新课标全国卷_2014年_高考数学真题(文科数学_卷2)(附答案)_历年历届试题

合集下载

2014年普通高等学校招生全国统一考试(全国新课标Ⅱ卷)数学试题(文科)解析版

2014年普通高等学校招生全国统一考试(全国新课标Ⅱ卷)数学试题(文科)解析版

2014年新课标II 卷数学试卷(文科)第I 卷一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.设集合A ={-2,0,2},20{|2=}B x x x =--,则A B ⋂=( )A . ∅B . {2}C . {0}D . {-2}【答案解析】B. 解析:把-2,0,2代人202x x --=验证,只有2满足不等式,故选B.考点:考查集合的知识,简单题.2. 113ii +-= ( ) A . 1+2iB .-1+2iC .1-2iD .-1-i 【答案解析】B. 解析:13(13)(1)121(124)2(1)i i i i i i i i +++===-++-+-- 故选B.考点:考查复数的基本知识,简单题.3.函数()f x 在0x x =处导数存在,若00:()0,:p f x q x x ==是()f x 的极值点,则()A . p 是q 的充分必要条件B . p 是q 的充分条件,但不是q 的必要条件C . p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,也不是q 的必要条件【答案解析】C.解析:极值点必为导函数的根,而导函数的根不一定是极值点,即,q p p q ⇒⇒/ 从而p 是q 的必要但不充分的条件故选C.考点:考查充要条件与极值的基础知识,简单题. 4. 设向量,a b 满足10a b +=,6a b -=,则a b ∙=( ) A . 1 B .2C . 3D .5【答案解析】A .解析:||10,6|4=41=+=-=∴+⋅+⋅+∴⋅∴⋅=-=2222a b a b a 2a b b a 2a b b a b a b故选A .考点:考查平面向量的数量积,中等题.5.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S = ( )A . (n 1)n + )B . (n 1)n -C . (n )21n +D .(n 1)2n - 【答案解析】A .解析:∵数列{}n a 是等差数列,公差等于2∴2141812,6,14a a a a a a =+=+=+∵248,,a a a 成等比数列∴22428111()6)214()(a a a a a a ⋅⇒=++=+解得122(221)n a a n n ==+-⇒⋅= ∴(1)(222)=n n n S n n ⋅=++ 故选A .考点:考查等差数列的通项公式与求和公式,中等题.6.如图,网格纸上正方形小格子的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛胚切削而得到,则切削掉部分的体积与原来毛胚体积的比值为( )A .1727 B . 59C . 1027D .13 【答案解析】C.解析:毛胚的体积23654V ππ⋅⋅==制成品的体积 221322434V πππ⋅⋅+⋅⋅==∴切削掉的体积与毛胚体积之比为: 134********V V ππ-=-= ,故选C. 考点:考查三视图于空间几何体的体积,中等题.7.正三棱柱111ABC A B C -的底面边长为2,D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1 D【答案解析】C.解析: ∵正三棱柱的底面边长为2,D 为BC 中点∴AD ==∵1112,BC CC =∴1111111222B DC B C S C C ⋅=⋅⋅==∴111111133AB C B DC V S AD ⋅⋅=== .故选C. 考点:考查空间点,线,面关系和棱锥体积公式,中等题.8.执行右图的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7【答案解析】D.解析:第1次循环M=2,S=5,k=1第2次循环,M=2,S=7,k=2第3次循环k=3>2,故输出S=7,故选D.考点:考查算法的基本知识,简单题.9.设x ,y 满足约束条件0103310x y x y x y ≥⎧⎪--≤⎨⎪-+≥-⎩+,则z =2x +y 的最大值为( )A . 8B . 7C .2D .1【答案解析】A .解析:作图即可.考点:考查二元一次不等式组的应用,中等题.10.设F 为抛物线23C y x =:的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB | =( )A .B .6C .12 D.【答案解析】C.解析:∵23y x =∴抛物线C 的焦点的坐标为:()3,04F所以直线AB 的方程为:330an )t (4y x ︒-=故23()343x y y x ⎧==-⎪⎨⎪⎩从而2122161689012x x x x -+=+=⇒ ∴弦长12||=3122x x AB ++= 故选C.考点:考查抛物线的几何性质,弦长计算以及分析直线和圆锥曲线位置关系的能力,难度为中等题.11.若函数()ln f x kx x =-在区间(1,)+∞上单调递增,则k 的取值范围是( )A .(],2-∞-B . (],1-∞-C . [2)∞,+D . [1)∞,+ 【答案解析】D.解析:()ln f x kx x =-1()(0)f x k x x∴'=-> ()f x 在区间(1,)+∞上递增()f x ∴在区间(1,)+∞上恒大于等于0,11()0((1,))x k k x x f x ∴'=-≥⇒≥∀∈+∞ 1k ∴≥故选D.考点:考查导数与函数单调性的关系.中等题.12.设点0(,1)M x ,若在园22:1O x y +=上存在点N ,使得∠OMN =45°,则0x 的取值范围是( )A .[]1,1-B .[]11,22-C .[ D .[ 【答案解析】A .解析:设N 点的坐标为,s (cos )in θθ(1)当00,1x ≠± 时∵0(,1)M x 点的坐标为∴OM ,MN 的斜率分别为:001s n c s ,i o 1OM MN k x k x θθ-==- ∵45OMN ∠=︒ ∴1tan 45()1MN OM MN OM MN OM MN OMk k k k k k k k -︒=±⇒=-++± 即000011sin 1()11sin cos cos ()x x x x θθθθ--±-=--+⋅* 取正号时,化简(*)式得:2000(1)sin 11()cos x x x θθ+-=++取负号化简(*)式得:2000(1)sin 1(1)cos x x x θθ++=+-200)1x θϕ+=+2400011||1x x x ≥+⇒≤⇒≤故0||<1x 且00x ≠(2)当00x =时,取(1,0)N ,此时满足题设.(3)当01x =±时,取(0,1)N ,此时也满足题设.综上所述,011x -≤≤ ,故选A .从上面解法可以看到选择N 的几个特殊位置观察,即可以猜出答案,这样就可以简化解法. 考点:考查应用斜率与倾斜角的概念,直线方程,园的方程,分析问题的能力.困难题.第II 卷二、填空题(本大题共4小题,每小题5分,共20分)13.甲乙两名运动员各自从红,白,蓝3种颜色的运动服从选择1种,则他们选择相同颜色的运动服的概率为 . 【答案解析】1.3 解析:1.3333P =⋅= 考点:考查古典概型的概念.简单题.14.函数()sin(2si c s )n o f x x x ϕϕ=+-的最大值为 .【答案解析】1解析:因为cos sin 2sin c ()sin s o co s x x f x x ϕϕϕ-=+si s n in cos s n c (o i )s x x x ϕϕϕ==--所以最大值为1.考点:考查和差角公式,简单题.15.偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)= .【答案解析】3解析:因()f x 是偶函数,所以(1)(1)f f -= ,因()f x 关于2x =,所以(1)(2)(332)1f f f ⋅-=== .考点:考查偶函数的概念,轴对称的概念.简单题.16.数列{}n a 满足111n na a +=-,22a =,则1a = . 【答案解析】12解析:∵111n na a +=- ,22a =∴12111112112a a a a =⇒-==⇒- 考点:考查递推数列的概念,简单题.三、解答题(本大题共8小题)17.(12分)四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(I) 求C 和BD ;(II)求四边形ABCD 的面积.【答案解析】解析:(I )1,3,2,180AB BC CD DA A C ====+=︒2222cos BD BC CD B C C CD ∴⋅=+-222cos(180-)2AD AB BD AB AD C +-=⋅︒22222332cos 112co 222s C C ∴+⋅⋅=⋅⋅-++1cos 602C C ∴=⇒=︒22222332cos607BD BD ∴+⋅⋅︒=⇒-==(II)由(I ) 得,四边形ABCD 的面积S =11sin sin 22AB AD A BC DC C ⋅+⋅⋅1112sin(18060)23sin 6022⋅⋅︒-︒+⋅⋅︒==考点:考查余弦定理的应用,中等题.18.(12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,D A BC P A ⊥平面,E 为PD 中点. (I)证明:PB ||平面AEC ;(II)设AP =1,AD =P-ABD的体积4V =,求A 到平面PBC 的距离. 【答案解析】解析:(I)连接EF ,因为四边形ABCD 是矩形,故F 为AC 中点,又因为E 为PD 中点,故EF 是△PBD 的中位线,从而||EF PB ,故||.PB AEC 面(II)设AB=a,因1AD PA ==则1111()(132324P ABD V AB AD PA a -⋅⋅⋅=⋅⋅==所以32a =过A 作AG 垂直PB 于G.因为,,ABCD BC ABCD PA A C P B ⊥⊂⇒⊥面面又因为AB BC ⊥所以BC PAB ⊥面 ,又BC PBC ⊂面故 PAB A PBC G PBC ⊥⇒⊥面面面所以AG 为点A 到面PBC 的距离.因PB ===所以112213PA AB PB AG PA AB AG PB ⋅⋅=⋅⇒==故点A 到面PBC 的距离为13. 考点:考查空间点线面的位置关系与空间距离.中等题.19.(12分)某市为了考核甲乙两部门的工作情况,随机访问了50位市民,根据这50为市民对这两部门的平分(评分越高表明市民的评价越高),绘制茎叶图如下:(I)分别估计该市的市民对甲,乙两部门评分的中位数;(II)分别估计该市的市民对对甲,乙两部门的评分高于90的概率;(III)根据茎叶图分析该市的市民对甲,乙两部门的评价.【答案解析】解析:(I)甲部门的得分共50个,50个数字从小到大排列起来位于中间位置的数为第25,第26个数,它们分别是:75,75,故甲部门得分的中位数是75.乙部门的得分也是50个数,它们从小到大排列起来的第25,26个数字分别是:66,68,故乙部门的中为数为6668627+=. (II)市民对甲,乙两部门的评分各有n =50个,对甲部门评分高于90分的分数有m =5个,对乙部门的评分高于90分的s =8个,故对甲部门评分高于90分的概率为5500.1m n ==,对乙部门的评分高于90的概率为8500.16n s ==.(III )观察茎叶图的形状,甲的分数在茎6,7处形成单峰,出现在这里面的数据频率为3450,其中位数为75,乙的分数在茎5,6,7处形成单峰,出现在这个单峰里面的数据频率为2950,中位数为67.因为3450>2950,75>67,这说明市民对甲部门的评价基本在75分附近,对乙部门的评价基本在67分左右.整体看市民对甲部门的评价更好.考点:考查使用茎叶图及样本的数字特征估计总体的能力,中等题.20. (12分)设12,F F 分别是椭圆22221(0):x y C a a b b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点是N .(I)若直线MN 的斜率为34,求C 的离心率; (II)若直线MN 在y 轴上的截距为2,且1|MN |5||F N =,求a ,b .【答案解析】解析:解析:(I )∵2MF x ⊥轴(不妨设M 在x 轴的上方)∴M 的坐标满足方程组222221(,)x b M c a a y b x c ⎧⎪⇒⎨⎪⎩=+= ∵MN 的斜率为34∴2234322b a ac cb =⇒= ∵222222()3a c a a c c b =-⇒-= 又∵222(1)32320c e e e e e a⇒+-⇒-=== ∴椭圆离心率为12e = . (II)∵MN 在y 轴上的截距为2,O 为12,F F 的中点∴M 的坐标为(c ,4)(不妨设M 在x 轴的上方)由(I )得24b a= (*) ∵1||5||MN NF =∴11||4||MF NF = 作1NF x ⊥轴于T ,由于△1NTF ∽ △12MF F ,故有24,4M N N y c y c x =--=- ∴321,14N M N y y c x =-=-=- ,即,3()12c N -- 把N 点的坐标代人椭圆方程得:2221419c a b+= ∴2222222)111(9(9544**)4a b b a b a b +=⇒-=- 把(*)与(**)联立得:7a b ==⎧⎪⎨⎪⎩考点:考查椭圆的几何性质以及直线与椭圆的位置关系,难题.21. (12分)已知函数32()32f x x x ax =-++.曲线y =f(x)在点(0,2)处的切线与x 轴交点的横坐标为-2.(I) a ;(II)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.【答案解析】解析:(I )32232))36((f x x f x ax x a x x =⇒'=-++-+∵切点为(0,2),切线过点(-2,0) ∴切线的斜率为22100---= ∴(0)1a f '==(II)由(I )知,1a =,故32()32f x x x x =-++记32()()(2)3(1)4g x f x kx x x k x =--=-+-+ ,∴2()36(1)x g x x k -+-'=∴3612(1)2412k k ∆=+-=+(1)当210k ∆≥≤-<即时由1()0g x x ='=⇒2x =21k -≤<∴1201,12x x ≤≤<<∴1()0x x g x '≥⇔< 或2x x >12()0x x g x x '≤⇔<<∴()g x 在区间12(),,,()x x -+∞∞ 上递增,在区间12(,)x x 上递减∴()g x 的极小值为322222()3(1)4g x x x k x =-+-+ ∵222222261()31230g x k k x x x x -+--⇒==-'= ∴22222222()(2)(1)4g x x x x x k x =--+-+ 222222221(1)42(1)34(123)x k x x k x k x x -=+-+=-+-≤-<⋅- 记222(1)4(12)()2((1)33)k x x x h x h k x x -+≤=---<⇒'=-- 由2210(1)23k k -≤<⇒<--≤,由41222x x ≤⇒-<-≤-< ∴2(1)0()0342k x x h -≤⇒'-<-≤- ∴()h x 在区间[1,2)递减2()(2)(1)03h x h k ⇒≥=--> ∴2212()g()()(00)g x h x x x g ⇒≥>>= (∵12(,)x x 是减区间)∴当21k -≤<时,方程()0g x =只有一根.(2) 当20k ∆<<-即时,有26(0))3(1g x k x x -+-=>',从而()g x 在R 上递增∴当2k <-时,方程()0g x =只有一根.综上所述,方程()0g x =在R 上只有一根,即曲线()f x 直线2y kx =-只有唯一交点. 考点:考查利用导数综合研究函数性质的能力,难度压轴题.22.(10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,PC =2PA ,D 为PC 中点,AD 的延长线交O 于点E ,证明:(I) BE =EC(II) 22DE B AD P ⋅=【答案解析】解析:(I)连接OA ,OD 交BC 于F ,设PAD α∠=,因PA 是O 的切线,则90-EAO OEA α∠=∠=︒∵2,2PC PA PC PD ==∴P A D P PD A ⇒=是等腰三角形∴ PDA EDF α∠=∠=∵(90)90EDF OEA αα∠+∠=+︒-=︒∴OE BC ⊥故OE 平分弧BC ,从而BE = EC.(II)∵2,2PC PC PA D PB P ⋅==∴22PA PB PD ⋅= 由(I )知PD PA =∴222PA PA PB PB PA ⋅⇒==∴()()DE BD DC BD PA PD PB PA A PA D PA PB ⋅=⋅=⋅=-⋅=-⋅ 2()PA PB PC PA PB PC PA PA PB PB ⋅=⋅-⋅=⋅-=-()PC PD PB DC PB PA PB ⋅-=⋅=⋅=把2PA PB =代人上式,得222PA PB B P PB P B ⋅=⋅=∴22DE B AD P ⋅= 考点:考查与园有关的角的知识和圆幂定理的应用.难度中等.23. (10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为 2cos ,[0,]2πρθθ=∈.(I)求C 的参数方程(II)设点D 在C 上,C 在D 处的切线与直线2:l y =+垂直,根据(I)中你得到的参数方程,确定D 的坐标.【答案解析】解析:(I )∵极坐标方程为2cos ,[0,]2πρθθ=∈∴22cos ρρθ=∴对应的普通方程为:220()02x y x y =≥+- ,即22(01)1()x y y -+=≥∴对应的参数方程为[0,]sin 1cos ,x y ϕϕπϕ⎧∈=+⎨=⎩(II)设半圆的圆心为A ,则A (1,0),又由(I )知,可以设D 点坐标为(1cos n ),si ϕϕ+ ∴直线DA 的斜率tan k ϕ=∵切线与直线2y =+垂直∴tan 3([0,])πϕϕϕπ⇒=∈∴,sin 231cos ϕϕ==+ 即D点坐标为3(2 考点:本题考查园的极坐标方程参数方程以及参数方程的简单应用,难度中等题.24. (10分)选修4-5:不等式选讲设函数()||||()10af x x x a a =++->. (I)证明:()2;f x ≥(II)若(3)5f <,求a 的取值范围.【答案解析】解析:(I )∵()||||()10af x x x a a =++-> ∴1111,2x ,(12),a a a a x f x a a a x a x x a a ⎧⎪⎪⎪+-≤≤⎨-+-<-=⎪⎪-+>⎪⎩∴()f x 在递增(,)a +∞,在递减(-1)a ∞,-,在[]1,aa -上为常数 ∴()f x的最小值为()(11)2f a f a a a ≥-=+== ∴()2f x ≥(II )(1)当3a ≥时,1(3)5f a a+<=∴25522510a a a ⇒<<-+<∴523a ≤< (2)当03a <<时,2(3)61510f a a a a <⇒-+-->=∴12a < 或12a >+3a <<综上所述52a +∈ 考点:考查带有绝对值的不等式的应用能力,考查函数与不等式的关系,中等题.。

2014年2014年普通高等学校招生全国统一考试(新课标II卷)文科数学试题与答案解析完整版

2014年2014年普通高等学校招生全国统一考试(新课标II卷)文科数学试题与答案解析完整版

3
关注我们:新浪微博@兰州新拓
qq 群号:99839070
(19)(本小题满分 12 分) 某市为了考核甲、乙两部门的工作情况,随机访问了 50 位市民。根据这 50 位市民评分的茎叶 图,请回答下列问题。
(I)分别估计该市的市民对甲、乙部门评分的中位数; (II)分别估计该市的市民对甲、乙部门的评分大于 90 的概率; (III)根据茎叶图分析该市的市民对甲、乙两部门的评价。
请考生在第 22、23、24 题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写 清题号。 (22)(本小题满分 10 分)选修 4-1:几何证明选讲 如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线 PBC 与⊙O 相交于点 B,C,PC=2PA,D 为 PC 的中点,AD 的延长线交⊙O 于点 E,证明: (I)BE=EC; 2 (II)AD·DE=2PB 。
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目 要求的。 (1)已知集合 A=﹛-2,0,2﹜,B=﹛ x | (A) (2) (B) 2 - x - 2 0 ﹜,则 AB= (C) 0 (D)
2
1 3i 1 i (A) 1 2i
3.解析因为 f x 在 x x0 处可导, 所以若 x x0 是 f x 的极值点, 则 f x0 0 , 所以 q p , 故 p 是 q 的必要条件;反之,以 f x x 3 为例, f 0 0 ,但 x 0 不是极值点,所以 p q, 故 p 不是 q 的充分条件.故选 C. 4. 解 析 因 为 a b 10 , 所 以 a 2 2a b b 2 10 . ① 又 a b

2014年高考文科数学全国卷2及答案

2014年高考文科数学全国卷2及答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)文科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2,{2}0,A -=,2{|20}B x x x =--=,则A B =( )A .∅B .{2}C .{0}D .{2}- 2.13i =1i+-( )A .12i +B .12i -+C .12i -D .12i --3.函数()f x 在0x x =处导数存在.若p :0()0f x '=;q :0x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量a ,b 满足|a +b|=|a -b|a b =( )A .1B .2C .3D .55.等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = ( ) A .(1)n n +B .(1)n n -C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 ( )A .1727B .59C .1027D .137.正三棱柱111ABC A B C -的底面边长为2,侧棱长为,D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1D.28.执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A .4B .5C .6D .79.设x ,y 满足约束条件10,10,330,x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥则2z x y =+的最大值为( ) A .8B .7C .2D .110.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交于C 于A ,B 两点,则||AB =( ) A.3B .6C .12 D.11.若函数()ln f x kx x =-在区间(1,)+∞上单调递增,则k 的取值范围是( )A .(,2]-∞-B .(,1]-∞-C .[2,)+∞D .[1,)+∞12.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是( )A .[1,1]-B .11[,]-C .[D .[第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为 .14.函数()sin()2sin cos f x x x ϕϕ=+-的最大值为 .15.偶函数()y f x =的图象关于直线2x =对称,(3)3f =,则(1)f -= . 16.数列{}n a 满足111n na a +=-,82a =,则1a = . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,1AB =,3BC =,2CD DA ==. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB平面AEC ;(Ⅱ)设1AP =,AD =P ABD -的体积4V =,求A 到平面PBC 的距离.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页) 数学试卷 第5页(共18页) 数学试卷 第6页(共18页)19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E ,证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π[0,]2θ∈.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||||(0)f x x x a a a=++->.f x≥;(Ⅰ)证明:()2f ,求a的取值范围.(Ⅱ)若(3)5数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)。

2014年全国统一高考数学试卷(文科)(新课标ⅱ)-已校

2014年全国统一高考数学试卷(文科)(新课标ⅱ)-已校

2014年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1 B.2 C.3 D.55.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3 B.C.1 D.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4 B.5 C.6 D.79.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8 B.7 C.2 D.110.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6 C.12 D.711.(5分)若函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2014•新课标Ⅱ)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A ∩B=()A.∅B.{2}C.{0}D.{﹣2}【分析】先解出集合B,再求两集合的交集即可得出正确选项.【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选B2.(5分)(2014•新课标Ⅱ)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i【分析】分子分母同乘以分母的共轭复数1+i化简即可.【解答】解:化简可得====﹣1+2i故选:B3.(5分)(2014•新课标Ⅱ)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C4.(5分)(2014•新课标Ⅱ)设向量,满足|+|=,|﹣|=,则•=()A.1 B.2 C.3 D.5【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.5.(5分)(2014•新课标Ⅱ)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),6.(5分)(2014•新课标Ⅱ)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.7.(5分)(2014•新课标Ⅱ)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3 B.C.1 D.【分析】由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC 中点,∴底面B1DC1的面积:=,A到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.8.(5分)(2014•新课标Ⅱ)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4 B.5 C.6 D.7【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.9.(5分)(2014•新课标Ⅱ)设x,y满足约束条件,则z=x+2y的最大值为()A.8 B.7 C.2 D.1【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.10.(5分)(2014•新课标Ⅱ)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=()A.B.6 C.12 D.7【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x ﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C11.(5分)(2014•新课标Ⅱ)若函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【分析】f′(x)=k﹣,由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是[1,+∞).故选:D.12.(5分)(2014•新课标Ⅱ)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.二、填空题:本大题共4小题,每小题5分.13.(5分)(2014•新课标Ⅱ)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.【分析】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为=,故答案为:.14.(5分)(2014•新课标Ⅱ)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为1.【分析】展开两角和的正弦,合并同类项后再用两角差的正弦化简,则答案可求.【解答】解:∵f(x)=sin(x+φ)﹣2sinφcosx=sinxcosφ+cosxsinφ﹣2sinφcosx=sinxcosφ﹣sinφcosx=sin(x﹣φ).∴f(x)的最大值为1.故答案为:1.15.(5分)(2014•新课标Ⅱ)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=3.【分析】根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2﹣x)=f(x﹣2),即f(x+4)=f(x),则f(﹣1)=f(﹣1+4)=f(3)=3,法2:因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3,因为f(x)是偶函数,所以f(﹣1)=f(1)=3,故答案为:3.16.(5分)(2014•新课标Ⅱ)数列{a n}满足a n+1=,a8=2,则a1=.【分析】根据a8=2,令n=7代入递推公式a n+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.【解答】解:由题意得,a n=,a8=2,+1令n=7代入上式得,a8=,解得a7=;令n=6代入得,a7=,解得a6=﹣1;令n=5代入得,a6=,解得a5=2;…根据以上结果发现,求得结果按2,,﹣1循环,∵8÷3=2…2,故a1=故答案为:.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2014•新课标Ⅱ)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【分析】(1)在三角形BCD中,利用余弦定理列出关系式,将BC,CD,以及cosC 的值代入表示出BD2,在三角形ABD中,利用余弦定理列出关系式,将AB,DA 以及cosA的值代入表示出BD2,两者相等求出cosC的值,确定出C的度数,进而求出BD的长;(2)由C的度数求出A的度数,利用三角形面积公式求出三角形ABD与三角形BCD面积,之和即为四边形ABCD面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.18.(12分)(2014•新课标Ⅱ)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.【分析】(Ⅰ)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;(Ⅱ)通过AP=1,AD=,三棱锥P﹣ABD的体积V=,求出AB,作AH⊥PB 角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可.【解答】解:(Ⅰ)证明:设BD与AC 的交点为O,连结EO,∵ABCD是矩形,∴O为BD的中点∵E为PD的中点,∴EO∥PB.EO⊂平面AEC,PB⊄平面AEC∴PB∥平面AEC;(Ⅱ)∵AP=1,AD=,三棱锥P﹣ABD的体积V=,∴V==,∴AB=,PB==.作AH⊥PB交PB于H,由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又在三角形PAB中,由射影定理可得:A到平面PBC的距离.19.(12分)(2014•新课标Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67.(Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.20.(12分)(2014•新课标Ⅱ)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.21.(12分)(2014•新课标Ⅱ)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a;(Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论.【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∴g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.三、选修4-1:几何证明选讲22.(10分)(2014•新课标Ⅱ)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O 于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•D E=2PB2.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.四、选修4-4,坐标系与参数方程23.(2014•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).五、选修4-5:不等式选讲24.(2014•新课标Ⅱ)设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).。

2014年(全国卷II)(含答案)高考文科数学

2014年(全国卷II)(含答案)高考文科数学

2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合2{2,0,2},{|20}A B x x x =-=--=,则A ∩B=( ) A. ∅ B. {}2 C. {0} D. {2}-2.131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件 C. p 是q 的必要条件,但不是q 的充分条件 D. p 既不是q 的充分条件,学科 网也不是q 的必要条件4.设向量,a b 满足10a b +=,6a b -=,则a b ⋅=( ) A. 1 B. 2 C. 3 D. 55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.317.正三棱柱111ABC A B C -的底面边长为2,,D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.28.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A.4 B.5 C.6 D.79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )A.8B.7C.2D.110.设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则AB =( )A.3B.6C.12D.11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )A.(],2-∞-B.(],1-∞-C.[)2,+∞D.[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A.[-1,1]B.11,22⎡⎤-⎢⎥⎣⎦C.⎡⎣D.22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14. 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15. 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (1)求C 和BD ;(2)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ;(2)设1,3AP AD ==,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两—部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.(本小题满分10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BE EC =; (2)22AD DE PB ⋅=23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4-5:不等式选讲 设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题参考答案:参考答案1.B 【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B . 考点:集合的运算. 2.B 【解析】试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i ii ++-+===-+-+,选B . 考点:复数的运算.3.C 【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件. 4.A 【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算. 5.A 【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(n 1)2n n n a a S n +==+.【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6.C 【解析】 试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图. 7.C 【解析】 试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以111111133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积. 8.D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =. 考点:程序框图. 9.B 【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值. 10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=.考点:线性规划. 10.C 【解析】试题分析:由题意,得3(,0)4F .又因为0k tan 30==故直线AB 的方程为3y )4=-,与抛物线2=3y x 联立,得21616890x x -+=,设1122(x ,y ),(x ,y )A B ,由抛物线定义得,12x x AB p =++= 168312162+=,选C . 考点:1、抛物线的标准方程;2、抛物线的定义. 11.D 【解析】试题分析:'1()f x k x =-,由已知得'()0f x ≥在()1,x ∈+∞恒成立,故1k x≥,因为1x >,所以101x<<,故k 的取值范围是[)1,+∞. 【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为OMA ∠045=,故0sin 45OA OM ==1≤,所以OM ≤≤011x -≤≤.考点:1、解直角三角形;2、直线和圆的位置关系.13.13 【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式.14.1【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15.3【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性.16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=.三、解答题(17)解:(I )由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅=1312cos C - , ①2222cos BD AB DA AB DA A =+-⋅54cos C =+. ②由①,②得1cos 2C =,故060C =,7BD = (Ⅱ)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅ 011(1232)sin 6022=⨯⨯+⨯⨯ 23=(18)解:(I )设BD 与AC 的交点为O ,连结EO.因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以EO ∥PB.EO ⊂平面AEC ,PB ⊄平面AEC,所以PB ∥平面AEC.(Ⅱ)V 166PA AB AD AB =⋅⋅=.由4V =,可得32AB =.作AH PB ⊥交PB 于H 。

2014高考全国2卷数学文科试题及标准答案详解

2014高考全国2卷数学文科试题及标准答案详解

2014年普通高等学校招生全国统一考试数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{2,0,2}A =-,2{|20}B x x x =--=,则A B=(A) ∅ (B){}2 (C){}0 (D) {}2-考点: 交集及其运算.分析:ﻩ先解出集合B ,再求两集合的交集即可得出正确选项.解答: 解:∵A ={﹣2,0,2},B={x |x2﹣x ﹣2=0}={﹣1,2},∴A ∩B={2}.故选: B点评:ﻩ本题考查交的运算,理解好交的定义是解答的关键.(2)131i i+=- () (A)12i + (B )12i -+ (C )1-2i (D) 1-2i -考点: 复数代数形式的乘除运算.分析: 分子分母同乘以分母的共轭复数1+i 化简即可.解答: 解:化简可得====﹣1+2i故选: B点评:ﻩ本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.(3)函数()f x 在0x x =处导数存在,若00:()0;:p f x q x x '==是()f x 的极值点,则()(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件(C)p 是q 的必要条件,但不是 q 的充分条件(D) p 既不是q 的充分条件,也不是q 的必要条件考点:ﻩ必要条件、充分条件与充要条件的判断.菁优网版权所有分析:ﻩ根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.解答: 函数f(x )=x3的导数为f'(x)=3x 2,由f ′(x 0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x )的极值点,则f′(x0)=0成立,即必要性成立,故p是q 的必要条件,但不是q的充分条件,故选: C点评:ﻩ本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.(4)设向量a ,b 满足|a+b|=10,|a-b|=6,则a ·b= () (A )1 (B) 2 (C)3 (D) 5考点: 平面向量数量积的运算. 分析:ﻩ将等式进行平方,相加即可得到结论. 解答: ∵|+|=,|﹣|=,∴分别平方得,+2•+=10,﹣2•+=6,两式相减得4••=10﹣6=4,即•=1, 故选: A点评:ﻩ本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项n S = ()(A ) ()1n n + (B)()1n n - (C )()12n n + (D) ()12n n - 考点:ﻩ等差数列的性质.分析: 由题意可得a 42=(a 4﹣4)(a 4+8),解得a4可得a1,代入求和公式可得.解答: 由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a 4=8,∴a1=a 4﹣3×2=2,∴Sn=na1+d ,=2n+×2=n(n +1), 故选: A点评: 本题考查等差数列的性质和求和公式,属基础题.(6)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3c m,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()(A)1727 (B ) 59 (C)1027 (D) 13。

2014年高考文科数学全国卷2(含详细答案)

数学试卷 第1页(共30页) 数学试卷 第2页(共30页) 数学试卷 第3页(共30页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)文科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2,{2}0,A -=,2{|20}B x x x =--=,则A B =( )A .∅B .{2}C .{0}D .{2}- 2.13i=1i+-( )A .12i +B .12i -+C .12i -D .12i --3.函数()f x 在0x x =处导数存在.若p :0()0f x '=;q :0x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量a ,b 满足|a +b||a -b|=a b =( )A .1B .2C .3D .55.等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = ( ) A .(1)n n +B .(1)n n -C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 ( )A .1727B .59C .1027D .137.正三棱柱111ABC A B C -的底面边长为2,侧棱长为,D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1D8.执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A .4 B .5 C .6D .79.设x ,y 满足约束条件10,10,330,x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥则2z x y =+的最大值为( ) A .8B .7C .2D .110.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交于C 于A ,B 两点,则||AB =( ) AB .6C .12 D.11.若函数()ln f x kx x =-在区间(1,)+∞上单调递增,则k 的取值范围是( )A .(,2]-∞-B .(,1]-∞-C .[2,)+∞D .[1,)+∞12.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是( )A .[1,1]-B .11[,]-C .[D .[ 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为 .14.函数()sin()2sin cos f x x x ϕϕ=+-的最大值为 .15.偶函数()y f x =的图象关于直线2x =对称,(3)3f =,则(1)f -= . 16.数列{}n a 满足111n na a +=-,82a =,则1a = . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,1AB =,3BC =,2CD DA ==. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB平面AEC ;(Ⅱ)设1AP =,AD =P ABD -的体积V =A 到平面PBC 的距离.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共30页) 数学试卷 第5页(共30页) 数学试卷 第6页(共30页)19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E ,证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π[0,]2θ∈.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 10{2}A B =,选【解析】由已知得,22210a a b b ++=,2226a a b b -+=,两式相减得,44a b =,故1a b =。

2014年全国统一高考数学试卷(文科)(新课标Ⅱ)解析版

2014年全国统一高考数学试卷(文科)(新课标Ⅱ)解析版参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合{2A =-,0,2},2{|20}B x x x =--=,则(A B = )A .∅B .{2}C .{0}D .{2}-【考点】1E :交集及其运算 【专题】5J :集合【分析】先解出集合B ,再求两集合的交集即可得出正确选项. 【解答】解:{2A =-,0,2},2{|20}{1B x x x =--==-,2},{2}AB ∴=.故选:B .【点评】本题考查交的运算,理解好交的定义是解答的关键. 2.(5分)13(1ii+=- ) A .12i + B .12i -+ C .12i - D .12i --【考点】5A :复数的运算 【专题】5N :数系的扩充和复数【分析】分子分母同乘以分母的共轭复数1i +化简即可. 【解答】解:化简可得213(13)(1)13424121(1)(1)12i i i i ii i i i i +++-+-+====-+--+- 故选:B .【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.3.(5分)函数()f x 在0x x =处导数存在,若00:()0::p f x q x x '==是()f x 的极值点,则()A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 【考点】29:充分条件、必要条件、充要条件 【专题】5L :简易逻辑【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数3()f x x =的导数为2()3f x x '=,由0()0f x '=,得00x =,但此时函数()f x 单调递增,无极值,充分性不成立.根据极值的定义和性质,若0x x =是()f x 的极值点,则0()0f x '=成立,即必要性成立, 故p 是q 的必要条件,但不是q 的充分条件, 故选:C .【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.4.(5分)设向量a ,b 满足||10a b +=,||6a b -=,则(a b = ) A .1B .2C .3D .5【考点】9O :平面向量数量积的性质及其运算 【专题】5A :平面向量及应用【分析】将等式进行平方,相加即可得到结论. 【解答】解:||10a b +=,||6a b -=,∴分别平方得22210a a b b ++=,2226a a b b -+=,两式相减得41064a b =-=, 即1a b =, 故选:A .【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础. 5.(5分)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和(n S =)A .(1)n n +B .(1)n n -C .(1)2n n + D .(1)2n n - 【考点】83:等差数列的性质【专题】54:等差数列与等比数列【分析】由题意可得2444(4)(8)a a a =-+,解得4a 可得1a ,代入求和公式可得. 【解答】解:由题意可得2428a a a =, 即2444(4)(8)a a a =-+, 解得48a =, 14322a a ∴=-⨯=,1(1)2n n n S na d -∴=+, (1)22(1)2n n n n n -=+⨯=+, 故选:A .【点评】本题考查等差数列的性质和求和公式,属基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1)cm ,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027 D .13【考点】!L :由三视图求面积、体积 【专题】5F :空间位置关系与距离【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可. 【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:22322434πππ+=.底面半径为3cm ,高为6cm 的圆柱体毛坯的体积为:23654ππ⨯= 切削掉部分的体积与原来毛坯体积的比值为:5434105427πππ-=. 故选:C .【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1D 【考点】LF :棱柱、棱锥、棱台的体积 【专题】5F :空间位置关系与距离【分析】由题意求出底面11B DC 的面积,求出A 到底面的距离,即可求解三棱锥的体积.【解答】解:正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,∴底面11B DC 的面积:122⨯A三棱锥11A B DC -的体积为:113.故选:C .【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键. 8.(5分)执行如图所示的程序框图,若输入的x ,t 均为2,则输出的(S = )A .4B .5C .6D .7【考点】EF :程序框图 【专题】5K :算法和程序框图【分析】根据条件,依次运行程序,即可得到结论. 【解答】解:若2x t ==,则第一次循环,12…成立,则1221M =⨯=,235S =+=,2k =,第二次循环,22…成立,则2222M =⨯=,257S =+=,3k =,此时32…不成立,输出7S =, 故选:D .【点评】本题主要考查程序框图的识别和判断,比较基础.9.(5分)设x ,y 满足约束条件1010330x y x y x y +-⎧⎪--⎨⎪-+⎩………,则2z x y =+的最大值为( )A .8B .7C .2D .1【考点】7C :简单线性规划 【专题】59:不等式的解法及应用【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域, 由2z x y =+,得122zy x =-+,平移直线122z y x =-+,由图象可知当直线122z y x =-+经过点A 时,直线122zy x =-+的截距最大,此时z 最大. 由10330x y x y --=⎧⎨-+=⎩,得32x y =⎧⎨=⎩,即(3,2)A ,此时z 的最大值为3227z =+⨯=, 故选:B .【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 10.(5分)设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30︒的直线交于C 于A ,B 两点,则||(AB = )A B .6 C .12 D .【考点】8K :抛物线的性质【专题】5D :圆锥曲线的定义、性质与方程【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得||AB .【解答】解:由23y x =得其焦点3(4F ,0),准线方程为34x =-.则过抛物线23y x =的焦点F 且倾斜角为30︒的直线方程为33tan30())44y x x =︒--.代入抛物线方程,消去y ,得21616890x x -+=. 设1(A x ,1)y ,2(B x ,2)y 则1216821162x x +==, 所以12333321||1244442AB x x =+++=++= 故选:C .【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.11.(5分)若函数()f x kx ln =- x 在区间(1,)+∞单调递增,则k 的取值范围是( ) A .(-∞,2]-B .(-∞,1]-C .[2,)+∞D .[1,)+∞【考点】6B :利用导数研究函数的单调性【专题】38:对应思想;4R :转化法;51:函数的性质及应用【分析】求出导函数()f x ',由于函数()f x kx lnx =-在区间(1,)+∞单调递增,可得()0f x '…在区间(1,)+∞上恒成立.解出即可. 【解答】解:1()f x k x'=-, 函数()f x kx lnx =-在区间(1,)+∞单调递增, ()0f x ∴'…在区间(1,)+∞上恒成立. 1k x∴…,而1y x=在区间(1,)+∞上单调递减, 1k ∴….k ∴的取值范围是:[1,)+∞.故选:D .【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题. 12.(5分)设点0(M x ,1),若在圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A .[1-,1]B .1[2-,1]2C .[D .[ 【考点】JE :直线和圆的方程的应用 【专题】5B :直线与圆【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点0(M x ,1),要使圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则OMN ∠的最大值大于或等于45︒时一定存在点N ,使得45OMN ∠=︒, 而当MN 与圆相切时OMN ∠取得最大值, 此时1MN =,图中只有M '到M ''之间的区域满足1MN =, 0x ∴的取值范围是[1-,1].故选:A .【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为13. 【考点】8C :相互独立事件和相互独立事件的概率乘法公式 【专题】5I :概率与统计【分析】所有的选法共有339⨯=种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有339⨯=种,而他们选择相同颜色运动服的选法共有3种, 故他们选择相同颜色运动服的概率为3193=,故答案为:13.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题. 14.(5分)函数()sin()2sin cos f x x x ϕϕ=+-的最大值为 1 . 【考点】GP :两角和与差的三角函数;HW :三角函数的最值 【专题】56:三角函数的求值;57:三角函数的图象与性质【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值. 【解答】解:函数()sin()2sin cos f x x x ϕϕ=+- sin cos sin cos 2sin cos x x x ϕϕϕ=+- sin cos sin cos x x ϕϕ=- sin()1x ϕ=-….所以函数的最大值为1. 故答案为:1.【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力. 15.(5分)偶函数()y f x =的图象关于直线2x =对称,f (3)3=,则(1)f -= 3 . 【考点】3K :函数奇偶性的性质与判断 【专题】51:函数的性质及应用【分析】根据函数奇偶性和对称性的性质,得到(4)()f x f x +=,即可得到结论. 【解答】解:法1:因为偶函数()y f x =的图象关于直线2x =对称, 所以(2)(2)(2)f x f x f x +=-=-, 即(4)()f x f x +=,则(1)(14)f f f -=-+=(3)3=,法2:因为函数()y f x =的图象关于直线2x =对称, 所以f (1)f =(3)3=, 因为()f x 是偶函数, 所以(1)f f -=(1)3=, 故答案为:3.【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性(4)()f x f x +=是解决本题的关键,比较基础.16.(5分)数列{}n a 满足111n n a a +=-,82a =,则1a = 12.【考点】8H :数列递推式 【专题】11:计算题【分析】根据82a =,令7n =代入递推公式111n na a +=-,求得7a ,再依次求出6a ,5a 的结果,发现规律,求出1a 的值. 【解答】解:由题意得,111n na a +=-,82a =, 令7n =代入上式得,8711a a =-,解得712a =; 令6n =代入得,7611a a =-,解得61a =-; 令5n =代入得,6511a a =-,解得52a =; ⋯根据以上结果发现,求得结果按2,12,1-循环, 8322÷=⋯,故112a =故答案为:12. 【点评】本题考查了数列递推公式的简单应用,即给n 具体的值代入后求数列的项,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD 的内角A 与C 互补,1AB =,3BC =,2CD DA ==. (1)求C 和BD ;(2)求四边形ABCD 的面积.【考点】HP :正弦定理;HR :余弦定理 【专题】56:三角函数的求值【分析】(1)在三角形BCD 中,利用余弦定理列出关系式,将BC ,CD ,以及cos C 的值代入表示出2BD ,在三角形ABD 中,利用余弦定理列出关系式,将AB ,DA 以及cos A 的值代入表示出2BD ,两者相等求出cos C 的值,确定出C 的度数,进而求出BD 的长; (2)由C 的度数求出A 的度数,利用三角形面积公式求出三角形ABD 与三角形BCD 面积,之和即为四边形ABCD 面积.【解答】解:(1)在BCD ∆中,3BC =,2CD =,由余弦定理得:2222cos 1312cos BD BC CD BC CD C C =+-=-①,在ABD ∆中,1AB =,2DA =,A C π+=,由余弦定理得:2222cos 54cos 54cos BD AB AD AB AD A A C =+-=-=+②, 由①②得:1cos 2C =,则60C =︒,BD (2)1cos 2C =,1cos 2A =-,sin sin C A ∴==则1111sin sin 12322222S AB DA A BC CD C =+=⨯⨯+⨯⨯=【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.18.(12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明://PB 平面AEC ;(Ⅱ)设1AP =,AD =,三棱锥P ABD -的体积V =,求A 到平面PBC 的距离.【考点】LF :棱柱、棱锥、棱台的体积;LS :直线与平面平行;MK :点、线、面间的距离计算【专题】5F :空间位置关系与距离【分析】(Ⅰ)设BD 与AC 的交点为O ,连结EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;(Ⅱ)通过1AP =,AD =三棱锥P ABD -的体积V =,求出AB ,作A H P B ⊥角PB于H ,说明AH 就是A 到平面PBC 的距离.通过解三角形求解即可. 【解答】解:(Ⅰ)证明:设BD 与AC 的交点为O ,连结EO , ABCD 是矩形, O ∴为BD 的中点E 为PD 的中点,//EO PB ∴.EO ⊂平面AEC ,PB ⊂/平面AEC//PB ∴平面AEC ;(Ⅱ)1AP =,AD ,三棱锥P ABD -的体积V =,136V PA AB AD AB ∴===,32AB ∴=,PB =. 作AH PB ⊥交PB 于H , 由题意可知BC ⊥平面PAB , BC AH ∴⊥,故AH ⊥平面PBC .又在三角形PAB 中,由射影定理可得:313PA AB AH PB ==A 到平面PBC .【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【考点】BA :茎叶图;BB :众数、中位数、平均数;CB :古典概型及其概率计算公式 【专题】5I :概率与统计【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是6668672+=,所以该市的市民对乙部门的评分的中位数的估计值是67. (Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为580.1,0.165050==,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.20.(12分)设1F ,2F 分别是2222:1(0)x y C a b a b+=>>的左,右焦点,M 是C 上一点且2MF与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b . 【考点】4K :椭圆的性质【专题】5E :圆锥曲线中的最值与范围问题【分析】(1)根据条件求出M 的坐标,利用直线MN 的斜率为34,建立关于a ,c 的方程即可求C 的离心率;(2)根据直线MN 在y 轴上的截距为2,以及1||5||MN F N =,建立方程组关系,求出N 的坐标,代入椭圆方程即可得到结论.【解答】解:(1)M 是C 上一点且2MF 与x 轴垂直,M ∴的横坐标为c ,当x c =时,2b y a=,即2(,)b M c a ,若直线MN 的斜率为34,即22123tan 224b b a MF Fc ac ∠===, 即22232b ac a c ==-,即22302c ac a +-=,则23102e e +-=,即22320e e +-= 解得12e =或2e =-(舍去), 即12e =. (Ⅱ)由题意,原点O 是12F F 的中点,则直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点, 设(,)M c y ,(0)y >,则22221c y a b +=,即422b y a =,解得2b y a=, OD 是△12MF F 的中位线,∴24b a=,即24b a =, 由1||5||MN F N =, 则11||4||MF F N =, 解得11||2||DF F N =, 即112DF F N =设1(N x ,1)y ,由题意知10y <, 则(c -,12)2(x c -=+,1)y . 即112()22x c c y +=-⎧⎨=-⎩,即11321x c y ⎧=-⎪⎨⎪=-⎩代入椭圆方程得2229114c a b+=,将24b a =代入得229(4)1144a a a a-+=,解得7a =,b =【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.【考点】6B :利用导数研究函数的单调性;6H :利用导数研究曲线上某点切线方程 【专题】53:导数的综合应用【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a ;(Ⅱ)构造函数()()2g x f x kx =-+,利用函数导数和极值之间的关系即可得到结论. 【解答】解:(Ⅰ)函数的导数2()36f x x x a '=-+;(0)f a '=; 则()y f x =在点(0,2)处的切线方程为2y ax =+, 切线与x 轴交点的横坐标为2-, (2)220f a ∴-=-+=,解得1a =.(Ⅱ)当1a =时,32()32f x x x x =-++, 设32()()23(1)4g x f x kx x x k x =-+=-+-+, 由题设知10k ->,当0x …时,2()3610g x x x k '=-+->,()g x 单调递增,(1)1g k -=-,(0)4g =, 当0x >时,令32()34h x x x =-+,则()()(1)()g x h x k x h x =+->. 则2()363(2)h x x x x x '=-=-在(0,2)上单调递减,在(2,)+∞单调递增,∴在2x =时,()h x 取得极小值h (2)0=,(1)1g k -=-,(0)4g =,则()0g x =在(-∞,0]有唯一实根. ()()g x h x h >…(2)0=, ()0g x ∴=在(0,)+∞上没有实根.综上当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力. 三、选修4-1:几何证明选讲22.(10分)如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E ,证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.【考点】4N :相似三角形的判定;NC :与圆有关的比例线段 【专题】17:选作题;5Q :立体几何【分析】(Ⅰ)连接OE ,OA ,证明OE BC ⊥,可得E 是BC 的中点,从而BE EC =; (Ⅱ)利用切割线定理证明2PD PB =,PB BD =,结合相交弦定理可得22AD DE PB =. 【解答】证明:(Ⅰ)连接OE ,OA ,则OAE OEA ∠=∠,90OAP ∠=︒, 2PC PA =,D 为PC 的中点,PA PD ∴=, PAD PDA ∴∠=∠,PDA CDE ∠=∠,90OEA CDE OAE PAD ∴∠+∠=∠+∠=︒, OE BC ∴⊥,E ∴是BC 的中点,BE EC ∴=;(Ⅱ)PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C , 2PA PB PC ∴=, 2PC PA =,2PA PB ∴=, 2PD PB ∴=, PB BD ∴=,2BD DC PB PB ∴=, AD DE BD DC =,22AD DE PB ∴=.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题. 四、选修4-4,坐标系与参数方程23.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,[0θ∈,]2π(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在半圆C 上,半圆C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,求直线CD 的倾斜角及D 的坐标. 【考点】QH :参数方程化成普通方程 【专题】5S :坐标系和参数方程【分析】(1)利用222cos x y x ρρθ⎧=+⎨=⎩即可得出直角坐标方程,利用22cos sin 1t t +=进而得出参数方程.(2)利用半圆C 在D 处的切线与直线:2l y =+垂直,则直线CD 的斜率与直线l 的斜率相等,即可得出直线CD 的倾斜角及D 的坐标.【解答】解:(1)由半圆C 的极坐标方程为2cos ρθ=,[0θ∈,]2π,即22cos ρρθ=,可得C 的普通方程为22(1)1(01)x y y -+=剟. 可得C 的参数方程为1cos (sin x tt y t =+⎧⎨=⎩为参数,0)t π剟.(2)设(1cos D + t ,sin )t ,由(1)知C 是以(1,0)C 为圆心,1为半径的上半圆,直线CD 的斜率与直线l 的斜率相等,tan t ∴=3t π=.故D 的直角坐标为(1cos ,sin )33ππ+,即3(2.【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题. 五、选修4-5:不等式选讲 24.设函数1()||||(0)f x x x a a a=++->. (Ⅰ)证明:()2f x …;(Ⅱ)若f (3)5<,求a 的取值范围. 【考点】5R :绝对值不等式的解法 【专题】59:不等式的解法及应用 【分析】(Ⅰ)由0a >,1()||||f x x x a a=++-,利用绝对值三角不等式、基本不等式证得()2f x …成立.(Ⅱ)由f (3)1|3||3|5a a=++-<,分当3a >时和当03a <…时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求. 【解答】解:(Ⅰ)证明:a >,1111()|||||()()|||2f x x x a x x a a a a a a a a a=++-+--=+=+=厖, 故不等式()2f x …成立. (Ⅱ)f (3)1|3||3|5a a=++-<,∴当3a >时,不等式即15a a+<,即2510a a -+<,解得3a <<当03a <…时,不等式即165a a-+<,即210a a -->3a <….综上可得,a 的取值范围.【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2014年高考全国卷新课标版2数学文试题及答案详解

A.25 B.27 C.50D.54
6.函数 的图像向右平移 个单位后所得的图像关于点 中心对称.则 不可能是( )
A. B. C. D.
7.抛物线的中心在原点,焦点与双曲线 的有焦点重合,则抛物线的方程为()
A. B. C. D.
8.有5名毕业生站成一排照相,若甲乙两人之间至多有2人,且甲乙不相邻,则不同的站法有( )
二、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或推演步骤)
17.(本小题满分12分)在 中,角 的对边分别为 , 是该三角形的面积,(1)若 , , ,
(1)求角 的度数;
(2)若 , , ,求 的值.
18.(本小题满分12分)某车站每天上午发出两班客车(每班客车只有一辆车),第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为 ,8∶20发出的概率为 ,8∶40发出的概率为 ;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为 ,9∶20发出的概率为 ,9∶40发出的概率为 .两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求:
……………………12分
18.(12分)(1)第一班若在8∶20或8∶40发出,则旅客能乘到,其概率为
P= + = …………4分
(2)旅客候车时间不超过50分钟的概率
P= + + ⅹ =13∕16.
答:旅客候车时间不超过50分钟的概率为13∕16.…………12分
19.(12分)(1)作ME AC,连接NE,可证得AB 平面MNE,即得MN AB …………4分
即 ,在 上恒成立.所以 .
因此满足条件的 的取值范围是 ………………14分

2014年普通高等学校招生全国统一考试新课标II卷文科数学及答案

2014年普通高等学校招生全国统一考试(新课标II 卷)数 学(文史类)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合2{2,0,2},{|20}A B x x x =-=--=,则A B =( )A. ∅B. {}2C. {0}D. {2}-(2)131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --(3)函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则 A .p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件, 网也不是q 的必要条件(4)设向量,a b 满足a b +=a b -=a b ⋅=( ) A. 1 B. 2 C. 3 D. 5(5)等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - (6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm , 网高为6cm 的圆柱体毛坯切削得到, 则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.31(7)正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥 11A B DC -的体积为(A )3 (B )32 (C )1 (D)2(8)执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1 (10)设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =(A)3(B )6 (C )12 (D)(11)若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C)⎡⎣ (D)⎡⎢⎣⎦二、填空题:本大题共4小题,每小题5分.(13)甲,乙两名运动员各自等可能地从红、 网白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.(14) 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.(15) 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. (16) 数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:(17)(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (1)求C 和BD ;(2)求四边形ABCD 的面积.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的重点.(1)证明:PB //平面AEC ;(2)设1,AP AD ==,三棱锥P ABD - 的体积4V =,求A 到平面PBC 的距离.(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机 访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙 两部门的评价.(20)(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .(21)(本小题满分12分) 已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ; (2)证明:当1k<时,曲线()y f x =与直线2y kx =-只有一个交点.请考生在第22,23,24题中任选一题做答,如多做,则按所做的第一题记分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试文科数学注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜,则A B= (A) ∅ (B ){}2 (C ){}0 (D) {}2- (2)131ii+=- (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -(3)函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是q 的充分条件,也不是q 的必要条件(4)设向量a ,b 满足a ·b=(A )1 (B ) 2 (C )3 (D) 5(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -(6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6c m 的圆柱 体毛坯切削得到,则切削掉部分的体积与 原来毛坯体积的比值为(A )1727 (B ) 59 (C )1027 (D) 13(7)正三棱柱111ABC A B C -的底面边长为2,D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32(C )1 (D )(8)执行右面的程序框图,如果如果输入的x ,t均为2,则输出的S=(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB = (A)3(B )6 (C )12 (D)(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ (12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C)⎡⎣ (D )22⎡-⎢⎣⎦,第Ⅱ卷本卷包括必考题和选考题两部分。

第13题~第21题为必考题,每个考试考生都必须做答。

第22题~第24题为选考题,考生根据要求做答。

二、填空题:本大概题共4小题,每小题5分。

(13)甲、已两名元动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为_______.(14)函数)sin()(ϕ+=x x f —2ϕsin x cos 的最大值为_________.(15)已知函数()f x 的图像关于直线x =2对称,)0(f =3,则=-)1(f _______.(16)数列{}n a 满足1+n a =n a -11,2a =2,则1a =_________.三、解答题:解答应写出文字说明过程或演算步骤。

(17)(本小题满分12分)四边形ABCD 的内角A 与C 互补,AB=1,BC=3, CD=DA=2. (I )求C 和BD;(II )求四边形ABCD 的面积。

(18)(本小题满分12分)如图,四凌锥p —ABCD 中,底面ABCD 为矩形,PA 上面ABCD ,E 为PD 的点。

(I )证明:PP//平面AEC; (II )设置AP=1,AD=3,三凌 P-ABD 的体积V=43,求A 到平面PBD 的距离。

(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民。

根据这50位市民(I )分别估计该市的市民对甲、乙部门评分的中位数; (II )分别估计该市的市民对甲、乙部门的评分做于90的概率; (III )根据茎叶图分析该市的市民对甲、乙两部门的评价。

(20)(本小题满分12分)设F 1 ,F 2分别是椭圆C :12222=+by a x (a>b>0)的左,右焦点,M 是C上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N 。

(I )若直线MN 的斜率为43,求C 的离心率;(II )若直线MN 在y 轴上的截距为2且|MN|=5|F 1N|,求a ,b 。

(21)(本小题满分12分)已知函数f (x )=3232x x ax -++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为-2.(I ) 求a ;(II )证明:当时,曲线()y f x =与直线2y kx =-只有一个交点。

请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号。

(22)(本小题满分10分)选修4-1:几何证明选讲如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E ,证明:(I)BE=EC;(II)AD·DE=2PB2。

(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极π]。

坐标系,半圆C的极坐标方程为p=2cosθ,θ∈[0,2(I)求C的参数方程;(II)设点D在C上,C在D处的切线与直线l:y=3x+2垂直,根据(I)中你得到的参数方程,确定D的坐标。

(24)(本小题满分10分)选修4-5:不等式选讲1|+|x-a|(a>0)。

设函数f(x)=|x+a(I)证明:f(x)≥2;(II)若f(3)<5,求a的取值范围。

参考答案一、 选择题(1)B (2)B (3)C (4)A (5)A (6)C (7)C (8)D (9)B (10)C (11)D (12)A 二、填空题(13)13 (14)1 (15)3 (16)12三、解答题 (17)解:(1)由题设及余弦定理得 ①2BD =2BC +2CD -2BC-CDcosC=13-12cosC②2BD =2AB +2DA -2AB ∙DAcosA =5+4cosC由①②得cosC =12,故 C=60°,(2)四边形ABCD 的面积 S=12AB DAsinA+12BC CDsinC =(12⨯1⨯2+12⨯3⨯2)sin60°=(18) 解:(1) 设BD 与AC 的交点为O ,连接EO ,因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所EO//PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB//平面AEC(2) V=16PA AB由V=4,可得AB=32作AH ⊥PB 交PB 于H由题设知BC ⊥平面PAB ,所以BC ⊥AH ,故AH ⊥PBC 。

又PA AB AH PB ⋅==所以A 到平面PBC 的距离为 。

(19)解:(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在25、26位的是75、75,故样本中位数是75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序, 排在25、26位的是68、68,故样本中位数,66、68,故样本中为数是 6668672+= ,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为50.150=,80.1650=,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16. (3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数。

而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高,评价较为一致,对乙部门的评价较低、评价差异较大。

(注:考生利用其它统计量进行分析,结论合理的同样给分) (20)解: (Ⅰ)根据c=以及题设知M (c ,),2=3ac将=-代入2=3ac ,解得=,=-2(舍去)故C 的离心率为(Ⅱ)由题意,原点O 的的中点,M ∥y 轴,所以直线M 与y 轴的交点D是线段M 的中点,故=4,即①由=得=设N(x,y),由题意可知y<0,则即代入方程C,得+=1 ②将①以及c=代入②得到+=1解得a=7,a=7,(21)解:()(x)=3-6x+a,(0)=a曲线y=f(x)在点(0,2)处的切线方程为y=ax+2由题设可知1-k>0当x(x)= =3-6x+1-k>0,g(x)单调递增,g(-1)=k-1<0,g(0)=4 所以g(x)=0有(-当x>0时,令h(x)=-3+4,则g(x)= h(x)(1-k)x> h(x)(x)=-6x=3x(x-2)所以g(x)>h(x)(2)=0所以g(x)=0在(0,)没有实根综上,g(x)=0在R有唯一的实根,即曲线的y=f(x)与直线y=kx-2只有一个交点(22)解:(1)连结AB, AC 由题设知PA=PD,故∠PAD=∠PDA因为∠PDA=∠DAC+∠DCA ∠PAD=∠BAD+∠PAB∠DCA=∠PAB所以DAC=BAD,从而=因此=(2)由切割线定理得2PA =PB.PC因为PA=PD=DC 所以DC=2PB,BD=PB由相交弦定理得AD*DE=22PB(23)解:(1)C 的普通方程为22(x 1)1(01)y y -+=≤≤可得C 的参数方程为 =1+cos ,sin ,{x t y t =(t 为参数,0t m ≤≤)(2)设D(1+cost,sint),由(1)知C 是以G(1,0)为圆心,1为半径的上半圆, 因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同。

相关文档
最新文档