(通用版)高考数学二轮复习(全套)试卷汇总

(通用版)高考数学二轮复习(全套)试卷汇总

规范答题示例1 函数的单调性、极值与最值问题

典例1 (12分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;

(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.

审题路线图 求f ′(x )――――→讨论f ′(x )

的符号

f (x )单调性―→f (x )最大值―→解f (x )max >2a -2. 规范解答 · 分步得分

构建答题模板 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1

x

-a .

若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.

若a >0,则当x ∈?

??

??0,1a 时,f ′(x )>0;当x ∈? ??

??1a ,+∞时,f ′(x )

<0.

所以f (x )在?

??

??0,1a 上单调递增,在? ??

??1a ,+∞上单调递减.5分

所以当a ≤0时,f (x )在(0,+∞)上单调递增,

当a >0时,f (x )在? ????0,1a 上单调递增,在? ????1a ,+∞上单调递减.6分 (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1

a

处取得最大值,

第一步 求导数:写出函数的定义域,求函数的导数. 第二步

定符号:通过讨论确

定f ′(x )的符号. 第三步

写区间:利用f ′(x )

的符号写出函数的单调区间. 第四步

求最值:根据函数单

评分细则(1)函数求导正确给1分;

(2)分类讨论,每种情况给2分,结论1分;

(3)求出最大值给2分;

(4)构造函数g(a)=ln a+a-1给2分;

(5)通过分类讨论得出a的范围,给2分.

跟踪演练1 (2017·山东)已知函数f(x)=x2+2cos x,g(x)=e x(cos x-sin x+2x-2),其中e=2.718 28…是自然对数的底数.

(1)求曲线y=f(x)在点(π,f(π))处的切线方程;

(2)令h(x)=g(x)-af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.解(1)由题意知f(π)=π2-2.

又f′(x)=2x-2sin x,

所以f′(π)=2π.

所以曲线y=f(x)在点(π,f(π))处的切线方程为y-(π2-2)=2π(x-π).

即2πx-y-π2-2=0.

(2)由题意得h(x)=e x(cos x-sin x+2x-2)-a(x2+2cos x),

h′(x)=e x(cos x-sin x+2x-2)+e x(-sin x-cos x+2)-a(2x-2sin x)

=2e x(x-sin x)-2a(x-sin x)=2(e x-a)(x-sin x).

令m(x)=x-sin x,

则m′(x)=1-cos x≥0,

所以m(x)在R上单调递增.

因为m(0)=0,

所以当x>0时,m(x)>0;

当x<0时,m(x)<0.

①当a≤0时,e x-a>0,

当x<0时,h′(x)<0,h(x)单调递减;

当x>0时,h′(x)>0,h(x)单调递增,

所以当x=0时,h(x)取到极小值,

极小值是h(0)=-2a-1.

②当a>0时,h′(x)=2(e x-e ln a)(x-sin x),

由h′(x)=0,得x1=ln a,x2=0.

(i)当0<a<1时,ln a<0,

当x∈(-∞,ln a)时,

e x-e ln a<0,h′(x)>0,h(x)单调递增;

当x∈(ln a,0)时,

e x-e ln a>0,h′(x)<0,h(x)单调递减;

当x∈(0,+∞)时,

e x-e ln a>0,h′(x)>0,h(x)单调递增.

所以当x=ln a时,h(x)取到极大值,

极大值是h(ln a)=-a[(ln a)2-2ln a+sin(ln a)+cos(ln a)+2].

当x=0时,h(x)取到极小值,极小值是h(0)=-2a-1;

(ii)当a=1时,ln a=0,

所以当x∈(-∞,+∞)时,h′(x)≥0,

函数h(x)在(-∞,+∞)上单调递增,无极值;

(iii)当a>1时,ln a>0,

所以当x∈(-∞,0)时,e x-e ln a<0,h′(x)>0,

h(x)单调递增;

当x∈(0,ln a)时,e x-e ln a<0,h′(x)<0,h(x)单调递减;

当x∈(ln a,+∞)时,e x-e ln a>0,h′(x)>0,

h(x)单调递增.

所以当x=0时,h(x)取到极大值,

极大值是h(0)=-2a-1;

当x=ln a时,h(x)取到极小值,

极小值是h(ln a)=-a[(ln a)2-2ln a+sin(ln a)+cos(ln a)+2].

综上所述,

当a≤0时,h(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,函数h(x)有极小值,极小值是h(0)=-2a-1;

当0<a<1时,函数h(x)在(-∞,ln a)和(0,+∞)上单调递增,在(ln a,0)上单调递减,函数h(x)有极大值,也有极小值,极大值是h(ln a)=-a[(ln a)2-2ln a+sin(ln a)+cos(ln a)+2],

极小值是h(0)=-2a-1;

当a=1时,函数h(x)在(-∞,+∞)上单调递增,无极值;

当a >1时,函数h (x )在(-∞,0)和(ln a ,+∞)上单调递增,在(0,ln a )上单调递减,函数h (x )有极大值,也有极小值,极大值是h (0)=-2a -1,极小值是h (ln a )=-a [(ln a )2

-2ln a +sin(ln a )+cos(ln a )+2].

规范答题示例2 导数与不等式的恒成立问题

典例2 (12分)设函数f (x )=e mx

+x 2

-mx .

(1)证明:f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增;

(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 审题路线图 (1)求导f ′(x )=m (e mx -1)+2x →讨论m 确定f ′(x )的符号→证明结论 (2)条件转化为(|f (x 1)-f (x 2)|)max ≤e -1――――→结合(1)知

f (x )min =f (0)

?

??

??

f (1)-f (0)≤e -1,

f (-1)-f (0)≤e -1→

?

????

e m

-m ≤e -1,e -m

+m ≤e -1→构造函数g (t )=e t

-t -e +1→研究g (t )的单调性→

寻求???

??

g (m )≤0,g (-m )≤0

的条件→对m 讨论得适合条件的范围

评分细则 (1)求出导数给1分;

(2)讨论时漏掉m =0扣1分;两种情况只讨论正确一种给2分; (3)确定f ′(x )符号时只有结论无中间过程扣1分; (4)写出f (x )在x =0处取得最小值给1分;

(5)无最后结论扣1分; (6)其他方法构造函数同样给分. 跟踪演练2 已知函数f (x )=ln x +1

x

.

(1)求函数f (x )的单调区间和极值;

(2)若对任意的x >1,恒有ln(x -1)+k +1≤kx 成立,求k 的取值范围; (3)证明:ln 222+ln 332+…+ln n n 2<2n 2

-n -14(n +1) (n ∈N *,n ≥2).

(1)解 f ′(x )=-ln x

x

2,由f ′(x )=0?x =1,列表如下:

因此函数f (x )的增区间为(0,1),减区间为(1,+∞),极大值为f (1)=1,无极小值. (2)解 因为x >1,ln(x -1)+k +1≤kx ?ln (x -1)+1

x -1≤k ?f (x -1)≤k ,

所以f (x -1)max ≤k ,所以k ≥1. (3)证明 由(1)可得f (x )=ln x +1x ≤f (x )max =f (1)=1?ln x x ≤1-1

x

当且仅当x =1时取等号.

令x =n 2 (n ∈N *

,n ≥2).

则ln n 2

n 2<1-1n 2?ln n n 2<12? ?

???1-1n 2<12??????1-1n (n +1)=12? ??

??1-1n +1n +1(n ≥2),

所以ln 222+ln 332+…+ln n n 2<12? ????1-12+13+12? ????1-13+14+…+12? ????1-1n +1n +1

=12? ?

???n -1+1n +1-12=2n 2-n -14(n +1)

. 规范答题示例3 解三角形

典例3 (12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63

,B =A +π

2.

(1)求b 的值; (2)求△ABC 的面积.

审题路线图 (1)利用同角公式、诱导公式→求得sin A ,sin B →利用正弦定理求b (2)方法一余弦定理求边c →S =1

2ac sin B

方法二用和角正弦公式求sin C →S =1

2

ab sin C

评分细则 (1)第(1)问:没求sin A 而直接求出sin B 的值,不扣分;写出正弦定理,但b 计算错误,得1分.

(2)第(2)问:写出余弦定理,但c 计算错误,得1分;求出c 的两个值,但没舍去,扣2分;面积公式正确,但计算错误,只给1分;若求出sin C ,利用S =1

2ab sin C 计算,同样

得分.

跟踪演练3 已知a ,b ,c 分别为△ABC 三个内角的对边,且3cos C +sin C =3a

b

.

(1)求B 的大小;

(2)若a +c =57,b =7,求AB →·BC →

的值. 解 (1)∵3cos C +sin C =

3a

b

由正弦定理可得3cos C +sin C =

3sin A

sin B

∴3cos C sin B +sin B sin C =3sin A ?3cos C sin B +sin B sin C =3sin(B +C ) ?3cos C sin B +sin B sin C =3sin B cos C +3cos B sin C , ∴sin B sin C =3sin C cos B , ∵sin C ≠0,∴sin B =3cos B , ∴tan B =3,又0

3.

(2)由余弦定理可得

2ac cos B =a 2

+c 2

-b 2

=(a +c )2

-2ac -b 2

, 整理得3ac =(a +c )2

-b 2

,即3ac =175-49. ∴ac =42,

∴AB →·BC →=-BA →·BC → =-|BA →||BC →

|·cos B =-ac ·cos B =-21.

规范答题示例4 三角函数的图象与性质

典例4 (12分)已知m =(cos ωx ,3cos(ωx +π)),n =(sin ωx ,cos ωx ),其中ω>0,

f (x )=m·n ,且f (x )相邻两条对称轴之间的距离为π

2

.

(1)若f ? ????α2=-34,α∈?

????0,π2,求cos α的值;

(2)将函数y =f (x )的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,然后向左平移

π

6个单位长度,得到函数y =g (x )的图象,求函数y =g (x )的单调递增区间.

审题路线图 (1)f (x )=m·n ―――――→数量积运算辅助角公式得f (x )――→对称性

周期性求出ω―

―――――→()2f =α和差公式cos α

(2)y =f (x )―――→图象变换y =g (x )―――→整体思想

g (x )的递增区间

评分细则 (1)化简f (x )的过程中,诱导公式和二倍角公式的使用各给1分;如果只有最后结果没有过程,则给1分;最后结果正确,但缺少上面的某一步过程,不扣分;

(2)计算cos α时,算对cos ? ????α-π3给1分;由cos ? ????α-π3计算sin ? ????α-π3时没有考虑范围扣1分;

(3)第(2)问直接写出x 的不等式没有过程扣1分;最后结果不用区间表示不给分;区间表示式中不标出k ∈Z 不扣分;没有2k π的不给分.

跟踪演练4 (2017·山东)设函数f (x )=sin ? ????ωx -π6+sin ?

????ωx -π2,其中0<ω<3.已

知f ? ??

??π6=0.

(1)求ω;

(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位长度,得到函数y =g (x )的图象,求g (x )在??????-π4,3π4上的最小值.

解 (1)因为f (x )=sin ? ????ωx -π6+sin ? ????ωx -π2,

所以f (x )=

32sin ωx -12cos ωx -cos ωx =32sin ωx -3

2

cos ωx =3? ??

??12sin ωx -32cos ωx =3sin ? ????ωx -π3.

由题设知f ? ??

??π6=0,

所以

ωπ6

-π

3

=k π,k ∈Z , 故ω=6k +2,k ∈Z .又0<ω<3, 所以ω=2.

(2)由(1)得f (x )=3sin ?

????2x -π3, 所以g (x )=3sin ?

??

??x +π4-π3=3sin ?

??

??x -π12

.

因为x ∈??????-π4,3π4,所以x -π12∈??????-π3,2π3, 当x -π12=-π3,即x =-π4时,g (x )取得最小值-3

2

.

规范答题示例5 数列的通项与求和问题

典例5 (12分)下表是一个由n 2

个正数组成的数表,用a ij 表示第i 行第j 个数(i ,j ∈N *

).已

知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.且a 11=1,a 31+a 61=9,a 35=48.

a 11 a 12 a 13 … a 1n a 21 a 22 a 23 … a 2n a 31 a 32 a 33 … a 3n

… … … … …

a n 1 a n 2 a n 3 … a nn

(1)求a n 1和a 4n ; (2)设b n =

a 4n (a 4n -2)(a 4n -1)

+(-1)n ·a n 1(n ∈N *

),求数列{b n }的前n 项和S n .

审题路线图

数表中项的规律―→确定a n 1和a 4n ――→化简b n 分析b n 的特征――→

选定求和方法

分组法及裂项法、公式法求和

=1-12n +1-1-n +12=1-n 2-1

2n +1-1.12分

项估算结果.

评分细则 (1)求出d 给1分,求a n 1时写出公式结果错误给1分;求q 时没写q >0扣1分; (2)b n 写出正确结果给1分,正确进行裂项再给1分; (3)缺少对b n 的变形直接计算S n ,只要结论正确不扣分; (4)当n 为奇数时,求S n 中间过程缺一步不扣分.

跟踪演练5 (2017·山东)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;

(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列????

??

b n a n 的前

n 项

和T n .

解 (1)设{a n }的公比为q , 由题意知a 1(1+q )=6,a 2

1q =a 1q 2

又a n >0,由以上两式联立方程组解得a 1=2,q =2, 所以a n =2n

.

(2)由题意知S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,

又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.

令c n =b n a n ,则c n =2n +12

n ,

因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +1

2n ,

又12T n =322+523+724+…+2n -12n +2n +1

2n +1, 两式相减得

12T n =32+? ????12+1

22+…+12n -1-2n +12n +1=32+12? ?

??

?1-12n -11-12-2n +12n +1=52-2n +52

n +1,

所以T n =5-2n +5

2

n .

规范答题示例6 空间中的平行与垂直关系

典例6 (12分)如图,四棱锥P —ABCD 的底面为正方形,侧面PAD ⊥底面ABCD ,PA ⊥AD ,E ,F ,H 分别为AB ,PC ,BC 的中点.

(1)求证:EF ∥平面PAD ; (2)求证:平面PAH ⊥平面DEF . 审题路线图

(1)条件中各线段的中点――――→设法利用中位线定理取PD 的中点M ――――――→考虑平行关系

长度关系

平行四边形AEFM ―→AM ∥EF ――――→线面平行

的判定定理EF ∥平面PAD

(2)平面PAD ⊥平面ABCDPA ⊥AD ――――→面面垂直的性质PA ⊥平面ABCD ―→PA ⊥DE ――――――――→正方形ABCD 中E ,H 为AB ,BC 中点

DE ⊥AH ―――――→线面垂直的判定定理DE ⊥平面PAH ――――→面面垂直的

判定定理平面PAH ⊥平面DEF

规范解答·分步得分

构建答题模板 证明 (1)取PD 的中点M ,连接FM ,AM .

∵在△PCD 中,F ,M 分别为PC ,PD 的中点,∴FM ∥CD 且FM =12

CD .

∵在正方形ABCD 中,AE ∥CD 且AE =1

2CD ,

∴AE ∥FM 且AE =FM , 则四边形AEFM 为平行四边形, ∴AM ∥EF ,4分

∵EF ?平面PAD ,AM ?平面PAD , ∴EF ∥平面PAD .6分

(2)∵侧面PAD ⊥底面ABCD ,PA ⊥AD ,侧面PAD ∩底面ABCD =AD , ∴PA ⊥底面ABCD ,∵DE ?底面ABCD ,∴DE ⊥PA . ∵E ,H 分别为正方形ABCD 边AB ,BC 的中点, ∴Rt △ABH ≌Rt △DAE ,

则∠BAH =∠ADE ,∴∠BAH +∠AED =90°,∴DE ⊥AH ,8分 ∵PA ?平面PAH ,AH ?平面PAH ,PA ∩AH =A ,∴DE ⊥平面PAH , ∵DE ?平面EFD ,∴平面PAH ⊥平面DEF . 12分 第一步

找线线:通过三角形或

四边形的中位线、平行四边形、等腰三角形的中线或线面、面面关系的性质寻找线线平行或线线垂直.

第二步

找线面:通过线线垂直或平行,利用判定定理,找线面垂直或平行;也可由面面关系的性质找线面垂直或平行. 第三步

找面面:通过面面关系的判定定理,寻找面面垂直或平行. 第四步

写步骤:严格按照定理中的条件规范书写解题步骤.

评分细则 (1)第(1)问证出AE 綊FM 给2分;通过AM ∥EF 证线面平行时,缺1个条件扣1分;利用面面平行证明EF ∥平面PAD 同样给分;

(2)第(2)问证明PA ⊥底面ABCD 时缺少条件扣1分;证明DE ⊥AH 时只要指明E ,H 分别为正方形边AB ,BC 的中点得DE ⊥AH 不扣分;证明DE ⊥平面PAH 只要写出DE ⊥AH ,DE ⊥PA ,缺少条件不扣分.

跟踪演练6 如图,在三棱锥V —ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点. (1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V —ABC 的体积.

(1)证明 因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB ,

又因为VB ?平面MOC ,OM ?平面MOC , 所以VB ∥平面MOC .

(2)证明 因为AC =BC ,O 为AB 的中点,所以OC ⊥AB .

又因为平面VAB ⊥平面ABC ,平面VAB ∩平面ABC =AB ,且OC ?平面ABC , 所以OC ⊥平面VAB .

又OC ?平面MOC ,所以平面MOC ⊥平面VAB . (3)解 在等腰直角三角形ACB 中,AC =BC =2, 所以AB =2,OC =1,

所以等边三角形VAB 的面积S △VAB = 3. 又因为OC ⊥平面VAB .

所以三棱锥C —VAB 的体积等于13·OC ·S △VAB =3

3,

又因为三棱锥V —ABC 的体积与三棱锥C —VAB 的体积相等, 所以三棱锥V —ABC 的体积为

33

. 规范答题示例7 空间角的计算问题

典例7 (12分)如图,AB 是圆O 的直径,C 是圆O 上异于A ,B 的一个动点,DC 垂直于圆O 所在的平面,DC ∥EB ,DC =EB =1,AB =4. (1)求证:DE ⊥平面ACD ;

(2)若AC =BC ,求平面AED 与平面ABE 所成的锐二面角的余弦值. 审题路线图 (1)

(2)

CA ,CB ,CD 两两垂直―→建立空间直角坐标系―→写各点坐标―→

求平面AED 与平面ABE 的法向量―→将所求二面角转化为两个向量的夹角

规范解答·分步得分

构建答题模板

(1)证明 ∵DC ⊥平面ABC ,BC ?平面ABC ,∴DC ⊥BC , 又AB 是⊙O 的直径,C 是⊙O 上异于A ,B 的点,∴AC ⊥BC , 又AC ∩DC =C ,AC ,DC ?平面ACD ,∴BC ⊥平面ACD , 又DC ∥EB ,DC =EB ,∴四边形BCDE 是平行四边形, ∴DE ∥BC ,∴DE ⊥平面ACD .4分

(2)解 在Rt △ACB 中,AB =4,AC =BC , ∴AC =BC =22,

如图,以C 为原点建立空间直角坐标系,

则A (22,0,0),D (0,0,1),B (0,22,0),E (0,22,1),AD →=(-22,0,1),DE →=(0,22,0),

AB →

=(-22,22,0),BE →

=(0,0,1).6分 设平面ADE 的一个法向量为n 1=(x 1,y 1,z 1), 则???

??

n 1·AD →=-22x 1+z 1=0,

n 1·DE →=22y 1=0,令x 1=1,得n 1=

(1,0,22),

设平面ABE 的一个法向量为n 2=(x 2,y 2,z 2), 则???

??

n 2·AB →=-22x 2+22y 2=0,

n 2·BE →=z 2=0,令x 2=1,得n 2=

(1,1,0).

第一步

找垂直:找出(或作出)具有公共交点的三条两两垂直的直线.

第二步

写坐标:建立空间直角坐标系,写出特征点坐标. 第三步

求向量:求直线的方向向量或平面的法向量. 第四步

求夹角:计算向量的夹角. 第五步

得结论:得到所求两个平面所成的角或直线和平面所成的角.

10分

∴cos〈n1,n2〉=n1·n2

|n1||n2|=

1

32

2

6

.

∴平面AED与平面ABE所成的锐二面角的余弦值为

2

6

.12分

评分细则(1)第(1)问中证明DC⊥BC和AC⊥BC各给1分,证明DE∥BC给1分,证明BC⊥平面ACD时缺少AC∩DC=C,AC,DC?平面ACD,不扣分.

(2)第(2)问中建系给1分,两个法向量求出1个给2分,没有最后结论扣1分,法向量取其他形式同样给分.

跟踪演练7 (2017·山东)如图,几何体是圆柱的一部分,它是由矩形

ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是DF的

中点.

(1)设P是CE上的一点,且AP⊥BE,求∠CBP的大小;

(2)当AB=3,AD=2时,求二面角E—AG—C的大小.

解(1)因为AP⊥BE,AB⊥BE,

AB,AP?平面ABP,AB∩AP=A,

所以BE⊥平面ABP.

又BP?平面ABP,

所以BE⊥BP,又∠EBC=120°,

所以∠CBP=30°.

(2)方法一取EC的中点H,连接EH,GH,CH.

因为∠EBC=120°,

所以四边形BEHC为菱形,

所以AE=GE=AC=GC=32+22=13.

取AG的中点M,连接EM,CM,EC,

则EM⊥AG,CM⊥AG,

所以∠EMC为所求二面角的平面角.

又AM=1,所以EM=CM=13-1=2 3.

在△BEC中,由于∠EBC=120°,

由余弦定理得EC2=22+22-2×2×2×cos 120°=12,

所以EC=23,因此△EMC为等边三角形,

故所求的角为60°.

方法二 以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系. 由题意得A (0,0,3),E (2,0,0),

G (1,3,3),C (-1,3,0),

故AE →=(2,0,-3),AG →=(1,3,0),CG →

=(2,0,3), 设m =(x 1,y 1,z 1)是平面AEG 的一个法向量. 由???

??

m · AE →=0,

m ·AG →=0,

可得??

?

2x 1-3z 1=0,

x 1+3y 1=0.

取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2). 设n =(x 2,y 2,z 2)是平面ACG 的一个法向量. 由???

??

n ·AG →=0,

n ·CG →=0,

可得??

?

x 2+3y 2=0,

2x 2+3z 2=0.

取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).

所以cos 〈m ,n 〉=m ·n |m ||n |=1

2

.

因此所求的角为60°.

规范答题示例8 直线与圆锥曲线的位置关系

典例8 (12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为3

2

且点? ????3,12在椭圆C 上.

(1)求椭圆C 的方程;

(2)设椭圆E :x 24a 2+y 2

4b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,

B 两点,射线PO 交椭圆E 于点Q .

①求|OQ ||OP |

的值;②求△ABQ 面积的最大值.

审题路线图 (1)椭圆C 上点满足条件―→得到a ,b 的关系式―――――――→已知离心率e =

3

a 2=

b 2+

c 2

基本量法求得椭圆C 的方程

(2)①P 在C 上,Q 在E 上――→P ,Q 共线设坐标代入方程―→求出|OQ ||OP |

②直线y =kx +m 和椭圆E 的方程联立――→通法

研究判别式Δ并判断根与系数的关系―→ 用m ,k 表示S △OAB ―→求S △OAB 的最值――――――――→利用①得S △ABQ 和S △OAB 的关系

得S △ABQ 的最大值

评分细则 (1)第(1)问中,求a 2

-c 2

=b 2

关系式直接得b =1,扣1分;

(2)第(2)问中,求|OQ |

|OP |时,给出P ,Q 的坐标关系给1分;无“Δ>0”和“Δ≥0”者,每处

扣1分;联立方程消元得出关于x 的一元二次方程给1分;根与系数的关系写出后再给1分;求最值时,不指明最值取得的条件扣1分.

跟踪演练8 (2017·全国Ⅰ)已知椭圆C :x 2a 2+y 2

b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),

P 3? ????-1,

32,P 4?

?

???1,32中恰有三点在椭圆C 上. (1)求C 的方程;

(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.

(1)解 由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+3

4b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.

因此?????

1b 2=1,1a 2

+3

4b 2

=1,

解得?

????

a 2

=4,

b 2

=1.

故椭圆C 的方程为x 2

4

+y 2

=1.

(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.

如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为? ?

???t ,4-t 2

2,

?

?

???t ,-4-t 2

2,则k 1+k 2=

4-t 2-22t -4-t 2+22t =-1, 得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 2

4+y 2

=1,

得(4k 2

+1)x 2

+8kmx +4m 2

-4=0, 由题设可知Δ=16(4k 2

-m 2

+1)>0. 设A (x 1,y 1),B (x 2,y 2),

则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2

-4

4k 2+1.

而k 1+k 2=y 1-1x 1+y 2-1x 2

kx 1+m -1x 1+kx 2+m -1x 2

=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2

. 由题设k 1+k 2=-1,

故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2

-44k 2+1+(m -1)·-8km

4k 2+1=0,

解得k =-

m +1

2

.

当且仅当m >-1时,Δ>0, 于是l :y =-m +1

2

x +m ,

即y +1=-

m +1

2

(x -2),

所以l 过定点(2,-1).

规范答题示例9 解析几何中的探索性问题

典例9 (12分)已知定点C (-1,0)及椭圆x 2

+3y 2

=5,过点C 的动直线与椭圆相交于A ,B 两点.

(1)若线段AB 中点的横坐标是-1

2

,求直线AB 的方程;

(2)在x 轴上是否存在点M ,使MA →·MB →

为常数?若存在,求出点M 的坐标;若不存在,请说明理由.

审题路线图 (1)设AB 的方程y =k (x +1)→待定系数法求k →写出方程 (2)设M 存在即为(m ,0)→求MA →·MB →→在MA →·MB →

为常数的条件下求m →下结论

评分细则 (1)不考虑直线AB 斜率不存在的情况扣1分; (2)不验证Δ>0,扣1分;

(3)直线AB 方程写成斜截式形式同样给分; (4)没有假设存在点M 不扣分;

(5)MA →·MB →

没有化简至最后结果扣1分,没有最后结论扣1分.

相关主题