打开方法和仿真文件例程的地址:打开之后的LTspice电路仿真原理图:3LTspice电路图仿真的运行和结果查看LTspice电路图仿真的运行所有的参数已经设置好,只需要点击鼠标右键,运行即可RunLTspice电路图仿真的运行结果参看:鼠标左键点击需要查看的点,即可直接查看波形:简单的几步已经完成了Ltspice的入门仿真工作,如果想进一步的加深和理解仿真工具,可以进行进一步的研究;免费电路图仿真软件LTspice 三原理图的绘制中文教程欢迎转载,转载请说明出处-DPJ关键字:PSpice仿真,电路图,LTspice仿真,pspice模型,spice,电路仿真,功放电路图仿真,信号放大仿真,原理图绘1.LTspice电路图仿真菜单和功能命令2.LTspice电路图原理图绘制LTspcie仿真原理图绘制鼠标操作:左键:选择操作,执行操作,和普通windows应用一样的中间:滚动放大和缩小右键:进入菜单执行菜单选项,在画图连线,选择等操作的时候右键可以终止操作LTspcie仿真原理图绘制常规操作:放大,缩小,最优视图,移动,复制,镜像,旋转参看LTspice电路图仿真菜单和功能命令LTspcie仿真原理图绘制添加基本器件:添加基本的器件主要包括电阻,电容,电感,二极管和符号GND可以在Edit菜单里面添加,也可以直接点击图标添加相应的器件;添加完基本器件之后指定和选用实际的模型和器件型号:点右键,然后选择器件型号,这样就完成了元件库添加,画好图就可以进入仿真设置了;LTspcie仿真原理图绘制选取IC器件:选取IC可以选取凌特的产品模型,也可以选取通用的三极管,mosfet,磁珠,LED,等器件模型,同时信号激励源,模型电源等也在这里面;通过这个按钮,可以添加任何你需要库里已有的器件,也是最常用的选项;LTspcie仿真原理图绘制添加电源,负载和信号源:点击添加IC器件图标进入库文件选择对话框,如下图选择电源,负载,还是信号源;选择好电源,负载,或者信号源,右键进行设置下面以电压源进行设置选择Voltage,确定后,点击电压源,右键,选择高级,就进入各种信号源或者电源的设置,如下图:LTspcie仿真原理图绘制电路连线:电路图的连线,剪切工具可以删除连线或者使用Delete按键,拖拉和移动可以调整元件和连线的位置;免费电路仿图真软件LTspice 四仿真参数设置中文教程欢迎转载,转载请说明出处-DPJ关键字:PSpice仿真,电路图,LTspice仿真,pspice模型,spice,电路仿真,功放电路图仿真,信号放大仿真,原理图绘1.进入仿真设置对话框:1.LTspice电路图仿真设置对话框:LTspice进行所有的配置AC,DC,瞬态,噪音等都是通过右键菜单:EditsimulationCMD进入;如下图:进入之后,就进入了电路图仿真配置对话框:2.瞬态分析主要配置的参数:信号源首先配置好V3设置成1Khz,,offset0V;Stoptime:停止时间仿真的波形时间长度Timetostartsavingtime:开始保存数据时间从那一刻保存数据Maximtimestem:最大时间间隔这个参数直接关系到精度和计算的时间,1uS和1nS计算量差1000倍,参看FFT的差别1uS和10nS的区别,如果配置精度达到一定程度,再提高精度意义不是很大,所以要衡量时间和精度问题;配置好之后右键菜单,点击Run运行就可以进入仿真程序;电路图仿真例程:LTspice仿真结果查看:点击原理图里面的网络,直接就可以查看仿真出来的波形;FFT波形查看:在窗口,右键,在View下面点击FFT,根据提示选择要分析的网络;FFT波形查看在窗口,右键,在View下面点击FFT,根据提示选择要分析的网络;瞬态分析的精度靠的是时间间隔设置,实际上就是采样精度,取去多少个点计算,比如进行FFT分析,如果点数太少,分析出来的数据就不准确,但是并不是说点数精度越多越好,当达到一定程度,精度足够高的时候,已经没有多大的区别,这样增加精度只是增加计算时间而已1us和1ns相差1000倍的计算时间;3.AC分析主要配置的参数:信号源首先配置好V3AC选项要配置好这个不配置,没有激励信号源,ACAmplitude:,ACphase0或者默认也行;参数设置如图所填;仿真例程:4.其他的仿真分析LTspice还支持其他的分析,比如DCSweep,Noise,DCTransfer,DCOPpnt,不做介绍,想深究的,可以自己研究;5.其他简便操作和技巧LTspice还支持一些简便的操作,比如快捷键,调整窗口,查看眼图,变换坐标等等,这些功能需要自己摸索一下,入了门之后剩下的就是提高,很简单的应用;本系列教程一共有五部分其他四部分:免费电路图仿真软件LTspice一简介中文教程:免费电路图仿真软件LTspice二软件的安装和仿真入门中文教程:免费电路图仿真软件LTspice三原理图的绘制中文教程:免费电路仿图真软件LTspice五pspice和spice库的导入和制作:免费电路仿图真软件LTspice 五pspice 和spice 库的导入和制作免费电路仿图真软件LTspice五pspice和spice库的导入和制作欢迎转载,转载请说明出处-DPJ关键字:PSpice仿真,电路图,LTspice仿真,pspice模型,spice,电路仿真,功放电路图仿真,信号放大仿真,库,spice 符号请您耐心读完本章,本章内容会让你真正的掌握LTPSICE的高级应用,从茫茫网海中找到你要的Pspice或Spice 库资源,导入他们,它会让你真正的把Ltspice功能发挥到极致;你能真正体会免费的,精确的,高效的,功能强大…….要想掌握本章内容,需要了解以下内容:什么是原理图符号什么Pspice模型基本的Pspice的模型和语法基本的Pspice的模型和语法本文具有极强的连贯性,请从头认真读起;一、Ltspice库文件的导入应用简介Ltspice完美支持spice模型,pspice模型,通过导入第三方大的芯片供应商都会提供免费的SPICE模型供下载的库文件,可以进行各种各种各样的仿真和设计,加上ltspice具有多核心并行计算能力,ltpice具有快速,准确的仿真应用,是一个不可多得的免费大餐;二、LTspice存放模型的路径Ltspice默认安装原理图符号和spice模型文件夹地址:C:\ProgramFiles\LTC\LTspiceIV\lib\Sym存放原理符号C:\ProgramFiles\LTC\LTspiceIV\lib\sub存放spice模型3、Ltspice库文件结构应用介绍和原理Ltspice导入Pspice或Spice库应用其实很简单,通常具有两个结构,原理图符号+spicepspice模型文件,ltpice就电路图仿真就是把原理图符号和模型文件连接起来的过程,可以简单的理解把原理图符号定义特殊的功能和参数,然后通过原理图仿真参数的计算把仿真结果显示出来的过程;所以能否把原理图符号和模型文件正确的关联起来是导入和制作库文件的核心所在;Ltspice提供了灵活的导入方法,也可以自己制作库文件,也可以直接在原理图导入到原理图直接引用后面详细介绍; Ltspice导入Pspice或Spice库方法主要有三种:第一种方法:引用Pspicelib优点:操作简单,省事缺点很明显,就是如果换一个程序就需要重新指定lib位置第二种方法:Pspice或Spice库文件嵌入到Ltpice仿真原理图内部优点:只需要保存仿真文件,就可以在任何电脑上自己仿真,不需要像第二种方法一样修改库的存放位置;第三种方法:批量copy语句类型的库可以批量的处理一些小型器件,比如二极管,三极管等等器件第四种方式:制作自己库的制作Pspice文件的保存高级应用更加高级的应用,可以发布自己的作品,封装器件模型等等功能;四、Pspice和spice模型库导入方法一引用PspicelibLtspice具有通用元件的Sym符号,对于常用的运放,三极管,二极管等等器件,可以采用这种方式,我们不需要重新创建sym文件,直接可以使用内置的库文件;通常我们可以下载第三方的pspice库或者spice库,通过文件存储位置指定,可以直接指定到相关的位置;这样ltpice运行仿真程序就可以通过文件位置找到这个库pspice库或Spice库;这个过程有四步:第一步:创建原理图,选择器件这里以运放为例子第二步:把Pspice或Spice库指定到Sym符号中第三步:打开Pspice或Spice库检查和sym符号对应关系正确性第四步:运行仿真程序:具体过程如下:1.Pspice和spice模型库导入创建原理图的选择器件这里以运放为例子创建如下原理图:opamp2为Ltspice内置sym符号,路径如下:2.把Pspice或Spice库指定到Sym符号中下载需要的运放模型库,找到文件注:如果下载不到文件,厂商提供的有语法文件,可以使用记事本,复制到记事本,另存即可;Pspice和spice模型库导入以NJM2114模型为例子导入NJM2114为NEWJAPANRADIO公司知识产权,如果侵犯了您的知识产权,请告知我,我立刻删除下载NJM2114pspice模型:这是NEWJAPANRADIO公司的运放pspice包解压缩出来把copy到C:\ProgramFiles\LTC\LTspiceIV\lib\sub把opamp2改名成为:njm2114_2同时插入:.libC:\ProgramFilesx86\LTC\LTspiceIV\lib\sub\完整的原理图如下图:3.打开Pspice或Spice库检查和sym符号对应关系正确性PSPICE模型都是供应商制作的,这一步的主要目的就是确认我们制作的符号和pspice定义一致,这样才可以让电路运行起来;需要确认的就是定义PIN的序号,名称SYM符号和Pspice定义一致;OpenSymbol进入详细的pin分配定义:右键查看得出pin定义名称不分大小写:1In+,2In-,3V+,4V-,5OUT器件编号:XU1器件型号:NJM2114_2上面的信息必须和PSPICE库定义一致数字的定义和实际信号要一致,符号名称可以不一致,如果不一致,两边都可以修改,这里修改库文件;$PARTNUMBER:NJM2114MANUFACTURER:NEWJAPANRADIOAllRightsReservedCopyrightcBeeTechnologiesInc.2007.Subckt NJM2114OUT1-IN1+IN1V-+IN2-IN2OUT2V+X_U1+IN1-IN1V+V-OUT1NJM2114_MEX_U2+IN2-IN2V+V-OUT2NJM2114_ME.ends NJM2114.subcktNJM2114_ME12345c11112c267……………………………………………………可以看出需要修改的信息有三个:器件编号:XU1器件型号:NJM2114_2多余的定义删除掉修改后如下:$PARTNUMBER:NJM2114MANUFACTURER:NEWJAPANRADIOAllRightsReservedCopyrightcBeeTechnologiesInc.2007.Subckt NJM2114_2OUT1-IN1+IN1V-V+XU1+IN1-IN1V+V-OUT1NJM2114_ME.ends NJM2114_2.subcktNJM2114_ME12345c11112…………………………………………………….4.配置仿真参数,运行仿真程序五、Pspice或Spice库文件嵌入到Ltpice仿真原理图内部这一种方法和第一种方法基本相同,如果学会了第一种方法,这一种方法只需要两步就解决问题<请详细参看第一种方法>:操作如下:1.删除掉:.libC:\ProgramFilesx86\LTC\LTspiceIV\lib\sub\指定的对话框2.点击下图op,把修改过的用记事本打开,copy内容粘贴到对话框保存并放到原理图合适位置无要求,只是为了原理图美观,可以自己调整;完成后的原理图:运行仿真程序即可;下面简单介绍一下这种方法的步骤:这个过程也有四步:第一步:创建原理图第一种导入库的方法一样第二步:把Pspice或Spice库添加到原理图中不同之处就是不需要指定文件的存储位置,相同的就是库文件修改方法一样,只是把pspicelib文件直接放到原理图正文中;指定好型号名称等关系,ltspice直接运行其中的参数;第三步:打开Pspice或Spice库检查和sym符号对应关系正确性,这一步等同第一种导入库的方法一样,目的也是确认和修改sym符号和pspice定义一致第四步:运行仿真程序第一种导入库的方法一样六、批量copy语句类型的库待续......。
ltspice中文教程

电子线路SPICE设计与仿真:本书从实用性和先进性出发,较全面地介绍电子线路的基本设计方法和CAD软件的应用,电路包含线性和非线性两部分,是与模拟电子电路、通信电子电路和电子线路CAD等理论课程相配套的教材。
全书分为4部分内容:PSpice设计软件简介、基础性分析设计与仿真、综合性设计与仿真、LTSpice设计平台简介,共编排了31个设计仿真任务。
其中LTSpice为较新的电路设计仿真软件,该软件除了用于教材设计内容外,还可供高频电路的课程设计及毕业设计等教学方面选用。
此外,书中还对各电路的电路结构、工作原理、性能参数、技术指标等理论知识进行简单介绍。
目录:第1章PSpice设计软件简介11.1 电路图的绘制11.1.1 启动OrCAD Capture CIS 11.1.2 绘制元器件21.1.3 信号源与接地51.1.4 互连线绘制71.1.5 节点编号71.1.6 滤波器简介91.2 PSpice电路分析101.2.1 直流分析101.2.2 交流小信号分析141.2.3 瞬态分析151.2.4 傅里叶分析171.2.5 温度分析171.2.6 参数扫描分析181.3 PSpice器件模型和元件的创建19 1.3.1 PSpice Model Editor模型编辑器的使用191.3.2 编辑元件符号231.3.3 添加库251.4 实例261.4.1 单级小信号晶体管放大电路26 1.4.2 基于MC1496的调幅电路38 1.4.3 基于TDA2030集成芯片的音频功放电路491.4.4 CMOS放大电路551.5 本章小结61第2章基础性分析设计与仿真62 2.1 二极管特性分析与仿真622.1.1 学习目的622.1.2 二极管特性及工作原理622.1.3 仿真任务632.1.4 分析要求652.1.5 思考题662.2 晶体三极管和场效应管特性分析及仿真662.2.1 学习目的662.2.2 器件特性及工作原理662.2.3 仿真任务682.2.4 分析要求692.2.5 思考题702.3 基本的单管放大器分析与仿真70 2.3.1 学习目的702.3.2 单管放大电路工作原理及性能指标702.3.3 仿真任务702.3.4 分析要求732.3.5 思考题732.4 负反馈放大电路分析与仿真73 2.4.1 学习目的732.4.2 负反馈放大电路工作原理及性能指标732.4.3 仿真任务742.4.4 分析要求772.4.5 思考题772.5 差分放大电路分析与仿真77 2.5.1 学习目的772.5.2 差分放大电路工作原理及性能指标772.5.3 仿真任务782.5.4 分析要求812.5.5 思考题812.6 集成运算放大器分析与仿真81 2.6.1 学习目的812.6.2 集成运放电路工作原理及性能指标812.6.3 仿真任务822.6.4 分析要求842.6.5 思考题842.7 RC网络分析设计与仿真842.7.1 学习目的842.7.2 RC网络工作原理及性能指标84 2.7.3 仿真及设计任务852.7.4 分析要求882.7.5 思考题882.8 LC谐振回路分析设计与仿真88 2.8.1 学习目的882.8.2 LC网络工作原理及性能指标88 2.8.3 设计任务及参数指标902.8.4 设计要求912.8.5 思考题912.9 单调谐小信号放大器分析设计与仿真912.9.1 学习目的912.9.2 单调谐小信号放大电路工作原理及性能指标912.9.3 设计任务及参数指标932.9.4 设计要求932.9.5 思考题942.10 丙类调谐功率放大器分析设计与仿真942.10.1 学习目的942.10.2 丙类功放工作原理及性能指标942.10.3 设计任务及参数指标952.10.4 设计要求962.10.5 思考题962.11 倍频器电路分析设计与仿真96 2.11.1 学习目的962.11.2 倍频器电路工作原理及性能指标962.11.3 设计任务及参数指标97 2.11.4 设计要求972.11.5 思考题972.12 石英晶体振荡器电路分析设计与仿真972.12.1 学习目的972.12.2 石英晶振电路工作原理及性能指标972.12.3 设计任务及参数指标99 2.12.4 设计要求992.12.5 思考题992.13 二极管调幅电路分析设计与仿真992.13.1 学习目的992.13.2 二极管调幅电路工作原理99 2.13.3 设计任务及参数指标100 2.13.4 设计要求1002.13.5 思考题1002.14 二极管峰值包络检波电路分析设计与仿真1012.14.1 学习目的1012.14.2 二极管包络检波器工作原理及性能指标1012.14.3 设计任务及参数指标1042.14.4 设计要求1042.14.5 思考题1042.15 单失谐回路斜率鉴频器分析设计与仿真1042.15.1 学习目的1042.15.2 单失谐回路斜率鉴频器工作原理及性能指标1052.15.3 设计任务及参数指标1062.15.4 设计要求1072.15.5 思考题1072.16 本章小结107第3章综合性设计与仿真1083.1 波形发生器电路的设计与仿真108 3.1.1 设计内容1083.1.2 设计要求及参数指标1083.1.3 设计提示1083.2 共射-共集组合放大器的设计与仿真1093.2.2 设计要求及参数指标1093.3 心电放大器的设计与仿真109 3.3.1 设计内容及参数指标1093.3.2 设计要求1093.3.3 设计提示1093.4 直流稳压电源的设计与仿真110 3.4.1 设计内容1103.4.2 设计要求及参数指标1103.4.3 设计提示1103.5 开关稳压电源的设计与仿真111 3.5.1 设计内容1113.5.2 设计要求1113.6 基于运放的压控振荡器设计与仿真1123.6.1 设计内容1123.6.2 设计要求1123.7 高电平调幅电路的设计与仿真112 3.7.1 设计内容1123.7.2 设计要求及参数指标1123.7.3 设计提示1133.8 基于变容二极管的压控振荡器3.8.2 设计内容1133.8.3 设计要求及参数指标114 3.8.4 设计提示1143.9 差分峰值斜率鉴频器在集成电路中的应用与设计1153.9.1 设计内容1153.9.2 设计提示1153.9.3 设计要求及参数指标116 3.10 小功率调频发射机电路的设计与仿真1163.10.1 设计内容1163.10.2 设计要求及参数指标117 3.10.3 设计提示1173.11 集成锁相环应用电路的设计与仿真1173.11.1 设计内容1173.11.2 设计要求及参数指标118 3.11.3 设计提示1183.12 无线广播调幅发射系统的设计与仿真1193.12.1 设计内容1193.12.2 设计要求及参数指标1193.12.3 设计提示1193.13 超外差式接收系统的设计与仿真1193.13.1 设计内容1193.13.2 设计要求及参数指标1203.14 本章小结120第4章LTSpice设计平台简介1214.1 电路图绘制Schematics Capture 122 4.1.1 Schematics Capture的电路原理图结构1224.1.2 Schematics Capture的基本操作1224.1.3 电路图绘制举例1254.2 电路性能分析1304.3 器件模型与电路图模块化设计137 4.3.1 外部器件的SPICE模型导入方法1384.3.2 原理图的模块化设计1404.4 控制面板的设置1434.5 集成可调基准电压源和DC-DC降压开关电源的仿真1464.5.2 基于TL431的基准电压源148 4.5.3 DC-DC降压开关稳压电源仿真1504.6 丙类功率放大器的设计与仿真153 4.7 振幅调制与解调电路仿真157 4.7.1 振幅调制电路设计与仿真157 4.7.2 解调电路仿真1624.8 设计思考题1654.9 本章小结165附录A PSpice库简介一166附录B PSpice库简介二168附录C LTSpice的点命令(Dot Commands)功能简表169附录D LTSpice电路器件符号索引简表170附录E AD633的SPICE模型文件171 参考文献175。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请看演示…….
PSpice 交流分析
运行仿真程序,放置电压探针在out端(或者在 Probe 演示窗口中加入V(out)波形 ) 仿真结果如下:
PSpice 中的噪声分析
噪声分析是针对电路中固有噪声(如电阻和半导体的工作 噪声)所做的分析,它的计算结果时所求节点相对于输入 独立源的等效噪声。 伴随AC交流分析而进行 所涉及的噪声种类:
PSpice 中的噪声分析
例子: 差分电路
激励源必须选用source 库的VAC(否则不能进行AC Sweep), 如下图所示:
PSpice 中的噪声分析
设置步骤如下:
1.分析类型选择 AC SWEEP/NOISE 2.设置中选择General Settings 3.扫描类型为以10为底对数 起始频率设为 10K 结束频率设为 10G 每单位取样点数设为10 4.选中Noise Analysis 输出端为 :V(OUT2) 参考电源为:V1 噪声报告点频间隔为:30
Second Sweep 参数分析(Parametric Sweep) 温度分析(Temperature Sweep) 最坏情况分析(Worst case) 蒙特卡洛分析(Monte Carlo)
运行Pspice的基本步骤
A. B. o o o
启动 OrCAD Capture 新建一个工程(File>New >Project …), 设置工程的类型为: Analog or Mixed-signal Circuit 为这个工程 起一个名字 选择设计项 目的存储位置
采用如下步骤,可实现上述想法:
1.绘制电路图(注意元件的来源) 2.建立新的仿真文件 或者编辑旧的仿真文件 3.选择分析类型:DC SWEEP 4.设置中选择Primary Sweep 5.设置扫描变量为电压源,本 例中电压源的名字为V1 6.设置扫描类型为线性 开始为 0V 结束为 5V 增量为 1V 7.确定,点击 运行仿真 程序,系统将自动调用 PSpice A/D
Pspice 中的分析类型
一、基本分析类型
直流分析(DC Sweep) 交流与噪声分析(AC Sweep/Noise) 瞬态分析,即时域分析 Time Domain(Transient) 直流工作点分析(直流偏置分析Bias Analysis)
Pspice 中的基本分析方法
二、高级分析类型
请看演示…. ...
PSpice 直流分析
针对电路中直流电流或直流电压的变动而做出 的分析 例子:
D1是一个稳压二极管,可以 采用直流分析的方法,使电 压V1在一定范围内改变,同 时观察D1上电压的变化,从 而观察D1的稳压特性。
source 库的5
1.绘制电路图(注意元件的来源) 2.建立新的仿真文件 或者编辑旧的仿真文件 3.设置分析类型 为AC SWEEP/NOISE 4.设置中选择General Settings 5.扫描类型设置为以十为底 的对数 起始频率设为 1Hz 结束频率设为 1MEGHz 每单位取样点数设为 10 6.先不选用噪声分析
运行Pspice的基本步骤
激活管理视窗,菜单下的工具栏将会增加一排与 PSpice有关的快捷键。
其他类型的capture视窗
数模混合仿真类型的capture视窗
C.绘制电路图 绘制方法和绘制其它电路图是一样的,但必 须采用PSpice库中的元器件才可以进行仿真 D.建立仿真文件 激活工程管理视窗,此时菜单下工具栏中的 的 键将会显现。点击此键建立新的仿真 文件,编辑已有的仿真文件可以点击 键 E.运行仿真文件 ,点击 键,
定位光标在上一个数字转折点
PSpice 交流分析
针对电路中交流电流或交流电压的变动(幅度、 频率、相位)而做出的分析 例子: R2和C1构成了低通滤 波器,改变交流信号源 的频率可以观察RC回路 的滤波特性。
source 库的VAC
其它元件来自analog 库
PSpice 交流分析
具体操作步骤如下:
第二讲、OR-CAD 之PSPICE A/D 数模混合仿真模块
培训主题:OrCAD PSpice A/D 编写:张萌 orcad@
Pspice A/D 的主要功能
1.可以进行电路的数模混合仿真 ,对电路进行 有效适当的分析。 2.可以根据用户的需要建立自己的仿真模块, 提供行为描述模块,允许对电路进行行为描述。 Pspice A/D在整套软件中的位置
热噪声: 电子的无序运动引起 散弹噪声:单位时间通过PN结的载流子数目变化造成 闪烁噪声: 能量主要集中在低频段,由于生产工艺的缺陷而引起
等效噪声:将整个电路中的噪声源都集中折算到选定的独 立源处,然后计算在等效的噪声源的激励下,所求节点处 产生的噪声。 PSpice可以分析每个频率点上指定节点的等效输出噪声电 压和指定输入端的等效输入噪声电压。噪声电压的单位是 V A 或 Hz Hz ,即把噪声电平对噪声带宽的均方根进行归 一化
添加文本 X轴取对数坐标 FFT变换 Y轴取对数坐标 添加观测信号 添加复合观测信号 定位光标在下一个波峰 定位光标在下一个波谷 定位光标在下一个斜率最大值
显示采样点 启动光标 定 位 光 标 在 下 一 个 采 样 点 标 注 光 标 位 置 的 坐 标
定位光标在最小值
定位光标在最大值
定位光标在下一个数字转折点
编写VHDL (EXPRESS) 绘制电路图 (CAPTURE) 进行电路混合仿真 (PSPICE A/D) 设计电路板 (LAYOUT)
VHDL仿真 (EXPRESS)
运用 PSpice 的基本条件
1.待仿真的元器件模型必须是PSpice的仿 真模型 2.电路中应该含有激励源,并且符合相应 的电路特性分析类型的要求 3.必须设置好合适的电路特性分析类型
以上设置把电压源 V1设置为直流电压扫描变量, 扫描值从0V到5V,每次递增1V 请看演示……
PSpice 直流分析
运行仿真程序后放置电压探针在D1的K脚(或 者在PSpice的环境中选择菜单Trace>Add Trace 选择V(D1:K) ) 仿真的结果如下:
PSpice A/D 界面