高考专题高三数学附加题答案

高考专题高三数学附加题答案
高考专题高三数学附加题答案

高中数学学习材料 (灿若寒星 精心整理制作)

2014届高三数学《考前指导》

理科附加题

(一)矩阵与变换

例1答案:2或-2. 答案:α=????

??

-1 2.

例2答案:2.

说明:也可以通过特殊点的变换得到a ,b 的方程组.

例3答案:A -

1=????

??-1 2 2 -3 .

例4答案:(1)λ1=2,α1=??????21;λ1=3,α2=??????11;(2)????

?

?435339.

说明:(2)中出现错误的一种原因是忽视了特征值与特征向量的对应性. (二)坐标系与参数方程

例1答案:a =2,或a =-8. 例2答案:3+2.

例3∵圆心为直线ρsin (θ-)=-与极轴的交点,

∴在ρsin (θ-)=-中令θ=0,得ρ=1

圆C 的圆心坐标为(1,0) ∴圆C 经过点P (

),

∴圆C 的半径为PC=1 圆的极坐标方程为ρ=2cos θ。

例4答案:3x 2-y +6=0.

例5答案:2.

(1)倾斜角为60°(2),∴|AB|=

102

. (三)概率

例1 [解析] 本题主要考查概率的有关知识,考查运算求解能力。满分10分。 解:(1)由题设知,X 的可能取值为10,5,2,-3,且

P (X=10)=0.8×0.9=0.72, P (X=5)=0.2×0.9=0.18, P (X=2)=0.8×0.1=0.08, P (X=-3)=0.2×0.1=0.02。 由此得X 的分布列为:

X 10 5 2 -3

P

0.72

0.18

0.08

0.02

(2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件。 由题设知4(4)10n n --≥,解得14

5

n ≥

, 又n N ∈,得3n =,或4n =。

所求概率为3

344

0.80.20.80.8192P C =??+= 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192。

例2答案:(1)2;(2)8

15

(3)

ζ 0 1 2 P

25

815

115

E(ζ)=23.

例3答案:(1)2

3

(2)

ξ 2 3 4 5 P

130

215

310

815

E (ξ)=13

3.

(3)2930.

(四)空间向量与立体几何

1.建立合适坐标系(右手系)2.求平面的法向量是重要的基本功

例1答案:(13,1).例2答案:(1)515;(2)1

2

例3解:(1)建立如图所示的空间直角坐标系,则D 1(0,0,2),E (2,1,0),C (0,2,0). 设P (x ,y,2),则1D P =(x ,y,0),EP =(x -2,y -1,2), EC =(-2,1,0). 因为D 1P ⊥平面PCE ,所以D 1P ⊥EP .

D 1P ⊥EC .所以1D P ·EP =0,1D P ·

EC =0, 故????? x (x -2)+y (y -1)=0,-2x +y =0.解得?

???

?

x =0,y =0(舍去)或???

x =45

,y =85.

即P ????45,85,2,所以1D P =????45,85,0,所以D 1P =1625+6425=455

. (2)由(1)知,DE =(2,1,0),1D P =????

45,85,0,1D P ⊥平面PEC ,设DE 与平面PEC 所成

角为θ,1D P 与DE 所成角为α,则sin θ=|cos α|=

????????1D P ·DE | 1D P ||DE |=16

55·

8025

=45. 所以直线DE 与平面PEC 所成角的正弦值为4

5

.

(五)圆锥曲线与方程

例1本小题主要考查直线、抛物线及两点间的距离公式等基本知识,考查运算求解能力。满分10分。

例2解:(1)设A ????x 1,x 214,B ????x 2,x 22

4,

∵焦点F (0,1),∴AF =????-x 1,1-x 2

14,FB =???

?x 2,x 2

2

4-1. ∵AF =λFB ,∴?????

-x 1=λx 2,1-x 214=λ????x 224-1,消λ,得x 1????x 224-1+x 2????1-x 214=0. 化简整理得(x 1-x 2)????x 1x 24+1=0. ∵x 1≠x 2,∴x 1x 2=-4. ∴y 1y 2=x 2

14·x

2

24

=1. ∴OA ·

OB =x 1x 2+y 1y 2=-3. (2)证明:抛物线方程为y =14x 2,∴y ′=1

2

x .∴过抛物线A ,B 两点的切线方程分别为

y =12x 1(x -x 1)+x 214和y =12x 2(x -x 2)+x 2

24,即y =12x 1x -x 214和y =12x 2x -x 224

. 联立解出两切线交点M 的坐标为???

?x 1+x 2

2,-1.

∴FM ·AB =

????x 1+x 22,-2·????x 2-x 1,x 22-x 2

14=x 22-x 212-x 22-x 212=0(定值).

(六)数学归纳法

例1[证明] (1)由AB ,BC ,AC 为有理数及余弦定理知

cos A =AB 2+AC 2-BC 2

2AB ·AC

是有理数.

(2)用数学归纳法证明cos nA 和sin A ·sin nA 都是有理数. ①当n =1时,由(1)知cos A 是有理数, 从而有sin A ·sin A =1-cos 2A 也是有理数. ②假设当n =k (k ≥1)时,cos kA 和sin A ·sin kA 都是有理数. 当n =k +1时,由 cos(k +1)A =cos A ·cos kA -sin A ·sin kA , sin A ·sin(k +1)A =sin A ·(sin A ·cos kA +cos A ·sin kA ) =(sin A ·sin A )·cos kA +(sin A ·sin kA )·cos A , 由①及归纳假设,知cos(k +1)A 与sin A ·sin(k +1)A 都是有理数. 即当n =k +1时,结论成立.

综合①②可知,对任意正整数n ,cos nA 是有理数.

证明:(1)由二项式定理,得a n=C0n+C1n2+C2n(2)2+C3n(2)3+…+C n n(2)n,

所以a=C0n+C2n(2)2+C4n(2)4+…=1+2C2n+22C4n+…,

因为2C2n+22C4n+…为偶数,所以a是奇数.

(2)由(1)设a n=(1+2)n=a+b2(a,b∈Z),则(1-2)n=a-b2,

所以a2-2b2=(a+b2)(a-b2)=(1+2)n(1-2)n=(1-2)n.

当n为偶数时,a2=2b2+1,存在k=a2,使得a n=a+b2=a2+2b2=k+k-1,当n为奇数时,a2=2b2-1,存在k=2b2,使得a n=a+b2=a2+2b2=k-1+k,综上,对于任意n∈N*,都存在正整数k,使得a n=k-1+k.

五、热身冲刺

3.[解] (1)若两条棱

相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,

所以共有8C 2

3对相交棱. 因此P (ξ=0)=8C 23C 212=8×366=411

.

(2)若两条棱平行,则它们的距离为1或2, 其中距离为2的共有6对,

故P (ξ=2)=6C 212=666=111, P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=6

11

.

所以随机变量ξ的分布列为:

ξ 0 1 2

P (ξ) 411 611 1

11

则其数学期望E (ξ)=1×611+2×111=6+2

11

.

4.解:(Ⅰ)设点P 的坐标为(,)x y , 由FM MT =,得点M 是线段FT 的中点,则(0,)2t

M ,(,)2

t

PM x y =--, 又(2,),(1,)FT OT OF t PT x t y =-=-=---,

由PM FT ⊥,得2()02

t x t y +-=,―――――――――――①

由//PT OF ,得(1)0()10,x t y --?+-?= ∴t=y ――――②

由①②消去t ,得2

4y x =即为所求点P 的轨迹C 的方程

(Ⅱ)证明:设直线,,TA TF TB 的斜率依次为12,,k k k ,并记11(,)A x y ,22(,)B x y , 则2

t

k =-

设直线AB 方程为1x m y =+ 241y x x my ?=?=+?,得2

440y my --=,∴12124,4

y y m y y +=??

?=-? ∴2222

121212()2168y y y y y y m +=+-=+,∴

22

211222

1222

121212122222

1212()(1)()(1)

44(1)(1)44

4()4()16()3224()16

y y y t y t y y

y y y y t y y y y t t k y y y y -++-+=+++-+++-==-=+++ ∴12,,k k k 成等差数列

6.解:(1)当n=4时,符合条件的集合A 为:{}{}{}{}21,42,31,3,4,,,, ∴ (4)f =4。 ( 2 )任取偶数n x P ∈,将x 除以2 ,若商仍为偶数.再除以2 ,··· 经过k 次以后.商必为奇数.此时记商为m 。于是=2k x m ,其中m 为奇数*k N ∈。

由条件知.若m A ∈则x A k ∈?为偶数;若m A ?,则x A k ∈?为奇数。 于是x 是否属于A ,由m 是否属于A 确定。

设n Q 是n P 中所有奇数的集合.因此()f n 等于n Q 的子集个数。 当n 为偶数〔 或奇数)时,n P 中奇数的个数是

2n (1

2

n +)。 ∴()()2

1

22()=2n

n n f n n +?????

为偶数为奇数

【考点】集合的概念和运算,计数原理。

【解析】(1)找出=4n 时,符合条件的集合个数即可。 (2)由题设,根据计数原理进行求解。

相关主题
相关文档
最新文档