精选高二数学第一学期期中考试二(包含答案)
2024-2025学年安徽省芜湖市安师大附中高二第一学期期中考试数学试卷(含答案)

2024-2025学年安徽省芜湖市安师大附中高二第一学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知a =(1,5,−1),b =(−3,2,3),则a−b =( )A. (−4,−3,4)B. (4,3,−4)C. (−4,3,−4)D. (4,3,4)2.如图,空间四边形OABC 中,OA =a ,OB =b ,OC =c ,点M 在OA 上,且OM =23OA ,点N 为BC 中点,则MN 等于( )A. −23a +12b +12c B. 12a +12b−12c C. 23a +23b−12cD. −23a +23b−12c3.在空间直角坐标系Oxyz 中,已知点P(1,2,5),点Q(−1,2,−5),则( )A. 点P 和点Q 关于x 轴对称 B. 点P 和点Q 关于y 轴对称C. 点P 和点Q 关于z 轴对称D. 点P 和点Q 关于原点中心对称4.已知直线l 的斜率的范围为[−1,1],则直线l 的倾斜角α的取值范围为( )A. 0∘≤α≤45∘或135∘≤α≤180∘ B. 45∘≤α≤135∘C. 45∘<α<135∘D. 0∘≤α≤45∘或135∘≤α<180∘5.已知点A(−4,−2),B(−4,2),C(−2,2),则△ABC 外接圆的方程为( )A. (x +3)2+y 2=5 B. x 2+(y−3)2=20C. x 2+(y +3)2=5D. (x−3)2+y 2=206.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程为( )A. x 24+y 23=1 B.y 26+x 2=1 C. x 26+y 2=1D. x 28+y 25=17.已知F 1,F 2是椭圆C 的两个焦点,焦距为6.若P 为椭圆C 上一点,且△PF 1F 2的周长为16,则椭圆C 的离心率为( )A. 15B. 45C. 35D.2158.已知M(x 1,y 1),N(x 2,y 2)是圆C:(x +3)2+(y−5)2=4上的两个不同的点,若|MN|=22,则|x 1−y 1|+|x 2−y 2|的取值范围为( )A. [12,20]B. [10,14]C. [8,16]D. [4 2,82]二、多选题:本题共4小题,共24分。
江苏省镇江市三校、泰州市部分学校2024-2025学年高二上学期11月期中考试 数学(含答案)

2024~2025学年度第一学期期中考试高二数学试题(考试时间:120分钟;总分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.1. 直线的倾斜角等于()A. B. C. D. 2. 在等比数列中,若,,则()A. -32B. -16C. 16D. 323. 若点在圆外,则实数的取值范围为()A.B. C. D.4. 将直线绕点顺时针旋转得到直线,则直线的方程是()A. B. C. D.5. 过点作圆的切线,则切线方程为()A. B. C. D.6. 已知圆内有一点,为过点的弦,当弦被点平分时,直线的方程为()A. B. C. D. 7. 高斯(Gauss )被认为是历史上最重要的数学家之一,并享有“数学王子”之称.小学进行的求和运算时,他这样算的:,,,,共有50组,所以,这就是著名的高斯算法,课本上推导等差数列前项和的方法正是借助了高斯算法.已知正数数列是公比不等于1的等比数列,且,试根据提示探求:若,则()A1010B. 2024C. 1012D. 20208. 在平面直角坐标系中,若圆上存在点,且点关于轴的对称点122x y -=30o4590135{}n a 54a =78a =11a =()1,1P 22:420C x y x y a ++-+=a 4,5-()(),5∞-(),4∞--6,5-()1:20+-=l x y ()2,090 2l 2l 220x y -+=20x y ++=20x y --=220x y --=()1,1P 22:420E x y y +-+=10x y -+=0x y +=10x y ++=0x y -=()()22126x y -++=P AB ()1,1P --AB P AB 210x y --=210x y -+=230x y ++=230x y ++=123100++++L 1100101+=299101+=⋯5051101+=501015050⨯=n {}n a 120241a a =()11f x x=+()()()122024f a f a f a +++= xOy ()()2221:10C x y r r +-=>P P x Q在圆上,则的取值范围是()A. B. C.D. (3,7)二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 已知点,点,点,则下列正确有()A. B. 直线的倾斜角为C. D. 点到直线10. 圆与圆相交于,两点,下列说法正确的是()A. 直线方程为B. 公共弦C. 圆与圆的公切线段长为1D. 线段的中垂线方程为11. 已知数列满足,且,则下列正确的有()A. B. 数列的前项和为C. 数列的前项和为D. 若数列的前项和为,则三、填空题:本题共3小题,每小题5分,共15分.12. 设是数列前项和,且,则的通项公式为___________.13. 函数______________.14. 已知直线,相交于点,圆心在轴上的圆与直线,分别相切于两点,则四边形的面积为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.的的的()222:24C x y -+=r 2⎤-+⎦[]3,7)2+()1,2A -()1,4B ()4,1C AB BC>AB 45 AB BC⊥B AC 221:2210C x y x y +--+=222:4440C x y x y +--+=A B AB 2230x y +-=AB 1C 2C AB 0x y +={}n a 1122n n n a a ++-=14a =332a =1n a n ⎧⎫⎨⎬+⎩⎭n 12n +2log n a n ⎧⎫⎨⎬⎩⎭n ()22log 12n nn +++14n n n a a +⎧⎫⎨⎬⎩⎭n n T 11124n T ≤<n S {}n a n 23n S n ={}n a n a =()f x =1:230l x y --=2:230l x y ++=M x C 1l 2l ,A B AMCB15. 已知数列为等差数列,,数列为等比数列,公比为2,且,.(1)求数列与通项公式;(2)设数列满足,求数列的前项和.16. 已知圆,点.(1)过点圆作切线,切点为,求线段的长度(2)过点作一条斜率为的直线与圆交于,两点,求线段的长度(3)点为圆上一点,求线段长度的最大值17. 已知直线和直线交于点,求满足下列条件的一般式直线方程.(1)过点且与直线平行;(2)过点且到原点的距离等于2;(3)直线关于直线对称的直线.18. 已知圆.(1)求的范围,并证明圆过定点;(2)若直线与圆交于,两点,且以弦为直径的圆过原点,求的值.19. 已知数列满足.(1)求的值;(2)求证:数列是等差数列;(3)令,如果对任意,都有,求实数的取值范围.的{}n a 13a ={}n b 426a a -=24b ={}n a {}n b {}n c n n n c a b =+{}n c n n T ()22:19C x y -+=()3,4P -P C T PT P 12-A B AB Q C PQ 1:30l x y -+=2:210l x y -+=C C 410x y -+=C 1l 2l ()22:4420C x y x λλ++-+-=λC :320l x y -+=A B AB O λ{}n a ()*122N n n a a a n a n +++=-∈ 123a a a ++{}4log 2n a -()()()*212N n n b n a n =--∈*N n ∈n b t +≤22t t2024~2025学年度第一学期期中考试高二数学试题(考试时间:120分钟;总分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.1.【答案】B2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】B7.【答案】C8.【答案】A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.【答案】BCD10.【答案】AC11.【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.12.【答案】13.14.【答案】或四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 【解析】【分析】(1)利用等差数列的通项公式和等比数列的通项公式即可直接求解;(2)利用等差数列和等比数列的求和公式求解即可.【小问1详解】设等差数列的公差为,因为,所以,,所以;因为,所以.【小问2详解】结合(1)可得:.16. 【解析】分析】(1)求出圆心和半径,得到(2)求出直线,求出圆心到直线的距离,由垂径定理求出答案;(3)的最大值为点到圆心的距离加上半径,得到答案.【小问1详解】圆心,半径为,即,又,【63n-81595d 424a a -=26d =3d =()3133n a n n =+-⋅=24b =2224222n n n n b b --⋅⋅===1212n n n T a a a b b b =+++++++ ()()212123322122332n n n n n n ++=-++=+--PT ==:250AB x y +-=C AB PQ P C ()1,0C 33TC =PC ==故【小问2详解】,故直线,记圆心到直线的距离为,,故;【小问3详解】的最大值为点到圆心的距离加上半径,故.17. 【解析】【分析】(1)联立方程解交点坐标,由平行关系设直线方程,代入点坐标待定系数可得;(2)讨论斜率是否存在,当斜率存在时,设出点斜式直线方程,结合点到直线的距离公式求解即可;(3)根据对称性质,在其中一条直线上取不同于两直线交点的任一点,利用垂直关系与中点坐标公式建立方程组求解其对称点坐标,再结合交点由两点式方程可得.【小问1详解】联立方程,解得,.设与直线平行的直线为,由题意得:,,故满足要求的直线方程为:.【小问2详解】①当所求直线斜率不存在时,直线方程为,满足到原点的距离为2;②当所求直线斜率存在时,设直线方程为,即,,解得,直线方程为,PT ==()1432y x -=-+:250AB x y +-=C AB d d AB ==PQ P C max 33PQ PC =+=+C ()401x y t t -+=≠C 30210x y x y -+=⎧⎨-+=⎩25x y =⎧⎨=⎩(2,5)C ∴410x y -+=()401x y t t -+=≠2450t -⨯+=18t =4180x y -+=2x =5(2)y k x -=-250kx y k --+=∴22120k =∴2120580x y -+=综上所述,符合题意的直线方程为或.【小问3详解】在上取一点,设点关于直线的对称点为点,则,解得,,又,则直线的方程即所求直线方程,为,化简得,.故所求的直线方程为:.18. 【解析】【分析】(1)利用方程表示圆的充要条件列式求出范围,再分离参数求出定点坐标.(2)联立直线与圆的方程联立,利用韦达定理及向量垂直的坐标表示求解.【小问1详解】由圆,得,,,所以的范围为;,由,得,所以圆过定点.【小问2详解】以弦为直径的圆过原点,则,,20x -=2120580x y -+=1l ()0,3M M 2l ()00,N x y 0000312321022y x x y -⎧=-⎪⎪⎨+⎪⋅-+=⎪⎩0085115x y ⎧=⎪⎪⎨⎪=⎪⎩811,55N ⎛⎫∴ ⎪⎝⎭(2,5)C CN 115558225y x --=--790x y --=790x y --=22:(4)420C x y x λλ++-+-=2(4)4(42)0λλ--->20λ>0λ≠λ()(),00,-∞+∞ 22044(2)x x x y λ-++-+=2244020x y x x ⎧+-+=⎨-=⎩20x y =⎧⎨=⎩C ()2,0M AB O OA OB ⊥0OA OB ⋅=设点,,则,,即,由,消去整理得:,,,,于是,解得,满足,所以的值为.19. 【解析】【分析】(1)根据递推关系求值即可;(2)由递推关系可得,与原式相减可得,即,于是可得数列数列是以0为首项,以为公差的等差数列;(3)由(2)可得,故,作差并分析判断数列{b n }的单调情况,确定数列的最大项.由题意可得恒成立,于是,解不等式可得的范围.【小问1详解】,,,,,,,【小问2详解】证明:由题可知:①,②,②-①得,即:,()11,A x y ()22,B x y 12120x x y y +=()()12123+23+20x x x x +=()1212106+40x x x x ++=()223204420x y x y x λλ-+=⎧⎨++-+-=⎩y ()2108820x x λλ+++-=22=(+8)40(82)=962560λλλλ∆--+->12810x x λ++=-128210x x λ-=82+8106401010λλ-⋅-⋅+=3613λ=0∆>λ361312311...22n n n a a a a a n a +++++++=+-122n n a a +-=()11222n n a a +-=-{}4log 2n a -12-1122n n a -⎛⎫=- ⎪⎝⎭1212n n n b --=1n n b b +-()2max2n t b t ≤-t 123...2n n a a a a n a ++++=- 112a a ∴=-11a ∴=1224a a a ∴+=-232a ∴=12336a a a a ++=- 374a ∴=23137171.244a a a ++=++=∴123...2n n a a a a n a ++++=-12311...22n n n a a a a a n a ++∴+++++=+-122n n a a +-=()11222n n a a +-=-所以,,,又∴数列是以0为首项,以为公差的等差数列.【小问3详解】由(2)可得,,,则,由可得;由可得,∴,故{b n }有最大值,∴对任意,有,如果对任意,都有成立,则,∴,解得或,∴实数的取值范围是414411log 2log 2log 222n n n a a a +⎡⎤-=-=-+-⎢⎥⎣⎦4141log 2log 22n n a a +---=-41log 20a -={}4log 2n a -12-11212122n n a a a +-=-=--,1122n n a -⎛⎫=- ⎪⎝⎭1212n n n b --=()11212212121322222n n n n n nn n n n nb b +-+--+---=-==10n n b b +->2n <10n n b b +-<2n ≥12345......n b b b b b b >>>><>>232b =*N n ∈32n b ≤*N n ∈22n t b t +≤()2max2n t b t ≤-2322t t ≤-1t ≤-3t ≥t (,1][3,).-∞-⋃+∞。
2024-2025学年高二上学期期中模拟考试数学试题02(直线与圆 圆锥曲线)含解析

2024-2025学年高二数学上学期期中模拟卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教A版(2019)选择性必修第一册第一章~第三章(空间向量与立体几何+直线与圆+圆锥曲线)。
5.难度系数:0.65。
第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.5.如图,在平行六面体ABCD 则AC'的长为()A.98562+B.【答案】A-'【解析】平行六面体ABCD A故选:A7.已知椭圆的方程为2 9 x+的周长的最小值为()A.8B 【答案】C则由椭圆的中心对称性可知可知12AF BF 为平行四边形,则可得2ABF △的周长为2AF A .0B .【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.则21242||222y y m HC ++===12||4||22yy p AB HM ++===所以||2sin ||2(HC m HMN HM m ∠==因为20m ≥,所以212(1)m ∈三、填空题:本题共3小题,每小题5分,共15分.则11,22BN BA BD DM =+ 所以1122BN DM BA ⎛⋅=+ ⎝ 1144BA BC BD BC =⋅+⋅-uu r uu u r uu u r uu u r四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知两直线1:20l x y ++=和2:3210l x y -+=的交点为P .(1)直线l 过点P 且与直线310x y ++=平行,求直线l 的一般式方程;(2)圆C 过点()1,0且与1l 相切于点P ,求圆C 的一般方程.【解析】(1)直线l 与直线310x y ++=平行,故设直线l 为130x y C ++=,(1分)联立方程组203210x y x y ++=⎧⎨-+=⎩,解得11x y =-⎧⎨=-⎩.(3分)∴直线1:20l x y ++=和2:3210l x y -+=的交点()11P --,.16.(15分)在正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在线段1CC 上,且14CC CE = ,点F 为BD 中点.(1)求点1D 到直线EF 的距离;(2)求证:1A C ⊥面BDE .【解析】(1)如图,以D 为原点,以,DA DC 正四棱柱111ABCD A B C -()()(10,0,4,0,2,1,1,1,0D E F ∴则点1D 到直线EF 的距离为:17.(15分)18.(17分)如图,在四棱锥P ABCD -中,M 为棱PC 的中点.(1)证明:BM ∥平面PAD ;(2)若5PC =,1AB =,(2)1AB = ,2DC ∴=,又PD 222PC PD DC ∴=+,则PD DC ⊥又平面PDC ⊥平面ABCD ,平面PD ∴⊥平面ABCD ,(7分)19.(17分)416(2)(i )由题意知直线l 的方程为联立221416x y ⎧-=⎪⎨,化简得(4m 2(ii )1212232,41m y y y y m -+=-直线AD 的方程为11y y x =+。
2024-2025学年吉林省长春市东北师范大学附属中学高二上学期10月期中考试数学试题(含答案)

2024-2025学年吉林省长春市东北师范大学附属中学高二上学期10月期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.直线x +3y +1=0的倾斜角是( )A. 30°B. 60°C. 120°D. 150°2.已知α,β是两个平面,l,m 是两条不同的直线,则下列说法正确的是( )A. 若m ⊥α,l ⊥m ,则l ⊥α B. 若m//β,n//β,则m//n C. 若m//α,l ⊥α,则l ⊥mD. 若α//β,m//α,则m//β3.已知两直线l 1:3x +4y−14=0,l 2:(a−2)x +4y +a =0,若l 1//l 2,则l 1与l 2间的距离为( )A. 95B. 125C. 175D. 1954.某同学参加学校组织的化学竞赛,比赛分为笔试和实验操作测试,该同学参加这两项测试的结果相互不受影响.若该同学在笔试中结果为优秀的概率为34,在实验操作中结果为优秀的概率为23,则该同学在这次测试中仅有一项测试结果为优秀的概率为( )A. 712B. 12C. 512D. 135.在平行四边形ABCD 中,点E,F,G 分别满足DE =EC ,BC =2BG ,AF =2FE ,则FG =( )A. 23AB−16ADB. 23AB +16ADC. 16AB−23ADD. 16AB +23AD6.已知圆M 经过P (1,1),Q (2,−2)两点,且圆心M 在直线l:x−y +1=0,则圆M 的标准方程是( )A. (x−2)2+(y−3)2=5 B. (x−3)2+(y−4)2=13C. (x +3)2+(y +2)2=25D. (x +3)2+(y−2)2=257.如图,在直三棱柱ABC−A 1B 1C 1中,AB ⊥BC,AB =BC =AA 1=2,P 为线段A 1B 1的中点,Q 为线段C 1P 上一点,则▵BCQ 面积的取值范围为( )A. [2,6] B. [2,5] C. [ 3,5] D. [ 2,5]8.已知点A,B是圆C:(x−2)2+y2=1上的两个动点,点P是直线l:x+y=0上动点,且PA⋅CA=0,PB⋅CB =0,下列说法正确的是( )A. 圆C上恰有一个点到直线l的距离为12B. PA长的最小值为2−1C. 四边形ACBP面积的最小值为2D. 直线AB恒过定点(32,−12)二、多选题:本题共3小题,共18分。
人教版高二上学期期中考试数学试题与答案解析(共两套)

人教版高二上学期期中考试数学试题(一) (本卷满分150分,考试时间120分钟)测试范围:选择性必修第一册:第一章、第二章、第三章一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知两个非零向量)(111z y x a ,,=,)(222z y x b ,,=,则这两个向量在一条直线上的充要条件是( )。
A 、||||b b a a ::= B 、212121z z y y x x == C 、0212121=++z z y y x x D 、存在非零实数k ,使b k a =2.已知焦点在x 轴上的双曲线的焦距为32,焦点到渐近线的距离为2,则双曲线的方程为( )。
A 、1222=-y xB 、1222=-y xC 、1222=-x y D 、1222=-x y3.若直线m my x +=+2与圆012222=+--+y x y x 相交,则实数m 的取值范围为( )。
A 、)(∞+-∞, B 、)0(,-∞ C 、)0(∞+, D 、)0()0(∞+-∞,, 4.点)24(-,P 与圆422=+y x 上任一点连线的中点的轨迹方程是( )。
A 、1)1()2(22=++-y x B 、4)1()2(22=++-y x C 、1)1()2(22=-++y x D 、4)2()4(22=-++y x5.若P 、Q 分别为直线01243=-+y x 与0586=++y x 上任意一点,则||PQ 的最小值为( )。
A 、59 B 、1029 C 、518 D 、5296.已知椭圆C :12222=+b y a x (0>>b a )的左焦点1F ,过点1F 作倾斜角为 30的直线与圆222b y x =+相交的弦长为b 3,则椭圆的离心率为( )。
A 、21 B 、22 C 、43 D 、237.已知点1F 是抛物线C :py x 22=的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F 、2F 为焦点的双曲线上,则双曲线的离心率为( )。
山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间120分钟。
第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。
每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。
江苏省连云港市灌云县第一中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

灌云县第一中学高二年级上学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
1.已知数列2, 6,2 2, 10,⋯, 2n +2,⋯,则 46是这个数列的( )A. 第20项B. 第21项C. 第22项D. 第19项2.已知经过点A (1,2),B (m ,4)的直线l 的斜率为2,则m 的值为A. ―1B. 0C. 1D. 23.等比数列{a n }中,a 2=4,a 3⋅a 4=128,则a 5的值为( )A. 8B. 16C. 32D. 644.若双曲线经过点(― 3,6),且它的两条渐近线方程是y =±3x ,则此双曲线的离心率是( )A. 103 B. 113 C. 2 33 D. 1435.如图的形状出现在南宋数学家杨辉所著的《详解九章算法⋅商功》中,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球⋯⋯,设各层球数构成一个数列{a n },则a 21=( )A. 58B. 225C. 210D. 2316.已知圆C 的圆心在直线x ―y ―5=0上,并且圆C 经过圆x 2+y 2+6x ―4=0与圆x 2+y 2+ 6y ―28=0 的交点,则圆C 的圆心是( )A. (92,―12)B. (12,―92)C. (1,―4)D. (4,―1)7.已知数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,a n +1+a n =3n ,则( )A. S 19=300B. n 为奇数时,S n =3n 2+14C. S 31=720D. a 4=68.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且AF ⊥BF ,∠ABF =π12,则椭圆的离心率为( )A. 63 B. 12 C. 33 D.22二、多选题:本题共3小题,共18分。
江苏省扬州市扬州中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试卷高 二 数 学 2024.11一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆的圆心和半径分别是( )A .,1B .,3C .,2D .,22.经过两点,的直线的斜率为( )A .B .C .D .3.椭圆x 225+y 216=1的焦点为为椭圆上一点,若,则( )A .B .C .D .4.已知双曲线的离心率大于实轴长,则的取值范围是( )A .B .C .D.5.两平行直线与之间的距离为( )ABCD6.已知圆关于直线对称,则实数( )A .1或B .1C .3D .或37.已知抛物线C :y 2=2px (p >0)的焦点为,若抛物线上一点满足|MF |=2,∠OFM =60°,则( )A .3B .4C .6D .88.如图,双曲线的左右焦点分别为、,过的直线与该双曲线的两支分别交于、两点(在线段上),⊙与⊙分别为与的内切圆,其半径分别为、,则的取值范围是( )A .B .C .D .(0,+∞)二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是( )A .若,且直线不经过第二象限,则,.()()22232x y +++=()2,3-()2,3-()2,3--()2.3-(2,7)A (4,6)B 12-2-12212,,F F P 13PF =2PF =435722:1y C x m -=m (3,)+∞)+∞(0,3)320mx y --=4670x y --=22:330C x y mx y +-++=:0l mx y m +-=m =3-1-F M p =2218y x -=1F 2F 1F l A B A 1F B 1O 2O 12AF F △2ABF △1r 2r 12r r 1132⎛⎫ ⎪⎝⎭,1233⎛⎫⎪⎝⎭,1223⎛⎫ ⎪⎝⎭,0abc ≠0ax by c ++=0ab >0bc <B .方程()表示的直线都经过点.C .,直线不可能与轴垂直.D .直线的横、纵截距相等.10.已知曲线.点,,则以下说法正确的是( )A .曲线C 关于原点对称B .曲线C 存在点P,使得C .直线与曲线C 没有交点D .点Q 是曲线C 上在第三象限内的一点,过点Q 向作垂线,垂足分别为A ,B ,则.11.已知集合.由集合中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论,正确的有( )A .白色“水滴”区域(含边界)任意两点间距离的最大值为B .在阴影部分任取一点,则到坐标轴的距离小于等于3.C .阴影部分的面积为.D .阴影部分的内外边界曲线长为.三、填空题:本题共3小题,每小题5分,共15分.12.若双曲线的离心率为2,则其两条渐近线所成的锐角的大小为 .13.已知椭圆的左、右焦点分别为F 1、F 2,过点的直线交椭圆于A 、B 两点,若,则该椭圆的离心率为 .14.已知为曲线y =1+4―x 2上的动点,则的最大值为 .四、解答题:本题共5小题,共77分.解答题写出文字说明、证明过程或演算步骤.15.已知△ABC 的顶点坐标是为的中点.(1)求中线的方程;(2)求经过点且与直线平行的直线方程.16.已知双曲线C :x 2a2―y 2b 2=1(a >0,b >0)的离心率为为双曲线的右焦点,且点到直线的()()21250x y λλ++--=R λ∈()2,1m ∈R 220m x y ++=y 3310x y +-=:44C x x y y =-1F 2(0,F 124PF PF -=2y x =2y x =±45QA QB ⋅=(){}22,(cos )(sin )4,0πP x y x y θθθ=-+-=≤≤∣P 1M M 8π8π()222210,0y x a b a b -=>>22221(0)x y a b a b+=>>2F 1AB F B ⊥,14sin 5F AB ∠=(),P a b 223a b a b --++()()()2,0,6,2,2,3,A B C M --AB CM B AC ()5,,03F c F 2a x c=距离为.(1)求双曲线的方程;(2)若点,点为双曲线左支上一点,求的最小值.17.已知,是抛物线:上的两点.(1)求抛物线的方程;(2)若斜率为的直线经过的焦点,且与交于,两点,求的最小值.18.椭圆与椭圆:有相同的焦点,且经过点.(1)求椭圆的方程;(2)椭圆的右焦点为,设动直线与坐标轴不垂直,与椭圆交于不同的,两点,且直线和的斜率互为相反数.①证明:动直线恒过轴上的某个定点,并求出该定点的坐标.②求△OMN 面积的最大值.19.定义:M 是圆C 上一动点,N 是圆C 外一点,记的最大值为m ,的最小值为n ,若,则称N 为圆C 的“黄金点”;若G 同时是圆E 和圆F 的“黄金点”,则称G 为圆“”的“钻石点”.已知圆165C ()12,0A P C PA PF +()6,2A m +()24,8B m +C ()221y px p =>C ()0k k ≠l C C P Q 2PQ k +C 1C 2212x y +=31,2Q ⎛⎫ ⎪⎝⎭C C B l l C M N BM BN l x MN MN 2m n =E F -A :,P 为圆A 的“黄金点”(1)求点P 所在曲线的方程.(2)已知圆B :,P ,Q 均为圆“”的“钻石点”.①求直线的方程.②若圆H 是以线段为直径的圆,直线l :与圆H 交于I ,J 两点,对于任意的实数k ,在y 轴上是否存在一点W ,使得y 轴平分?若存在,求出点W 的坐标;若不存在,请说明理由.()()221113x y +++=()()22221x y -+-=A B -PQ PQ 13y kx =+IWJ ∠江苏省扬州中学2024-2025学年第一学期期中试卷高二数学(参考答案)2024.11参考答案:题号12345678910答案C A D A C C A C BD CD 题号11 答案ABD8.【详解】设,∴S △AF 1F 2=12r 1(8+2m )=(4+m )r 1,S △ABF 2=12r 2(2m +2p )=(m +p )r 2,.在△与△中:,即,,当双曲线的斜率为正的渐近线时,取最大,此时,,当与轴重合时,取最小,此时,经上述分析得:,.故选:C.10.【详解】当时,曲线,即;当时,曲线,即;不存在;时,曲线,即;时,曲线,即;画出图形如右:对于A ,由图可得A 错误,故A 错误;对于B ,方程是以为上下焦点的双曲线,当时,曲线C 存在点P ,使得,故B 错误;对于C ,一三象限曲线的渐近线方程为,所以直线与曲线C 没有交点,故C 正确;对于D ,设,设点在直线上,点在直线,11222,,6,2,2AF m BA p F F AF m BF m p ====+=+-()()11224m r S m S p m p r +∴==+12AF F 2AF B 122cos cos F AF F AB ∠=-∠()()()()()2222222262222224m m m p m p m p m m m pm++-++-+-=-⇒=⋅⋅+⋅+⋅-32212324444444m m r m mp m m m r p mp m m m++-∴===+++--//l m p →+∞404m m ∴-=⇒=l x m 2m =()2,4m ∈1212,23r r ⎛⎫∴∈ ⎪⎝⎭0,0x y ≥>22:44C x y =-2214y x -=0,0x y ≥<22:44C x y =--2214y x +=-0,0x y ≤≥22:44C x y -=-2214y x +=0,0x y <≤22:44C x y -=--2214y x -=2214y x -=12,F F 0,0x y ≥>214PF PF -=2y x =2y x =()00,Q x y A 2y x =B 2y x =-又点Q 是曲线C 上在第三象限内的一点,代入曲线方程可得,故D 正确;故选:CD.11.【详解】对于A ,由于,令时,整理得,解得,“水滴”图形与轴相交,最高点记为A ,则点A 的坐标为,点,白色“水滴”区域(含边界)任意两点间距离的最大值为,故A 正确;对于B ,由于,整理得:,所以,所以到坐标轴的距离为或,因为,所以,,所以到坐标轴的距离小于等于3,故B正确;对于C ,由于,令时,整理得,解得,因为表示以为圆心,半径为的圆,则,且,则在x 轴上以及x 轴上方,故白色“水滴”的下半部分的边界为以为圆心,半径为1的半圆,阴影的上半部分的外边界是以为圆心,半径为3的半圆,根据对称可知:白色“水滴”在第一象限的边界是以以为圆心,半径为2的圆弧,设,则,即AN 所对的圆心角为,同理AM 所在圆的半径为2,所对的圆心角为,阴影部分在第四象限的外边界为以为圆心,半径为2的圆弧,设,可得,DG 所对的圆心角为,同理DH 所在圆的半径为2,所对的圆心角为,故白色“水滴”图形由一个等腰三角形,两个全等的弓形,和一个半圆组成,22004455x y QA QB -⋅==22(cos )(sin )4x y θθ-+-=0x =[]32sin 0,2y yθ=-∈[1]y ∈- y (0,1)B -||1AB =22(cos )(sin )4x y θθ-+-=2cos cos 2sin sin x y αθαθ=+⎧⎨=+⎩2cos cos ,2sin sin )(M αθαθ++M ||2cos cos αθ+|2sin sin |αθ+cos [1,1],sin [0,1]θθ∈-∈2cos cos ||2cos ||cos |213|αθαθ+≤+≤+=|2sin sin ||2sin ||sin |213αθαθ+≤+≤+=M 22(cos )(sin )4x y θθ-+-=0y =[]32cos 2,2y yθ=-∈-[3,1][1,3]x ∈-- 22(cos )(sin )4x y -+-=θθ()cos ,sin Q θθ2r =13r OQ OP OQ r =-≤≤+=0πθ≤≤()cos ,sin Q θθO O ()1,0M -()1,0N 2AN AM MN ===π3π3()1,0N ()()3,0,3,0G H -π1,3ON OD OND ==∠=2π32π3所以它的面积是.轴上方的半圆(包含阴影和水滴的上半部分)的面积为,第四象限的阴影和水滴部分面积可以看作是一个直角三角形和一个扇形的面积的和,且等于所以阴影部分的面积为C 错误;对于D ,轴上方的阴影部分的内外边界曲线长为,轴下方的阴影部分的内外边界曲线长为,所以阴影部分的内外边界曲线长为,故D 正确.故选:ABD.12.13【详解】如图,设,因为,所以.由椭圆定义可知,,由,可得,所以.在Rt △F 1BF 2中,由,可得,即得,故得14.【详解】曲线,由于在曲线上,令,则,(其中),,又,,当时取得最大值15.【详解】(1)因为,所以,212π111π2π1222326S S S S ⎛=++=⨯⨯+⨯+⨯=⎝V 弓形半圆x 219π3π22⨯=2114π21π323⨯⨯+=941116π2(πππ2363++-=+x 1π4132π3223πππ2333⨯⨯+⨯⨯=+=x 111112π1(2π2π2)2π2233⨯⨯+⨯⨯-⨯⨯=13π11π8π33+=π314BF t =1AB F B ⊥,14sin 5F AB ∠=15,3AF t AB t ==21212=25,224AF a AF a t BF a BF a t =--=-=-22493AB AF BF a t t =+=-=13t a =1242,33BF a BF a ==2221212||||||F F BF BF =+222424(()33a a c =+2295c a =c e a ==9+1y =()()22141x y y +-=≥(),P a b ()2cos ,0π12sin a b θθθ=⎧≤≤⎨=+⎩()()222232cos 12sin 32cos 12sin a b a b θθθθ--++=---+++2cos 2sin 454sin 42sin 2cos 54sin θθθθθθ=--++=+-++()96sin 2cos 9θθθϕ=+-=+-sin ϕ=cos ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭[][]0,π,πθθϕϕϕ∈∴-∈-- π,02ϕ⎛⎫-∈- ⎪⎝⎭ππ,π2ϕ⎛⎫-∈ ⎪⎝⎭∴π2θϕ-=223a b a b --++9+()()2,0,6,2A B -()4,1M -故的方程是,即;(2)因为直线的斜率,所以经过点且与直线平行的直线方程为,即.16.【详解】(1)由题意知,解得,则,所以双曲线的方程为.(2)记双曲线的左焦点为,则,可得,当三点共线时,最小,且最小值为.故的最小值为.17.【详解】(1)∵,是抛物线C :上的两点,∴,则,整理得,解得, 当时,,解得,不合题意;当时,,解得.故抛物线C 方程为y 2=6x .(2)由(1)知C 的焦点为,故直线l 的方程为,联立,得,必有,设,,则,∴, ∴,即所以的最小值为18.【详解】(1)椭圆:的焦点坐标为,所以椭圆的焦点坐标也为,即得焦距为,∵椭圆过点,∴,CM 143124y x +-=+--2350x y +-=AC 303224ACk -==---B AC ()3264y x +=--34100x y +-=253165c a a c c ⎧=⎪⎪⎨⎪-=⎪⎩35a c =⎧⎨=⎩4b ==C 221916x y -=C 0F ()05,0F -0026PA PF PA PF a PA PF +=++=++0,,P F A 0PA PF +017AF =PA PF +17623+=()6,2A m +()24,8B m +()221y px p =>()()22212,848m p m p⎧+=⎪⎨+=⎪⎩()()22842m m +=+216m =4m =±4m =-()21224p m =+=113p =<4m =()212236p m =+=31p =>3,02⎛⎫⎪⎝⎭32y k x ⎛⎫=- ⎪⎝⎭2632y xy k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩()222293604k x k x k -++=0∆>()11,P x y ()22,Q x y 212236k x x k ++=2122236636k PQ x x p k k+=++=+=+222666PQ k k k +=++≥+226k k=2k =2PQ k +6+1C 2212x y +=()1,0±C ()1,0±22c =C 31,2Q ⎛⎫⎪⎝⎭24a +=∴,,∴椭圆的标准方程为.(2)①设直线:(),由,得,设M (x 1,y 1),N (x 2,y 2),所以,,所以,因为直线和的斜率互为相反数,所以,所以,所以,所以.即,所以,因为,所以,所以动直线恒过轴上的定点②由①知,,且,即,又S △OMN =12⋅|OT |⋅|y 1―y 2|=12⋅4⋅(y 1+y 2)2―4y1y 2令,则,∴S △OMN=24⋅n (3n +16)2≤24⋅n (2⋅3n⋅16)2=24⋅n 4⋅3n ⋅16=3(当且仅当时取“=”)∴(S △OMN )max =3.19.【详解】(1)因为点P 为圆A 的“黄金点”,即,所以点P的轨迹是以AP 所在曲线的方程为(2)①因为P 为圆B 的“黄金点”,则所以,即点P 在圆上,则P 是圆和的交点.因为P ,Q 均为圆“”的“钻石点”,所以直线即为圆和的公共弦所在直线,2a =b =22143x y +=l x my t =+0m ≠223412x my t x y =+⎧⎨+=⎩()2223463120m y mty t +++-=122634mt y y m +=-+212231234t y y m -=+()()()()1221121212111111MF NF y x y x y yk k x x x x -+-+=+=----()()()()1221121111y my t y my t x x +-++-=--BM BN 0MB NB k k =+()()()()12211211011y my t y my t x x +-++-=--()()1221110y my t y my t +-++-=()()1212210my y t y y +-+=()22231262103434t mtm t m m --⨯+-⨯=++()640m t -=0m ≠4t =l x ()4,0T 1222434m y y m +=-+1223634y y m =+()()22Δ24434360m m =-+⋅>24m >224==240n m =->24m n =+316n ==PA =()()2211 3.x y +++=()121PB PB +=-||3PB =()()22229x y -+-=()()22113x y +++=()()22229x y -+-=A B -PQ ()()22113x y +++=()()22229x y -+-=两圆方程相减可得,故直线的方程为.②设的圆心为的圆心为,半径为.直线的方程为,得的中点坐标为,点S 到直线,则,所以圆H 的方程为.假设轴上存在点满足题意,设,.若轴平分,则,即,整理得又,所以代入上式可得,整理得①,由可得,所以x 1+x 2=―23k k 2+1,x 1x 2=―89k 2+1,代入①并整理得,此式对任意的都成立,所以.故轴上存在点,使得轴平分.0x y +=PQ 0x y +=22(1)(1)3x y +++=(11),S --()()22229x y -+-=(2,2)T 3ST y x =PQ (0,0)0x y +==12PQ ==221x y +=y (0),W t ()()1122,,,I x y J x y 120x x ≠y IWJ ∠0IM JW k k +=12120y t y tx x --+=()()21120.x y t x y t -+-=11223,113y kx y kx =+=+211211)33(()0x kx t x kx t +-++-=()12121203kx x t x x ⎛⎫+-+= ⎪⎝⎭22131y kx x y ⎧=+⎪⎨⎪+=⎩()22281039k x kx ++-=2203k kt -+=k 3t =y ()0,3W y IWJ ∠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学第一学期期中考试二一、选择题:(共12小题,每小题5分,共60分)1.在平面直角坐标系中,已知(1,2)A -,(3,0)B ,那么线段AB 中点的坐标为( )A .(2,1)-B . (2,1)C .(4,2)-D .(1,2)-2.直线y kx =与直线21y x =+垂直,则k 等于( )A .2-B .2C .12- D .13 3.圆2240x y x +-=的圆心坐标和半径分别为( )A .(0,2),2B .(2,0),4C .(2,0),2-D .(2,0),24.在正方体1111ABCD A B C D -中,下列几种说法正确的是( )A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45 角D 、11AC 与1B C 成60 角5.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( )A .2πB .4πC .8πD .16π6.下列四个命题中错误的...是( ) A .若直线a 、b 互相平行,则直线a 、b 确定一个平面B .若四点不共面,则这四点中任意三点都不共线C .若两条直线没有公共点,则这两条直线是异面直线D .两条异面直线不可能垂直于同一个平面7.关于空间两条直线a 、b 和平面α,下列命题正确的是( )A .若//a b ,b α⊂,则//a αB .若//a α,b α⊂,则//a bC .若//a α,//b α,则//a bD .若a α⊥,b α⊥,则//a b8.20y +-=截圆224x y +=得到的弦长为( )A.1 B ... 29. 如图,一个空间几何体的主视图、左视图、俯视图均为全等的等腰直角三角形,且直角三角形的直角边长为1,那么这个几何体的体积为( )A .16B .13C .12D .1 10.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+=主视左视俯视11.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M , N 分别是圆C 1,C 2上的动点, P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4B .17-1C .6-2 2D .1712.过直线y =2x 上一点P 作圆M : (x -3)2+(y -2)2=45的两条切线l 1,l 2,A ,B 为切点,当直线l 1,l 2关于直线y =2x 对称时,则∠APB 等于( )A .30°B .45°C .60°D .90°二、填空题:(共4小题,每小题5分,共20分)13.点(2,0)到直线1y x =-的距离为______14.经过点P (1,2)的直线,且使A (2,3),B (0,-5)到它的距离相等的直线方程为15.圆2220x y x +-=和圆2240x y y ++=的位置关系是______16.将边长为1的正方形ABCD 沿对角线AC 折起,使得平面ADC ⊥平面ABC ,在折起后形成的三棱锥D ABC -中,给出下列三个命题:①面DBC 是等边三角形; ②AC BD ⊥; ③三棱锥D ABC -的.其中正确命题的序号是_________.(写出所有正确命题的序号) 三、解答题:(共6小题,共70分) 17.(本小题满分10分)如图,在OABC 中,点C (1,3).(1)求OC 所在直线的方程;(2)过点C 作CD ⊥AB 于点D ,求CD 所在直线的方程.18.(本小题满分12分)已知直线l 经过两点(2,1),(6,3). (1)求直线l 的方程; (2)圆C 的圆心在直线l 上,并且与x 轴相切于(2,0)点,求圆C 的方程.19.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,AC BC ⊥,点D 是AB 的中点. 求证:(1)1AC BC ⊥. (2)1//AC 平面1B CD .20.(本小题满分12分)已知ABC ∆中∠ACB=90°,AS=BC=1,AC=2,SA ⊥面ABC ,AD ⊥SC 于D , (1)求证: AD ⊥面SBC. (2)求二面角A-SB-C 的正弦值.21.已知等差数列{a n }满足a 3=5,a 5﹣2a 2=3,又等比数列{b n }中,b 1=3且公比q=3.(1)求数列{a n },{b n }的通项公式;(2)若c n =a n +b n ,求数列{c n }的前n 项和S n .A 1 C 1B 1 A BCD S D C B A22.(本小题满分12分)已知圆C:x2+y2-2x+4y-4=0,斜率为1的直线l与圆C交于A、B两点.(1)是否存在直线l,使以线段AB为直径的圆过原点?若存在,求出直线l的方程,若不存在,说明理由;(2)当直线l平行移动时,求△CAB面积的最大值.23.(12分)函数是定义在(﹣1,1)上的奇函数,且.(1)确定函数的解析式;(2)证明函数f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.高二数学第一学期期中考试二参考答案一、选择题:(共10小题,每小题5分)1. A;2. C;3. D;4.D ;5. B;6.C;7. D;8. B ;9. A; 10. D . 11.A12.C二、填空题:(共4小题,每小题5分)13. ; 14.4x-y-2=0或x=1; 15.相交; 16.①②.三、解答题:17. 解 (1)点O(0,0),点C(1,3),OC所在直线的斜率为.(2)在中,,CD⊥AB, CD⊥OC.CD所在直线的斜率为.CD所在直线方程为.18、解:(1)由已知,直线的斜率,所以,直线的方程为.(2)因为圆的圆心在直线上,可设圆心坐标为,因为圆与轴相切于点,所以圆心在直线上,所以,所以圆心坐标为,半径为1,所以,圆的方程为.19. 证明:(1)在直三棱柱中,平面,所以,,又,,所以,平面,所以,.(2)设与的交点为,连结,为平行四边形,所以为中点,又是的中点,所以是三角形的中位线,,又因为平面,平面,所以平面.20.(1)证明:又面又AC∩SA=A, 面…………2分∵ AD平面SAC,……………4分又面………6分(2)由(1)AD⊥面SBC,过D作DE⊥BS交BS于E,连结AE,则∠AED为二面角A-SB-C的平面角,………8分,由AS=BC=1,AC=2,得AD=,………….10分在直角△ADE中,,即二面角A-SB-C的大小为………12分.21.解答:解:(Ⅰ)设等差数列{a n}的公差为d,则由题设得,解得a1=1,d=2,∴a n=1+(n﹣1)×2=2n﹣1,∵数列{b n}是以b1=3为首项,公比为3的等比数列,∴.(Ⅱ)∵c n=a n+b n,∴,∴S n=1+3+5+7+…+(2n﹣1)+(3+32+33+…+3n)==.点评: 本题考查数列的通项公式的求法,考查数列的前n 项和的求法,解题时要认真审题,注意分组求和法的合理运用.22. (1)假设存在直线l ,设方程为y =x +m ,A (x 1,y 1),B (x 2,y 2),因此直线AB 的圆过圆点O ,所以OA ⊥OB ,即x 1x 2+y 1y 2=0.x2+y2-2x +4y -4=0y =x +m ,消去y 得2x 2+2(m +1)x +m 2+4m -4=0.Δ>0得-3-3<m <3-3.由根与系数关系得: x 1+x 2=-(m +1),x 1x 2=2m2+4m -4,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2=0.∴x 1x 2+y 1y 2=2x 1x 2+m (x 1+x 2)+m 2=0.解得m =1或-4.直线l 方程为y =x +1或y =x -4.(2)设圆心C 到直线l :y =x +m 的距离为d ,|AB |=2,S △CAB =21×2×d ==29≤29,此时d =22,l 的方程为y =x 或y =x -6.23.(12分)函数是定义在(﹣1,1)上的奇函数,且. (1)确定函数的解析式;(2)证明函数f (x )在(﹣1,1)上是增函数;(3)解不等式f (t ﹣1)+f (t )<0.考点: 奇偶性与单调性的综合.专题: 函数的性质及应用.分析: (1)根据奇函数性质有f (0)=0,可求出b ,由可求得a 值.(2)根据函数单调性的定义即可证明;(3)根据函数的奇偶性、单调性可去掉不等式中的符号“f”,再考虑到定义域可得一不等式组,解出即可.解答: 解:(1)因为f (x )为(﹣1,1)上的奇函数,所以f (0)=0,即b=0.又f ()=,所以=,解得a=1.所以f(x)=.(2)设﹣1<x1<x2<1,则f(x1)﹣f(x2)=﹣=,因为﹣1<x1<x2<1,所以x1﹣x2<0,1﹣x1x2>0,所以f(x1)﹣f(x2)<0,即f(x1)<f(x2).所以函数f(x)在(﹣1,1)上是增函数;(3)f(t﹣1)+f(t)<0可化为f(t﹣1)<﹣f(t).又f(x)为奇函数,所以f(t﹣1)<f(﹣t),f(x)为(﹣1,1)上的增函数,所以t﹣1<﹣t①,且﹣1<t﹣1<1②,﹣1<t<1③;联立①②③解得,0<t<.所以不等式f(t﹣1)+f(t)<0的解集为.。