一纳米材料与医学

一纳米材料与医学
一纳米材料与医学

2.3.1纳米粒子用作药物载体

一般来说,血液中红血球的大小为6000 nm~9000 nm,一般细菌的长度为2000 nm~3000 nm[7],引起人体发病的病毒尺寸为80 nm~100 nm,而纳米包覆体尺寸约30 nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。

磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、肛门以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(PLA)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(NPs)在基因治疗中的DNA载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.3.2纳米抗菌药及创伤敷料

Ag +可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。

2.3.3智能—靶向药物

在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20 nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。

2.4纳米材料用于介入性诊疗

日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

2.5纳米材料在人体组织方面的应用

纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。

目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的

多聚物作为DNA导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。

纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行或使引起癌症的DNA突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(ROM)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。

纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。

①表面效应

球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。直径大于0.1微米的颗粒表面效应可忽略不计,当颗粒尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。超微颗粒的表面与大块物体的表面是十分不同的,利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。

②小尺寸效应

随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。

(1)特殊的光学性质

当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l %,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。

(2)特殊的热学性质

固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。超微颗粒熔点下降的性质对粉末冶金工业具有一定的吸引力。例如,在钨颗粒中附加0.1 %~0.5 %重量比的超微镍颗粒后,可使烧结温度从3000℃降低到1200~1300℃,以致可在较低的温度下烧制成大功率半导体管的基片。

(3)特殊的磁学性质

人们发现鸽子、海豚、蝴蝶、蜜蜂以及生活在水中的趋磁细菌等生物体中存在超微的磁性颗粒,使这类生物在地磁场导航下能辨别方向,具有回归的本领。磁性超微颗粒实质上是一个生物磁罗盘,生活在水中的趋磁细菌依靠它游向营养丰富的水底。在趋磁细菌体内通常含有直径约为0.002微米的磁性氧化物颗粒。小尺寸的超微颗粒磁性与大块材料显著的不同,大块的纯铁矫顽力约为

(4)特殊的力学性质

陶瓷材料在通常情况下呈脆性,然而由纳米超微颗粒压制成的纳米陶瓷材料却具有良好的韧性。因为纳米材料具有大的界面,界面的原子排列是相当混乱的,原子在外力变形的条件下很容易迁移,因此表现出甚佳的韧性与一定的延展性,使陶瓷材料具有新奇的力学性质。美国学者报道氟化钙纳米材料在室温下可以大幅度弯曲而不断裂。研究表明,人的牙齿之所以具有很高的强度,是因为它是由磷酸钙等纳米材料构成的。呈纳米晶粒的金属要比传统的粗晶粒金属硬3~5倍。至于金属一陶瓷等复合纳米材料则可在更大的范围内改变材料的力学性质,其应用前景十分宽广。

超微颗粒的小尺寸效应还表现在超导电性、介电性能、声学特性以及化学性能等方面。

③宏观量子隧道效应

各种元素的原子具有特定的光谱线,如钠原子具有黄色的光谱线。原子模型与量子力学已用能级的概念进行了合理的解释,由无数的原子构成固体时,单独原子的能级就并合成能带,由于电子数目很多,能带中能级的间距很小,因此可以看作是连续的,从能带理论出发成功地解释了大块金属、半导体、绝缘体之间的联系与区别,对介于原子、分子与大块固体之间的超微颗粒而言,大块材料中连续的能带将分裂为分立的能级;能级间的间距随颗粒尺寸减小而增大。当热能、电场能或者磁场能比平均的能级间距还小时,就会呈现一系列与宏观物体截然不同的反常特性,称之为量子尺寸效应。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。因此,对超微颗粒在低温条件下必须考虑量子效应,原有宏观规律已不再成立。

电子具有粒子性又具有波动性,因此存在隧道效应。近年来,人们发现一些宏观物理量,

如微颗粒的磁化强度、量子相干器件中的磁通量等亦显示出隧道效应,称之为宏观的量子隧道效应。量子尺寸效应、宏观量子隧道效应将会是未来微电子、光电子器件的基础,或者它确立了现存微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑上述的量子效应。例如,在制造半导体集成电路时,当电路的尺寸接近电子波长时,电子就通过隧道效应而溢出器件,使器件无法正常工作,经典电路的极限尺寸大概在0.25微米。目前研制的量子共振隧道晶体管就是利用量子效应制成的新一代器件。

【图】:纳米(Nano)治疗介入法,也称为肿瘤毛细血管滞疗法。肿瘤毛细血管组滞疗法(Cancer Micro Vessel Nano-Ma-terial Blockage CNB)它是提升化疗的新良好方法,复大癌肿医院将新开发科研成果-纳米(Nano)超微粒药物(比红血球更微小),注射到肿瘤供血动脉管,通过肿瘤毛细血管之空隙,药物渗透入肿瘤细胞。这时由以动脉与静脉差已乎相等,药物停滞时间较久,直接把残存体内的癌肿瘤包围而将它杀死。它比平常化疗,效果更为显注。我们在复大医院手术室亲眼见证一位菲律宾中年妇女乳腺癌患者接受纳米介入法治疗。过程简单,她躺在病床上,接受纳米抗癌药物注射入动脉导管。两具电视荧幕清楚地显示她体内残存,经染色的黑色癌细胞位置,很快地那些黑色癌细胞消失殆尽,改变成清楚的白荧幕,朴教授告诉我们那些残存癌细胞已被杀死,其是令人咄咄称奇。平常初期和中期癌病患经冷冻和纳米介入法的治疗后,大多体内癌细胞已被消灭。身体迅速恢复健康,如善加护理,可望从此摆脱病魔缠结。

【图】:机械性人造器官是完全用没有生物活性的高分子材料仿造一个器官,并借助电池作为器官的动力。目前,日本科学家已利用纳米技术研制出人造皮肤和血管。

【图】:近日来自美国加州大学的科学家发明了一种新式的具有强大灭杀能力的纳米微型医学机器人“纳米推进器”,这种机器人可以在活细胞内快速的杀死癌细胞从而达到治愈癌症的目的。

据报道该纳米机器人是由来自来自美国加州大学的科学家发明,被称为纳米杀手。这种微型纳米医学机器人是世界上第一种可以杀死癌症细胞的机器人。

据研究者称,“我们已经开发出一台机器人,可以把治癌药物送入肿瘤细胞和不正常的细胞中,而且这种被称为纳米推进器(全称)的机器人是第一种根据感光运动的“纳米机器人”,可在细胞内杀死癌症细胞。该装置由二氧化硅纳米粒子制成,其内部导管是由特殊的化学物质偶氮苯构成,抗癌药物可以装载在这种导管中到达病灶。而化学物质偶氮苯具有非常奇特的感光性能。”

纳米材料在医学领域的应用研究进展

纳米材料在医学领域的应用研究进展 【摘要】在最近几年,纳米材料和纳米技术迅速发展,得到了科学界的重视。由于纳米材料的特殊的尺寸效应,纳米颗粒、纳米管以及各种纳米技术在医学方面的应用正蓬勃发展,势头十足。但在医学领域发展的同时,人们也逐渐认识到其中的一些问题,如纳米材料的生物毒性等。本文主要综述纳米科技在基医学、药学、临床医学和预防医学中的应用研究进展、问题及改进。 【关键词】纳米材料纳米科学纳米技术药物载体医学生物毒性毒理学 1 引言 纳米仅是一个长度单位,1 nm = 10-9m,当物质进入纳米尺度时,会展现出特有的理化性质,如: 小尺寸效应、表面效应、量子尺寸效应以及宏观量子隧道效应等[1]。随着纳米技术的不断发展,各种纳米材料逐渐进入了我们的视野。碳纳米材料主要包括碳纳米管、富勒烯[2]、石墨烯和纳米钻石及其衍生物,是目前应用非常广泛的一类纳米材料,现有的研究结果表明,碳纳米材料在组织工程、药物/基因载体、生物成像、肿瘤治疗、抗病毒/抗菌以及生物传感等生物医学领域中具有潜在的应用前景。 2 纳米材料在医学领域的应用 2. 1 纳米材料在生物医学领域的应用 应用于生物体内应用的纳米材料,它本身既可以是具有生物活性,也可以不具有生物活性,但它在满足使用需要时还必须易于被生物体接受,而不引起不良反应。目前纳米微粒在这方面的应用十分的广泛,如生物芯片、纳米生物探针、核磁共振成像技术、细胞分离和染色技术、作为药物或基因载体、生物替代纳米 材料、生物传感器等很多领域[3]。 纳米探针一种探测单个活细胞的纳米传感器,探头尺寸仅为纳米量级,当它插入活细胞时,可探知会导致肿瘤的早期DNA 损伤。一些高选择性和高灵敏度的纳米传感器可以用于探测很多细胞化学物质,可以监控活细胞的蛋白质和感兴趣的其他生物化学物质。随着纳米技术的进步,最终实现评定单个细胞的健康状况。使用纳米生物荧光探针可以快速准确的选择性标记目标生物分子,灵敏测试细胞内的失踪剂,标记细胞,也可以用于细胞表面的标记研究。

纳米技术在医学上的应用

纳米技术在医学上的应用 随着科学技术的进步和发展,纳米材料学和生物医学的结合越来越紧密,纳米材料在生物医学领域的应用已取得了很大进展,并展现出良好的发展势头和巨大的发展潜力。纳米技术的兴起,对生物医学领域的变革产生了深远的影响。纳米材料具有许多传统材料所不具备的独特的理化性质,因此在生物医学、传感器等重要技术领域有着广泛的应用前景。纳米材料在生物医药领域的应用主要有纳米药物、抗菌材料、生物传感器等。 纳米药物 纳米药物与传统的分子药物的根本区别在于它是颗粒药物,而广义的纳米药物可分为两类:一类是纳米药物载体,即指溶解或分散有分子药物的各种纳米颗粒,如纳米球、纳米囊、纳米脂质体等;第二类是纳米药物,即指直接将原料药物加工成的纳米颗粒,或利用崭新的纳米结构或纳米特性,发现基于新型纳米颗粒的高效低毒的治疗或诊断药物。前者是对传统药物的改良,而后者强调的是把纳米材料本身作为药物。是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料是否能实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料 抗菌材料 抗菌材料是指具有抗菌或杀菌功能的材料,其主要机理为:干扰细胞壁的合成、损伤细胞膜、抑制蛋白质的合成和干扰核酸的合成等4点。目前,抗菌材料使用的方法主要是通过添加抗菌剂或化学改性的方法使材料具有抗菌的效果。 通过表面化学改性方法将抗菌剂接枝到电纺纳米纤维表面,控制接枝反应在纳米纤维的表面进行,不影响纤维膜的本体力学性能。此外,纳米纤维巨大的比表面被具有高密度抗菌基团的聚合物链覆盖,并稳定、牢固地以共价键结合,这不仅大大提高了抗菌效率,小剂量即可产生强的抗菌作用,而且还具有长效及重复使用的优势,可以有效避免抗菌剂污染等问题。 生物传感器 生物传感器是信息科学、生物技术和生物控制论等多学科交叉融合而形成的新兴高科技领域。随着微电子机械系统技术、纳米技术不断整合入传感器技术领域,生物传感器越来越趋向于微型化。在纳米技术中,纳米器件的研究水平和应用程度标志着一个国家纳米科技的总体水平,而纳米传感器又是纳米器件研究中的一个最重要的方向。 由中国科学院理化技术研究所唐芳琼研究员带领的纳米材料可控制备与应用研究组,在纳米增强的酶生物传感器研究方面取得了重要进展。此研究成果是采用四氧化三铁纳米颗粒构建高灵敏度葡萄糖生物传感器。研究表明,该生物传感器具有良好的抗干扰性,在实际血清的检测中表现出很好的检测效果,与现有临床方法检测结果相比,标准偏差均在3%以内,具有很强的实用性。 纳米技术医学应用的展望 虽然纳米医学刚刚问世,但其发展的巨大潜力已经展示在我们面前。21世纪

纳米材料的概述

“纳米材料”—开启微观世界之门 1.纳米材料及纳米技术 纳米技术界定为:在1nm~100nm尺度空间内研究电子、原子和分子运动规律和特性,通过直接操纵原子、分子或原子团和分子团使其形成所需要的物质的新技术。 纳米材料(nanometer material)是指在三维空间中至少有一维处于纳米尺度范围(1~100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。2.纳米材料的发展 人类对物质的认识分为两个层次:一个是宏观,另一个是微观。人们对宏观物质的研究已经很深人,研究的历史也较悠久。对于微观物质的研究,到20世纪60年代出现了团簇科学,成为凝聚态物理研究的热点。在团簇物理研究中,人们在团簇和亚微米体系之间又发现了一个十分令人注目的新体系,即纳米体系。这个体系通常研究的范畴为1~100nm,其中典型的代表是纳米粒子。由于纳米粒子的尺寸小、比表面积大和量子尺寸效应使其具有不同于常规固体的新特性,而成为材料科学、物理学和化学等学科的前沿焦点。 1959年著名的美国物理学家理查德?费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲,预言说:“我不怀疑,如果我们对物质微小规模上的排列加以某种控制的话,我们就能使物质得到大量的可能的特性。”虽然没有使用“纳米”这个词,但他实际上介绍了纳米技术的基本概念。1974年,日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。 1981年格尔德?宾宁(Gerd Binnig)和海因里希?罗雷尔Heinrich Rohrer 发明了扫描隧道显微镜,它使科学家第一次可以观察并操纵单个原子。 1984年Gleiter 首次采用气体冷凝的方法,成功地制备了Fe纳米粉。随后,美国、西德和日本先后研制成纳米级粉体及块体材料。 1985年赖斯大学的研究人员发现了富勒烯(fullerenes)(更为人熟知的名称是“布基球(buckyballs),由著名未来学家,多面网格球顶的发明人巴克明斯特?富勒(R. Buckminster Fuller)命名,它可以被用来制造碳纳米管,是如今使

纳米生物医学材料的应用

纳米生物医学材料的应用 摘要:纳米材料和纳米技术是八十年代以来兴起的一个崭新的领域,随着研究的深入和技术的发展,纳米材料开始与许多学科相互交叉、渗透,显示出巨大的潜在应用价值,并且已经在一些领域获得了初步的应用。本文论述了纳米陶瓷材料、纳米碳材料、纳米高分子材料、微乳液以及纳米复合材料等在生物医学领域中的研究进展和应用。 关键字:纳米材料;生物医学;进展;应用 1. 前言 纳米材料是结构单元尺寸小于100nm的晶体或非晶体。所有的纳米材料都具有三个共同的结构特点:(1)纳米尺度的结构单元或特征维度尺寸在纳米数量级(1~100nm),(2)有大量的界面或自由表面,(3)各纳米单元之间存在着或强或弱的相互作用。由于这种结构上的特殊性,使纳米材料具有一些独特的效应,包括小尺寸效应和表面或界面效应等,因而在性能上与具有相同组成的传统概念上的微米材料有非常显著的差异,表现出许多优异的性能和全新的功能,已在许多领域展示出广阔的应用前景,引起了世界各国科技界和产业界的广泛关注。 “纳米材料”的概念是80年代初形成的。1984年Gleiter首次用惰性气体蒸发原位加热法制备成功具有清洁表面的纳米块材料并对其各种物性进行了系统研究。1987年美国和西德同时报道,成功制备了具有清洁界面的陶瓷二氧化钛。从那时以来,用各种方法所制备的人工纳米材料已多达数百种。人们正广泛地探索新型纳米材料,系统研究纳米材料的性能、微观结构、谱学特征及应用前景,取得了大量具有理论意义和重要应用价值的结果。纳米材料已成为材料科学和凝聚态物理领域中的热点,是当前国际上的前沿研究课题之一[1]。 2. 纳米陶瓷材料 纳米陶瓷是八十年代中期发展起来的先进材料,是由纳米级水平显微结构组成的新型陶瓷材料,它的晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都只限于100nm量级的水平[2]。纳米微粒所具有的小尺寸效应、表面与界面效应使纳米陶瓷呈现出与传统陶瓷显著不同的独特性能。纳米陶瓷已成为当前材料科学、凝聚态物理研究的前沿热点领域,是纳米科学技术的重要组成部分[3]。 陶瓷是一种多晶材料,它是由晶粒和晶界所组成的烧结体。由于工艺上的原因,很难避免材料中存在气孔和微小裂纹。决定陶瓷性能的主要因素是组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对材料的力学性能产生很大影响,使材料的强度、韧性和超塑性大大

碳纳米材料概述

碳纳米材料概述 名字:唐海学号:1020560120 前言 纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。 近年来,碳纳米技术的研究相当活跃,多种多样的纳米碳结晶、针状、棒状、桶状等层出不穷。2000年德国和美国科学家还制备出由20个碳原子组成的空心笼状分子。根据理论推算,包含20个碳原子仅是由正五边形构成的,C60分子是富勒烯式结构分子中最小的一种,考虑到原于间结合的角度、力度等问题,人们一直认为这类分子很不稳定,难以存在。德、美科学家制出了C60笼状分子为材料学领域解决了一个重要的研究课题。碳纳米材料中纳米碳纤维、纳米碳管等新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。 分类 (1)碳纳米管碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳米管、多壁碳纳米管和双壁碳纳米管。 (2)碳纤维分为丙烯腈碳纤维和沥青碳纤维两种。碳纤维质轻于铝而强力高于钢,它的比重是铁的1/4,强力是铁的10倍,除了有高超的强力外,其化学性能非常稳定,耐腐蚀性高,同时耐高温和低温、耐辐射、消臭。碳纤维可以使用在各种不同的领域,由于制造成本高,大量用于航空器材、运动器械、建筑工程的结构材料。美国伊利诺伊大学发明了一种廉价碳纤维,有高强力的韧性,同时有很强劲的吸附能力、能过滤有毒的气体和有害的生物,可用于制造防毒衣、面罩、手套和防护性服装等。 (3)碳球根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2)未完全石墨化的纳米碳球,直径在50nm 一1μm之间;(3)碳微珠,直径在11μm以上。另外,根据碳球的结构形貌可分为空心碳球、实心硬碳球、多孔碳球、核壳结构碳球和胶状碳球等。 碳纳米材料的性质及相关应用 1.力学 (1)超强纤维碳纳米管具有弹性高、密度低、绝热性好、强度高、隐身性优越、红外吸收性好、疏水性强等优点,它可以与普通纤维混纺来制成防弹保暖隐身的军用装备。 (2)材料增强体用于增强金属、陶瓷和有机材料等。并且结合碳纳米管的导热导电特性,能够制备自愈合材料。

纳米材料在医学上的应用

纳米技术的应用对各行各业的帮助很大,其中,生物医学方面,已经取得了较为喜人的成果。生物医学方面应用较多的是纳米材料,它的种类形态多样,有的呈粉末状,也有的是纤维状,块状,不可否认的是所具备的性能十分独特。本文从诊断、治疗两大方向进行介绍。 一、在诊断方面的应用 1.遗传病诊断 纳米技术有助于诊断胎儿是否有遗传缺陷。妇女怀孕8个星期时,血液中开始出现少量胎儿细胞。利用具有纳米级大小孔洞的半透膜或特殊的合成纳米管等,可把胎儿细胞分离出来进行诊断。不需要进行羊水穿刺。 目前美国已将此项技术应用于临床诊断中。 2.病理学诊断 肿瘤诊断较为可靠的手段是建立在组织细胞水平上的病理学方法,但存在着良恶性及细胞来源判断不准确的问题。利用原子力显微镜可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常纳米级结构改变,以解决肿瘤诊断的难题。 二、在治疗方面的应用 1、纳米化增加药物吸收度

1)增大药物的表面积促进溶解。 2)药物大分子就能穿透组织间隙,也可以通过人体细小的毛细血管。而且分布面极广。 3)应用于中药制剂。药物的物理活性、靶向性比普通中药大大提高。 2、纳米医用材料 纳米银粉:银在纳米状态下的杀菌能力产生了质的飞跃。只需要用极少量的纳米银即可产生强大的杀菌作用。 智能药物:美国正在设计一种纳米“智能炸弹”,它可以识别出癌细胞的化学特征。这种“智能炸弹”很小,仅有20纳米左右,能够进入并摧毁单个的癌细胞。 纳米技术与生物医学的结合,为医学界提供了全新的思路,纳米材料在医学领域的应用取得了显著效果。 纳米材料在医学方面应用广泛,南京东纳生物科技有限公司是一家集产学研于一体的高新技术型企业,可提供相关产品,更多详情欢迎登陆官网查看!

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

纳米技术在医学上的应用

纳米技术在医学上的应用 1.关键词:纳米技术医学 2.Keywords:nanotechnology medicine 3.ISI检索结果 表1-1每年出版的文献数 表1-2每年的引文柱状图 从以上两个柱状图可以看出21世纪之前关于纳米技术在医学上的应用的研究几乎为零,但是一进入21世纪国内外关于纳米技术在医学上的应用逐年增加,每年的引文数更是呈指数倍增长,在2013年更是达到了最大出版量。虽然出版 作者记录数占总记录数的百分比FERRARI M 12 1.064% SEIFALIAN AM 11 0.975% LANGER R 10 0.887% DYGAI AM 9 0.798% JAIN KK 9 0.798% MIROSHNICHENKO LA 9 0.798% SIMANINA EV 9 0.798%

表1-3主要研究成员分析 从上表的数据可以看出,就算是发表文献最多的研究者也只发表了12篇,说明专攻纳米技术在医学上应用的人很少,都是从事相关研究的,说明此项目与 表1-4主要研究机构分析 从上表可以看出,关于纳米技术在医学上的应用的研究比较分散,因为取了前17个机构的数据,而其发表的文献数只占了总记录数的21.543%,而绝大部

SPAIN 49 4.344% SWITZERLAND 39 3.457% CANADA 36 3.191% JAPAN 33 2.936% AUSTRALIA 26 2.305% FRANCE 25 2.216% 总合1002 88.838% 表1-5主要国家地区分析(选取发表数占2%以上) 从上表中可以看出,美国、中国和英国占总发表数的53.635%,其中美国就占了38.475%,说明美国研究纳米技术在医学上应用的水平站在世界的顶端,其次就是中国,说明中国在这方面的研究也比较先进。从另一方面来说,纳米技术在医学上的应用将会被广泛的应用,我们的健康水平也能相应的提高。 4.合成路线 ①With tetrabutylammomium bromide,dihydrogen peroxide,bromine in water,Time= 8h,T=65℃,92% ②With copper(l) iodide,potassium iodide,Time= 5h,T= 200℃ , Inert atmosphere,Finkelstein reaction,100%. ③With potassium fluoride,Pd(3wt)/C in N,N-dimethyl-formamide,Time=7h,T=130℃, p= 1500.15Torr, Inert atmosphere,Hiyama Coupling,92%. ④With hydrogen bromide,tri-n-butylhexadecylphosphonium bromide,Time=0.2h,T=115℃,93%.

纳米材料的危害

纳米材料的危害 “纳米”有哪些潜在的危险?纳米时代即将来临,我们已经做好了知识上和心理上的准备了吗? 一些纳米颗粒对生物体有害 纳米是一个长度单位,是1米的10亿分之一。当物质颗粒小到纳米量级时,这种物质就被称为纳米材料。在一段时间里,我们一直认为纳米科技给社会带来的都是益处,而近年来,不少研究者发现,一些纳米颗粒和碳纳米管对生物体有害。 据《自然》杂志介绍,美国纽约罗切斯特大学研究人员在实验鼠身上完成的实验显示,直径为35纳米的碳纳米粒子被老鼠吸进身体后,能够迅速出现在大脑中处理嗅觉的区域内,并不断堆积起来。他们认为碳纳米粒子是同“捕捉”香味的大脑细胞一道进入大脑的。今年4月,美国化学学会在一份研究报告中指出,碳60会对鱼的大脑产生大范围的破坏,这是研究人员首次找到纳米微粒可能给水生物种造成毒副作用的证据。这些都说明,纳米材料对人类健康和环境都存在危害。 纳米材料为何会对人体造成影响呢?当一种物质缩小到纳米尺度后,它的性质就会发生显著变化。实验表名,2毫克二氧化硅溶液注入小白鼠后不会致其死亡,但若换成0.5毫克纳米二氧化硅,小白鼠就会立即毙命。而且,纳米材料不易降解,穿透性强,人一旦吸入纳米颗粒,其健康就会受到潜在的威胁。 美国加州大学教授陈帆青说:“现在日常生活中,含纳米成分的产品已有不少。拿化妆品来说,一些唇膏的珠光颗粒其实就是纳米颗粒;等离子电视等含有碳纳米材料的电器,长期接触也可能影响健康。对于各种纳米材料的安全性,我们正在建立数据库,以进行系统评估。”

纳米材料可通过三种途径进入人体 人们接触纳米材料污染一般通过下面途径:一、通过呼吸系统;二、通过皮肤接触;三、其他方式,如食用、注射之类。纳米材料污染物通过上述途径进入人体,与体内细胞起反应,会引起发炎、病变等;污染物在人体组织内停留也可能引起病变,如停留在肺部的石棉纤维会导致肺部纤维化。 纳米材料比普通的污染物对人体的影响更大。这是因为纳米材料体积非常小,同样质量下纳米颗粒将比微米颗粒的数量多得多,与细胞发生反应的机会更大,更易引起病变。纳米材料很小,可以几乎不受阻碍地进入细胞,从而有可能进入人的神经系统,影响人的大脑,导致一些更严重的疾病和后果。目前,研究人员还不知道如何将纳米材料从人体中清除,也不知道它们会不会在人体中降解。 “纳米”可能潜在的危险 纳米颗粒物并不只是新时代纳米技术的产物,人类其实早与纳米颗粒共存。汽车尾气、各种燃烧过程等,都会产生大量的纳米粒子。据估算,在大街上行走的人,每小时通过呼吸空气吸进的纳米粒子大约有1亿个。 纳米粒子很小,比细胞小上千倍。由于小尺寸效应、量子效应和巨大比表面积等,纳米材料具有特殊的物理化学性质。在进入生命体后,它们与生命体相互作用所产生的化学特性和生物活性,与化学成分相同的常规物质有很大不同。前期研究表明,一些人造纳米颗粒在很小剂量下容易引起靶器官炎症;容易导致大脑损伤;容易使机体产生氧化应激;容易进入细胞甚至细胞核内;表面吸附力很强,容易把其他物质带入细胞内;有随纳米尺寸减小生物毒性增大的趋势;表面的轻微改变导致生物效应发生巨变等。 纳米材料还有一个潜在的危险——— 易爆炸。纳米材料具有反常特性,原本物质不具有的性能,小颗粒会具有。原本不导电的物质,在颗粒变小后有可能导电,有些原来不易燃的物质在纳米尺

纳米材料研究及检测.

纳米材料研究及检测 【摘要】纳米技术是当今世界最有前途的决定性技术。文章简要地 概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。本文以纳米材料为主要研究对象,阐述了其分析使用的分析方法。 【关键词】纳米技术;纳米材料;结构;性能;分析方法;表征 前言 纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。纳米科技是未来高科技的基础, 而适合纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。因此, 纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义 和作用。 分析科学是人类知识宝库中最重要、最活跃的领域之一, 它不仅是研究的对象, 而且又是观察和探索世界特别是微观世界的重要手段。随着纳米材料科学技术的发展, 要求改进和发展新分析方法、新分析技术和新概念, 提高其灵敏度、准确度和可靠性, 从中提取更多信息, 提高测试质量、效率和经济性。 纳米材料主要性质有:小尺寸效应[、表面与界面效应、量子尺寸效应、宏观量子隧道效应。目前表征纳米材料的技术很多,采用各种不同的测量信号形成了各种不同的材料分析方法,大体可以分为以下

几种方法。 1.纳米科学和技术 1.1 纳米科技的定义 纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。纳米科技是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。其中纳米材料是纳米科技的重要组成部分。 1.2 纳米科技的内容 纳米科技主要包含:纳米物理学;纳米电子学;纳米材料学;纳米机械学;纳米生物学;纳米显微学;纳米计量学;纳米制造学…… 1.3 纳米科技的内涵 第一:纳米科技不仅仅是纳米材料的问题。目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术。纳米科技与众多学科密切相关,它是一门体现多学科交叉性质的前沿领域。现在已不能将纳米科技划归任何一个传统学科。如果将纳米科技与传统学科相结合,可产生众多的新的学科领域,并派生出许多新

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21 世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标。结合纳米靶向药物定向治疗技术的发展,人类彻底战胜癌症已为时不远! 目前,纳米材料在生物医学领域已得到了广泛应用,其在检测诊断、药物治疗以及抗菌等方面都取得到了很好的发展,发挥着都不容忽视的作用。 一:生物医学起源于诊断, 没有准确的诊断就不可能有对症的预防和治疗。目前随着科技的发展, 生物医学诊断得到了前所未有的发展, 各种检验诊断手段、仪器五花八门, 在其迅猛发展的过程中纳米材料起到了关键作用。

纳米材料在医学上的应用

纳米材料在医学上的应用 ---疾病的检测与治疗因其在科学研究与临床应用,特别是生物医药方面潜在的重要应用前景,纳米科技已发展 成为一个新兴的多学科交叉领域,吸引了人们更多的研究兴趣。 一应用于生物医学中的纳米材料的主要类型及其特性 纳米碳材料、纳米高分子材料、纳米复合材料、磁性纳米颗粒等。 二.工作原理 A.纳米碳材料 主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等碳纳米管有 独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机 制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增 强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳 纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源, 氢气为载体,在873 K~1473 K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石 结构C—C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形 成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其 他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。 B.纳米高分子材料 纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传 递和药物控释载体,以及免疫分析、介入性诊疗等方面。 C.纳米复合材料 目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性 的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智 能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复 和移植等许多方面具有广阔的应用前景。国外已制备出纳米ZrO2增韧的氧化铝复合 材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表 明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外, 纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对 正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构 通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。 此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。 D.磁性纳米材料 铁氧体纳米颗粒一般由三种主要成分构成:含铁的核,聚合物涂层和功能部分。这 种具有生物降解功能的颗粒可被设计制备成具有超顺磁性的纳米粒子,这更有利于 其在生物检测治疗方面的应用。另外,通过在其表面连接不同功能基团的配体,可 在很大程度上扩大其检测诊断的范围。 三.应用方向 1纳米粒子用作药物载体

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用 和重要影响 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。 关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、

纳米材料与细胞作用的综述

申请学位: 学士学位 院 系: 药学院 姓 名: 孟凡飞 学 号: 122120209 指导老师: 张怀斌(讲师) The Review of The Interaction of Nano Materials and Cells 毕 业 设 计(综 述) 纳米材料与细胞作用的研究综述 二0一四年六月十二日

目录 摘要 (1) Abstract (2) 引言 (3) 1纳米ZnO的制备及性质 (3) 1.1 纳米ZnO的制备 (3) 1.1.1 制备方法的概述 (3) 1.1.2 醋酸锌法制备纳米ZnO (3) 1.2 纳米ZnO的性质 (5) 2纳米ZnO与不同细胞的相互作用 (5) 2.1 纳米ZnO与人支气管上皮细胞(BEAS-2B) (5) 2.2 纳米ZnO黄曲霉细胞的相互作用 (6) 2.3 对白色念珠菌的生物毒性 (6) 2.4 纳米ZnO对人胚肺成纤维细胞(HELF)的生物毒性的剂量效应 (7) 2.5 尺寸效应对ZnO纳米粒子对洋葱表皮细胞作用的影响 (8) 3展望 (9) 3.1 发展与应用 (9) 3.2 缺点与改进 (10) 参考文献 (11) 致谢 (13)

纳米材料与细胞作用的研究综述 孟凡飞 摘要: 从近年来对于纳米材料的安全性评价的工作进展看,人们对于现今应用较广的ZnO纳米材料的生物安全性研究较少。本文将着重阐述ZnO纳米材料在机理、剂量、尺寸方面对不同生物细胞的相互作用,为做好纳米材料使用的安全防护工作、研究纳米材料在生物安全性方面的影响、建立一套研究纳米材料安全性评价的方法提供必要依据。关键词: ZnO纳米材料;机理;剂量;尺寸;生物细胞;相互作用

纳米材料在医药方面的应用

纳米材料在医药方面的应用

纳米材料在医药方面的应用 摘要:本文介绍了什么是纳米材料,纳米材料在生物医学领域的最新应用及研究状况,简要列举了纳米生物材料在医药学应用的最新实例,并对其前景进行了展望。 关键词:纳米材料生物医药最新应用展望 正文:纳米是一个微小的尺度单位,纳米是十亿分之一米(109-),大约是单个原子直径的4倍,通过对在纳米尺度上新现象、新过程的观察,纳米技术为人们提供了许多性能独特的工具、材料、器件和系统]1[。当前纳米技术的研究正快速地从观察和发 现向设计和制造复杂的纳米尺度集合体转变纳米技术研究将是系统的、基于多学科的纳米技术具有巨大的潜能,可望取代现有大多数技术,创造新的工业,并在能源、环境、通信、计算、医药、空间探索、国家安全和基于材料的任何领域中改变基础的科学模型。 我们知道,细胞具有微米(106-m)量级的空间尺度,生物大分子具有纳米量级的空 间尺度。在它们之间的层次是亚细胞结构,具有几十到几百纳米量级的空间尺度。显然在纳米水平上研究生命现象的纳米生物学,它的研究对象就是亚细胞结构和生物大分子体系。由于纳米微粒的尺寸一般比生物体内的细胞、红细胞小得多,这就为生物学研究提供了一个新的研究途径即利用纳米微粒进行细胞分离、疾病诊断,利用纳米 微粒制成特殊药物或新型抗体进行局部定向治疗等]2[。 1、纳米材料在医药、医学领域的应用 目前纳米材料在生物医学领域已经得到广泛的应用,在基础医学、药物学、临床医学和预防医学方面,纳米材料作用的发挥都已不容忽视]3[。纳米材料在生物医学中检测、诊断。药物治疗以及健康预防等方面都取得了很好的发展。 1.1纳米材料在医学检验诊断技术方面的应用 生物医学起源于诊断,没有很好的诊断手段就没有很好的治疗和预防,目前随着科学技术的发展,诊断手段越来越高明、先进,得到了前所未有的发展。纳米材料在检验诊断中主要应用于三个方面:[1]利用纳米材料跟踪生物体内活动,对生物体内元素的积累和排除作出判断。[2]利用纳米颗粒极高的传感灵敏效应对疾病进行早期诊断]4[。利用纳米材料的特性去化验检测试样从而辅助治疗。 在具体应用方面的典型有量子点的荧光效应、磁性纳米材料的磁效应、纳米材料的吸附作用等等。 1.2纳米材料在药物治疗方面的应用 纳米生物材料,具有生物兼容性、可生物降解、药物缓释和药物靶向传递等良好特性已在药物治疗方面取得了很大成功。 药物纳米载体具有高度靶向、药物控制释放、提高难溶药物的溶解率和吸收率优

纳米材料在生物医学领域的应用

纳米材料在生物医学领域的应用 摘要目前应用于生物医学中的纳米材料的主要类型有纳米碳材料、纳米 高分子材料、纳米复合材料等。纳米材料在生物医学的许多方面都有广泛的应用前景。 关键词纳米材料生物医学应用 1 应用于生物医学中的纳米材料的主要类型及其特性 1.1 纳米碳材料 纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。 碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873K~1473K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石结构C)C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。 1.2 纳米高分子材料 纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1nm~1000nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。 1.3 纳米复合材料 目前,研究和开发无机-无机、有机-无机、有机-有机及生物活性-非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修

纳米技术在医学上的应用

纳米技术在医学上得应用 1、关键词:纳米技术医学 2、Keywords:nanotechnology medicine 3、ISI检索结果 表1-1每年出版得文献数 表1-2每年得引文柱状图 从以上两个柱状图可以瞧出21世纪之前关于纳米技术在医学上得应用得研究几乎为零,但就是一进入21世纪国内外关于纳米技术在医学上得应用逐年增加,每年得引文数更就是呈指数倍增长,在2013年更就是达到了最大出版量。虽然出版数在2013年有所下降,但就是从总体上瞧来,2014年得相关研究数也会持 作者记录数占总记录数得百分比FERRARI M 12 1、064% SEIFALIAN AM 11 0、975% LANGER R 10 0、887% DYGAI AM 9 0、798% JAIN KK 9 0、798% MIROSHNICHENKO LA 9 0、798%

表1-3主要研究成员分析 从上表得数据可以瞧出,就算就是发表文献最多得研究者也只发表了12篇,说明专攻纳米技术在医学上应用得人很少,都就是从事相关研究得,说明此项目 表1-4主要研究机构分析 从上表可以瞧出,关于纳米技术在医学上得应用得研究比较分散,因为取了前17个机构得数据,而其发表得文献数只占了总记录数得21、543%,而绝大部分

INDIA 59 5、230% SPAIN 49 4、344% SWITZERLAND 39 3、457% CANADA 36 3、191% JAPAN 33 2、936% AUSTRALIA 26 2、305% FRANCE 25 2、216% 总合1002 88、838% 表1-5主要国家地区分析(选取发表数占2%以上) 从上表中可以瞧出,美国、中国与英国占总发表数得53、635%,其中美国就占了38、475%,说明美国研究纳米技术在医学上应用得水平站在世界得顶端,其次就就是中国,说明中国在这方面得研究也比较先进。从另一方面来说,纳米技术在医学上得应用将会被广泛得应用,我们得健康水平也能相应得提高。 4、合成路线 ①With tetrabutylammomium bromide,dihydrogen peroxide,bromine in water,Time= 8h,T=65℃,92% ②With copper(l) iodide,potassium iodide,Time= 5h,T= 200℃ , Inert atmosphere,Finkelstein reaction,100%、 ③With potassium fluoride,Pd(3wt)/C in N,N-dimethyl-formamide,Time=7h,T=130℃, p= 1500、15Torr, Inert atmosphere,Hiyama Coupling,92%、 ④With hydrogen bromide,tri-n-butylhexadecylphosphonium bromide,Time=0、2h,T=115℃,93%、

纳米医学材料

纳米医学---纳米技术在医药卫生中的应用 所谓纳米医学是"利用分子器具和对人体分子的知识,进行诊断、治疗和预防疾病与创伤,减轻疼痛,促进和保持健康的科学和技术"。纳米医学的基础是分子纳米技术(molecular nANotechnology)和分子制作技术(molecular mANufacturing)。它采用分子器械系统或纳米化的药物来处理医疗问题,并将应用分子的知识在分子水平上维护人体的健康。成熟的纳米医学要求所构建的器械和装置,应达到原子的精度。 今天的人们已然知道,人体的疾病或不良的健康状态,大多是由分子和细胞的受损引起的。但在很长的历史时期内,由于各项科学技术和医学本身发展的限制,人类对自身的认识还只能停留在系统、器官、组织、至多到细胞水平。而在临床上,则更多地局限于器官水平上的诊断和治疗。而今,20世纪科学的发展,使得医学开始从只是基于推理,向着全然的分子基础转变。 ANd0002 水热合成羟基磷灰石(HA)纳米粉体的研究 羟基磷灰石(HA或HAP)是脊椎动物骨和齿的主要无机成分,结构亦非常接近。作为生物陶瓷材料,它与动物体组织的相容性好,无生物毒性且界面生物活性优于各类医用钛合金、硅橡胶及植骨用碳素材料,HA 种植体能诱导周围骨组织的生长,与骨形成牢固的化学结构,因此可广泛用作生物硬组织的修复和替换材料。 陶瓷材料的性能与其粉体的制备方法、性质是密切相关的。水热法是制备结晶良好、无团聚的纳米粉体的优选方法之一。它是在特制的密闭容器(高压釜)里,用水溶液作反应介质,通过对反应容器加热,创造一个高温、高压反应环境,使得通常难溶或不溶的物质溶解并且重结晶。与其他湿化学方法相比,水热法具有如下特点:(1)水热法可直接得到结晶良好的粉体,不需作高温灼热处理,避免了在此过程中可能形成的粉体硬团聚。(2)粉体晶粒物相和形貌与水热条件有关。(3)晶粒线度适度可调,水热法制备的粉体晶粒线度与反应条件(反应温度、反应时间、前驱物形式等)有关。(4)工艺较为简单。水热法粉体制备技术有:水热氧化、水热沉淀、水热合成、水热晶化、水热分解等。水热合成是以一元化合物在水热条件下反应合成二元甚至多元化合物。 本文采用CaCO3粉末和CaHPO4·2H2O的混合物为前驱物,通过水热合成制备HA粉体。 ANd0003 纳米生物微管和金属微管的制备及应用前景 生物学的研究进展揭示了自然界,尤其是生物体自组装的结构,而正是这种自组装结构赋予生物体以某种功能。脂类分子的自组装与细胞生物膜的结构,功能有密切联系;细菌微管蛋白的自组装与细胞的繁殖分裂过程密切相关;遗传物质DNA、RNA的自组装结构与生物体遗传、变异息息相关。利用这种生物分子的自组装技术可以服务于纳米生物功能材料的研究。比如利用生物分子的自组装技术设计和制备自组装纳米微管,用于研究和开发新型光电磁功能复合材料。我们利用生物分子组装技术,不仅成功制备出纳米生物微管,而且以纳米生物微管为模板,成功制备得到纳米金属微管,初步的性能研究表明该类纳米生物微管具有广阔的应用前景。 ANd0004 HAP纳米微晶在血浆中的稳定性及对血细胞形态的影响 羟基磷灰石(HAP)是人体骨中的主要无机矿物成分,呈纳米微晶状态。而现在临床应用的HAP经烧结后则呈多晶态。为了探讨羟基磷灰石纳米微晶在生物医学中的应用,我们进行了大理的研究工作,体外细胞培养实验表明HAP纳米微晶对癌细胞具有抑制作用,而对正常细胞无影响。本文的目的就是通过研究HAP纳米微晶在血液中的稳定性和对血胞的影响,探讨静脉注射抑癌的可行性,用Zetaplus电位粒度分析仪检测了HAP纳米微晶加入血浆后粒径的变化,用姬姆萨染色法观察了HAP纳米微晶对血细胞形态的影响。结果表明,血浆中HAP纳米微晶的粒径随时间变化不大,甚至变小,这与血浆中蛋白质对HAP纳米微晶的部分溶解有关;12小时后加纳米微晶组血细胞仍保持了完好的形态。说明它对血细胞的形态没有影响。提示可以于静脉注射,具有一定的安全性。

相关文档
最新文档