概率论与数理统计答案——徐雅静

合集下载

概率论与数理统计习题谜底_徐雅静[最新]资料

概率论与数理统计习题谜底_徐雅静[最新]资料

习题答案第1章三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的?(1) A 和B 不相容; (2) A 和B 相容;(3) AB 是不可能事件;(4) AB 不一定是不可能事件;(5) P (A ) = 0或P (B ) = 0(6) P (A – B ) = P (A )解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = 0.6,P (B ) = 0.7,问:(1) 在什么条件下P (AB )取到最大值,最大值是多少? (2) 在什么条件下P (AB )取到最小值,最小值是多少?解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==0.6.(2)1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=0.6+0.7-1=0.3.3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以.1)(1)(p A P B P -=-=4.已知P (A ) = 0.7,P (A – B ) = 0.3,试求)(AB P .解:因为P (A – B ) = 0.3,所以P (A )– P(AB ) = 0.3, P(AB ) = P (A )– 0.3,又因为P (A ) = 0.7,所以P(AB ) =0.7– 0.3=0.4,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少?解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k -=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k =-25C法五:考虑对立事件:410C k =-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求:(1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p(2) 法二:20131024==C C p ,法二:2013102413==A A C p7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率.解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少?解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P 10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图.任取两个数的所有结果构成样本空间 = {(x ,y ):0x ,y 1}事件A =“两数之和小于6/5”= {(x ,y): x + y6/5}因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P .图?11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率.解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π”={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P .解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P.311216141)()()()(=-+=-+=AB P B P A P B A P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少?解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

概率论与数理统计复习题目_徐雅静_河南理工大学

概率论与数理统计复习题目_徐雅静_河南理工大学

(θ + 1) x θ 27、设总体 X 的概率密度为 f ( x) = 0
其中, θ
0 < x <1 其他
> −1 是未知参数.
设X 1 ,X2,…,X n 是来自于总体X的简单随机
样本,试求出 θ 的极大似然估计量。 29、甲、乙、丙 3 人进行独立射击, 每人的命中率分别为 0.3, 0.4, 0.6, 设每人射 击一次, 试求 3 人命中总数之概率分布律及其分布函数。 30、设随机变量(X, Y)具有联合概率密度 1 | x | + | y |≤1 , f ( x, y) = 2 0 其他 试求(1) E(X),E(Y); (2)Cov(X,Y) ,问 X 与 Y 是否不相关?(3)X 与 Y 是否 相互独立? 33、设每门高射炮击中飞机的概率均为 0.6. 三门高射炮同时向一架入侵飞机射 击. 若飞机被一门炮击中,则飞机被击落的概率为 0.6. 若飞机被两门炮击中, 则飞机被击落的概率为 0.9. 若飞机被三门炮击中, 则飞机一定被击落. 求飞机 被击落的概率. 34、设随机变量 X 具有概率密度 x f X ( x) = 8 0 求随机变量 Y = 2 X + 8 的概率密度。 0< x<4 其他
{
}
≤ 0)= ____ቤተ መጻሕፍቲ ባይዱ______。
34、设 X~t(10) ,Y=1/ X 2 ,则 Y~_____________。 44、设总体X,均值E (X) =µ存在,样本(X 1 ,X 2 ,…,X n ) ,则样本均值 X = 是总体均值E (X) =µ的 估计。 5、设样本(X 1 ,X 2 ,…,X n )来自于总体X~N(µ,σ2) , X 是样本均值,S2是 (n − 1) s 2 X −µ 样本方差,则 ~ , ~ σ2 σ/ n 35、正态总体X~ N ( µ , σ 2 ) ( σ 未知) ,X 1 ,X 2 ,…,X n 为来自总体X的简单随机 样本,对假设检验 H 0 :µ =µ0 ,H1:µ ≠ µ0 ,µ0为已知常数 ,当 σ 已知时应选取检验 统计量是 是 ;则当 σ 未知时应选取检验统计量 。

概率论与数理统计答案 第三章 徐静雅

概率论与数理统计答案  第三章 徐静雅

第三章1解:(X ,Y )取到的所有可能值为(1,1),(1,2),(2,1)由乘法公式:P {X =1,Y =1}=P {X =1}P {Y =1|X =1|=2/3⨯1/2=/3 同理可求得P {X =1,Y =1}=1/3; P {X =2,Y =1}=1/3 (X ,Y )的分布律用表格表示如下:2 解:X ,Y 所有可能取到的值是0, 1, 2 (1) P {X=i , Y =j }=P{X =i }P{Y =j |X =i |= , i ,j =0,1,2, i +j ≤2或者用表格表示如下:(2)P{(X,Y)∈A}=P{X+Y ≤1}=P{X=0, Y=0}+P{X=1,Y=0}+P{X=0,Y=0}=9/14 3 解:P(A)=1/4, 由P(B|A)=2/14/1)()()(==AB P A P AB P 得P(AB)=1/8 由P(A|B)=2/1)()(=B P AB P 得P(B)=1/4 (X,Y)取到的所有可能数对为(0,0),(1,0),(0,1),(1,1),则 P{X=0,Y=0}=))(B A P =P((A)-P(B)+P(AB)=5/8P{X=0,Y=1}=P(B)=P(B-A)=P(B)-P(AB)=1/8P{X=1,Y=0}=P(A )=P(A-B)=P(A)-P(AB)=1/8 P{X=1,Y=1}=P(AB)=1/8 4.解:(1)由归一性知: 1=, 故A=4(2)P{X=Y}=0(3)P{X<Y}=(4)F(x,y)=即F(x,y)=5.解:P{X+Y ≥1}=7265)3(),(102121=+=⎰⎰⎰⎰-≥+dydx xy x dxdy y x f xy x6 解:X 的所有可能取值为0,1,2,Y 的所有可能取值为0,1,2, 3. P{X=0,Y=0}=0.53=0.125; 、P{X=0,Y=1}=0.53=0.125P{X=1,Y=1}=25.05.05.0212=⨯C , P{X=1,Y=2}=25.05.05.0212=⨯CP{X=2,Y=2}=0.53=0.125, P{X=2,Y=3}==0.53=0.125 X,Y 的分布律可用表格表示如下:0 0.125 0.125 0 00.25 1 0 0.25 0.25 0 0.520.125 0.125 0.25P .j 0.125 0.375 0.375 0.125 17. 解:⎩⎨⎧<<=-其它,00,),(y x e y x f y⎩⎨⎧<≥=⎪⎩⎪⎨⎧<≥==-+∞-∞+∞-⎰⎰0,00,0,00,),()(x x e x x dy e dy y x f x f xxy X ⎩⎨⎧<≥=⎪⎩⎪⎨⎧<≥==--∞+∞-⎰⎰0,00,0,00,),()(0y y ye y y dx e dx y x f y f y y yY 8. 解:⎩⎨⎧<≤≤=0,01,),(22x y x y cx y x f(1)214212),(1104211122cdx x x c ydydx cx dxdy y x f x =-===⎰⎰⎰⎰⎰-∞+∞-∞+∞-所以 c =21/4(2) ⎪⎩⎪⎨⎧<-=⎪⎩⎪⎨⎧<==⎰⎰∞+∞-其它其它,,01||,8)1(2101||,421),()(42122x x x x ydy x dy y x f x f xX⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰-∞+∞-其它其它,,010********),()(252y y y ydx x dx y x f y f y y Y 9 解:2|ln 12211===⎰e e D x dx xS (X ,Y )在区域D 上服从均匀分布,故f (x ,y )的概率密度为⎪⎩⎪⎨⎧∈=其它,0),(,21),(Dy x y x f ⎪⎩⎪⎨⎧≤≤==⎰⎰∞+∞-其它(,01,21),()210X e x dy dy y x f x f x⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤≤≤-=-===--∞+∞-⎰⎰⎰其它(10,0),11(2121,2121),()221112X 2y e e y y dx e dx dx y x f x f y e 10 解:⎩⎨⎧<<<<=其它,00,10,3),(xy x x y x f)0)(( )(),()|(|>=x f x f y x f x y f X X X Y ⎪⎩⎪⎨⎧≤<===⎰⎰∞+∞-其它,010,233),()(20x x xdy dy y x f x f x X当0<x ≤1时,⎪⎩⎪⎨⎧<<==其它,00,233)(),()|(2|x y x x x f y x f x y f X X Y即,⎪⎩⎪⎨⎧≤<<=其它,010,2)|(|x y x x y f X Y11解:⎩⎨⎧<<<=其它,0||,10,1),(xy x y x f⎪⎩⎪⎨⎧>-=≤+===⎰⎰⎰-∞+∞-0,10,1),()(11y y dx y y dx dx y x f y f y y Y当y ≤0时,⎪⎩⎪⎨⎧<<-<<+==其它,0,10,11)(),()|(|x y x x y x f y x f y x f Y Y X 当y >0时,⎪⎩⎪⎨⎧<<-<<-==其它,0,10,11)(),()|(|x y x x y x f y x f y x f Y Y X 所以,⎪⎩⎪⎨⎧<<<-==其它,01||0,||11)(),()|(|x y y x f y x f y x f Y Y X 12 解:由)(),()|(|x f y x f y x f Y Y X =得 ⎩⎨⎧<<<<==其它,00,10,15)()|(),(2|yx y yx y f y x f y x f Y Y X 644715),(}5.0{15.0125.0===>⎰⎰⎰⎰+∞+∞∞-xdydx yx dydx y x f X P 13解:Z =max(X ,Y ),W =min(X ,Y )的所有可能取值如下表Z =max(X ,Y),W =min(X ,Y )的分布律为14 解:⎪⎩⎪⎨⎧≤>=-0,00,1)(x x e x f x X θθ ⎪⎩⎪⎨⎧≤>=-0,00,1)(y y e y f yY θθ 由独立性得X ,Y 的联合概率密度为⎪⎩⎪⎨⎧>>=+-其它,00,0,1),(2y x e y x f yx θθ 则P {Z =1}=P {X ≤Y }=211),(002==⎰⎰⎰⎰∞++-≤xyx yx dydx edxdy y x f θθ P {Z =0}=1-P {Z =1}=0.5 故Z 的分布律为15 解:⎪⎩⎪⎨⎧≤+=其它,01,1),(22y x y x f π⎪⎩⎪⎨⎧<-===⎰⎰---∞+∞-其它,01||,121),()(222112x x dy dy y x f x f x x X ππ同理,⎪⎩⎪⎨⎧<-=其它,01||,12)(2y y y f Y π显然,)()x (y f f Y X ≠,所以X 与Y 不相互独立.16 解:(1)⎩⎨⎧<<=其它,010,1)(x x f X ⎩⎨⎧<<=其它,010,1)(Y y y f利用卷积公式:⎰+∞∞--=dx x z f x f z f Y X Z )()()(求fZ(z))()(x z f x f Y X -=⎩⎨⎧+<<<<其它,01,10,1xz x x ⎪⎪⎩⎪⎪⎨⎧<≤<≤-===-=⎰⎰⎰-∞+∞-其它2110,02,)()()(110z z z dx z dx dx x z f x f z f z z Y X Z(2) ⎩⎨⎧<<=其它,010,1)(x x f X ⎩⎨⎧≤>=-0,00,)(Y y y e y f y 利用卷积公式:⎰+∞∞--=dy y f y z f z f Y X Z )()()(⎩⎨⎧+<<>=--其它,01,0,)()(y z y y e y f y z f y Y X⎰+∞∞--=dy y f y z f z f Y X Z )()()(⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧=≥<≤--=≥<≤=-----⎰⎰其它其它110,0,)1(,1110,0,,10z z e e e z z dy e dy e z zzz y z y 17 解:由定理3.1(p75)知,X +Y ~N (1,2) 故5.0)0(}21121{}1{==-≤-+=≤+ΦY X P Y X P18解:(1) )1(21)(21),()0)(X+=+==-+∞+-+∞∞-⎰⎰x e dy e y x dx y x f x f x y x ((x>0) 同理,)1(21)(+=-y e y f yY y >0 显然,)()x (y f f Y X ≠,所以X 与Y 不相互独立 (2).利用公式⎰+∞∞--=dx x z x f z f X Z )()(,⎪⎩⎪⎨⎧>>=⎪⎩⎪⎨⎧>->-+=---+-其它其它,0,0,21,00,0,)(21),()(xz x ze x z x e x z x x z x f z x z x X ⎰+∞∞--=dx x z x f z f X Z )()(,⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≤>=≤>=--⎰0,00,210,00,2120z z e z z z dx ze z z z 19解:并联时,系统L 的使用寿命Z =max{X ,Y } 因X ~E (α),Y ~E (β),故⎪⎩⎪⎨⎧≤>=-0,00,1)(x x e x f x X αα⎪⎩⎪⎨⎧≤>=-0,00,1)(y y e y f y Y ββ ⎪⎩⎪⎨⎧≤>-=-0,00,1)(x x e x F xX α ⎪⎩⎪⎨⎧≤>-=-0,00,1)(y y e y F y Y β⎪⎩⎪⎨⎧≤>--==--0,00),1)(1()()()(z z e e z F z F z F z z Y X Z βα⎪⎩⎪⎨⎧≤>+-+=⎪⎪⎭⎫⎝⎛+---0,00,)11(11)(11z z e e e z f z z z Z βαβαβαβα 串联时,系统L 的使用寿命Z =min{X ,Y }⎪⎩⎪⎨⎧≤>-=---=⎪⎪⎭⎫⎝⎛+-0,00,1)](1)][(1[1)(11z z e z F z F z F z Y X Z βα⎪⎩⎪⎨⎧≤>⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛+-0,00,11)(11z z e z f zZ φαβα (B)组1 解:P {X =0}=a +0.4, P {X +Y =1}=P {X =1,Y =0}+P {X =0,Y =1}=a +bP {X =0,X +Y =1}=P {X =0,Y =1}=a 由于{X =0|与{X +Y =1}相互独立, 所以P {X =0, X +Y =1}=P {X =0} P {X +Y =1}即 a =(a +0.4)(a +b ) (1) 再由归一性知:0.4+a +b +0.1=1 (2) 解(1),(2)得 a =0.4, b =0.1 2 解: (1) 247)2(),(}2{10202=--==>⎰⎰⎰⎰>xyx dydx y x dxdy y x f Y X P (2) 利用公式dx x z x f z f Z ⎰+∞∞--=),()(计算⎩⎨⎧<-<<<-=-其它,010,10,2),(x z x z x z x f ⎪⎩⎪⎨⎧≥<≤-<<-=⎪⎪⎩⎪⎪⎨⎧≥<≤-<<-=-=⎰⎰⎰-∞+∞-2,021,)2(10),22,021,)2(10,)2(),()(2110z z z z z z z dx z z dx z dx x z x f z f z z Z (3.解:(1) F Y (y )=P {Y ≤y }=P {X 2≤y} 当y <0时,f Y (y )=0当y ≥0时,)()(}{)(y F y F y X y P y F X X Y --=<<-=从而,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>≤<≤<=⎪⎩⎪⎨⎧-+=4041,8110,83)]()([21)(y y y y y y f y f yy f X X Y ,(2) F (-1/2,4)=P {X ≤-1/2,Y ≤4}= P {X ≤-1/2,X 2≤4} =P{-2≤X ≤-1/2}=4121)(211212==⎰⎰----dx dx x f X 4.解:P {XY ≠0}=1-P {XY =0}=0 即 P {X =-1,Y =1}+P {X =1,Y =1}=0由概率的非负性知,P {X =-1,Y =1}=0,P {X =1,Y =1}=0由边缘分布律的定义,P {X =-1}= P {X =-1,Y =0}+ P {X =-1,Y =1}=1/4 得P {X =-1,Y =0}=1/4再由P {X =1}= P {X =1,Y =0}+ P {X=1,Y =1}=1/4 得P {X =1,Y =0}=1/4再由P {Y =1}=P {X =-1,Y =1}+ P {X =0,Y =1}+ P {X =1,Y =1}= P {X =0,Y =1} 知P {X =0,Y =1}=1/2最后由归一性得:P {X =0,Y =0}=0 (X ,Y )的分布律用表格表示如下:(2) 显然,X 和Y 不相互独立,因为P {X =-1,Y =0}≠ P {X =-1}P {Y =0}5 解:X 与Y 相互独立,利用卷积公式dx x z f x fz f Y XZ ⎰+∞∞--=)()()(计算,21)(222)(σμσπ--=x X ex f ⎪⎩⎪⎨⎧-∈=其它,0),(,21)(πππy y f Y ⎪⎩⎪⎨⎧<-<-=---其它,0,221)()(222)(ππππσσμx z e x z f x f x Y X ⎰⎰⎰+---+---+∞∞-==-=ππσμπππσμπσππσz z x z z x Y X Z dx edx edx x z f x f z f 22222)(212)(21221)()()()]()([21}{21ππππππ--+=+<<-=z F z F z X z P ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--Φ-⎪⎭⎫ ⎝⎛-+Φσμπσμππz z 21 6.解:(X ,Y )~U(G )⎪⎩⎪⎨⎧∈=其它,0),(,21),(Gy x y x f 设F (x )和f (s )分别表示S =XY 的分布函数和密度函数F (s )=P {XY <s } s <0时,Fs (s )=0s ≥0时,⎪⎩⎪⎨⎧+≥=⎰⎰⎰⎰s s xs S dydxdydx s F 010*******,1 所以,⎪⎪⎩⎪⎪⎨⎧≥≥+<=2,12,2ln 220,0s s s s s s F S于是,S =XY 概率密度为⎪⎩⎪⎨⎧<<=其它,020,2ln 21)(s ss f S 7.解:由全概率公式:F U (u )=P {U ≤u }={X +Y ≤u }=P {X =1}P {X +Y ≤u |X =1}+ P {X =2}P {X +Y ≤u |X =2} = P {X =1}P {1+Y ≤u}+ P {X =2}P {2+Y ≤u } =0.3⨯F Y (u -1)+0.7⨯F Y (u-2) 所以,f U (u ) =0.3⨯f Y (u-1)+0.7⨯f Y (u -2)8. 解:(1) ⎩⎨⎧<<<<=其它,00,10,1),(xy x y x f⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,010,2,010,1),()(20x x x dy dy y x f x f xX ⎪⎩⎪⎨⎧<<-=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,020,21,020,1),()(12y y y dx dx y x f y f y Y (2) ⎰⎰≤-=≤-=≤=zy x Z dxdy y x f z Y X P z Z P z F 2),(}2{}{)(如图所示,当z <0时,F Z (z )=0; 当z ≥2时,F Z (z )=1 当0≤z <2时:411)(212222020z z dydx dydx z F z xz x zx Z -=+=⎰⎰⎰⎰- 综上所述,⎪⎪⎩⎪⎪⎨⎧≥<≤-<=2,120,40.0)(2z z z z z z F Z所以Z 的概率密度为:⎪⎩⎪⎨⎧<≤-=20,21,0)(z z z f Z 其它9.解:(1) ⎩⎨⎧<<=其它,010,1)(x x f X⎪⎩⎪⎨⎧<<<<=其它,010,0,1)|(|x x y xx y f X Y ⎪⎩⎪⎨⎧<<<==其它(,010,1)()|),(|x y xx f x y f y x f X X Y (2) ⎩⎨⎧<<-=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,010,ln ,010,1),()(1y y y dx x dx y x f y f y Y (3) 2ln 11),(}1{P 15.011-===≥+⎰⎰⎰⎰-≥+xx y x dydx xdxdy y x f Y X 10.解:(1)P {Z ≤1/2|X =0}=P {X +Y ≤1/2|X =0}=P {Y ≤1/2}=1/2 (2) 由全概率公式:F Z (z)=P {Z ≤z }=P {X +Y ≤z }=P {X =1}P {X +Y ≤z |X =1} +P {X =0}P {X +Y ≤z |X =0}=P {X =-1}P {X +Y ≤z |X =-1} = P {X =1}P {1+Y ≤z }+P {X =0}P {Y ≤z }=P {X =-1}P {-1+Y ≤z } =1/3⨯[FY(z-1)+ FY(z)+ FY(z+1)]从而,f Z (z ) =1/3⨯[f Y (z -1)+ f Y (z )+ f Y (z +1)]=⎪⎩⎪⎨⎧<<-其它,021,31z11.解:⎩⎨⎧<<<<=其它,00,10,3).(xy x x y x f⎰⎰-≥=-≥=≤-=≤=zx y dxdy y x f Z X Y P z Y X P z Z P z ),(}{}{}{)(Z F如图,当z <0时,F Z (z )=0; 当z ≥1时,F Z (z )=1当0≤z <1时:22333)(3100z z xdydx xdydx z F z xz x zxZ -=+=⎰⎰⎰⎰- 综上得:⎪⎪⎩⎪⎪⎨⎧≥<≤-<=1,010,2230,0)(3z z zz z z F Z 12Z 的概率密度为⎪⎩⎪⎨⎧<≤-=其它,010),1(23)(2z z z f Z12 解:,21)(22x X ex f -=π,21)(22y Y ey f -=π22221)()(),(y x Y X e y f x f y x f +-==π}{}{)(22z y x P z Z P z F Z ≤+=≤=当z <0时,F Z (z )=0; 当z ≥0时,220222222222121),(}{)(z z r z y x Z erdrd edxdy y x f z Y X P z F --≤+-===≤+=⎰⎰⎰⎰πθπ所以,Z 的概率密度为⎪⎩⎪⎨⎧≥=-其它,00,)(22z ze z f z Z。

概率论与数理统计课后习题答案 徐雅静版之欧阳法创编

概率论与数理统计课后习题答案 徐雅静版之欧阳法创编

习题答案第1章三、解答题1.设P(AB) = 0,则下列说法哪些是正确的?(1) A和B不相容;(2) A和B相容;(3) AB是不可能事件;(4) AB不一定是不可能事件;(5) P(A) = 0或P(B) = 0(6) P(A–B) = P(A)解:(4) (6)正确.2.设A,B是两事件,且P(A) = 0.6,P(B) = 0.7,问:(1) 在什么条件下P(AB)取到最大值,最大值是多少?(2) 在什么条件下P(AB)取到最小值,最小值是多少?解:因为)PAPABP≤,+-(B)()P(A(B)欧阳治创编2021.03.10欧阳治创编 2021.03.10又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P(AB)取到最大值,最大值是)()(A P AB P ==0.6.(2)1)(=B A P 时P(AB)取到最小值,最小值是P(AB)=0.6+0.7-1=0.3.3.已知事件A ,B 满足)()(B A P AB P =,记P(A) =p ,试求P(B). 解:因为)()(B A P AB P =, 即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以.1)(1)(p A P B P -=-=4.已知P(A) = 0.7,P(A –B) = 0.3,试求)(AB P .解:因为P(A –B) = 0.3,所以P(A )– P(AB) = 0.3,P(AB)= P(A )– 0.3,又因为P(A) = 0.7,所以P(AB) =0.7– 0.3=0.4,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少?解:显然总取法有410C n =种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k =24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数 法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C欧阳治创编 2021.03.10其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k -=+25C 其中:)(142815C C C -为恰有1双配对的方法数 法四:先满足有1双配对再除去重复部分:2815C C k =-25C 法五:考虑对立事件:410C k =-45C 412)(C 其中:45C 412)(C 为没有一双配对的方法数 法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-= 其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数 所求概率为.2113410==C k p 6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求:(1) 求最小号码为5的概率;(2) 求最大号码为5的概率.解:(1)法一:12131025==C C p ,法二:1213102513==A A C p (2)法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率.解:设M1,M2,M3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P ,1694)(324232=⨯=A C M P ,1614)(3143==C M P欧阳治创编 2021.03.108.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少?解:设M2, M1, M0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P 9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M1=“取到两个球颜色相同”,M1=“取到两个球均为白球”,M2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P 10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图.任取两个数的所有结果构成样本空间= {(x ,y):0 x ,y 1}事件A =“两数之和小于6/5”= {(x,y): x +y 6/5}因此欧阳治创编 2021.03.102517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图?11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率.解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间={(x ,y):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y):40,20,202πθ<<-<<<<x ax y a x }因此 211214121)(222+=+=Ω=πππa a a A A P 的面积的面积. 12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:欧阳治创编 2021.03.10,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少?解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

概率论与数理统计课后习题谜底-徐雅静版

概率论与数理统计课后习题谜底-徐雅静版

习题答案第1章 三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的? (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = 0.6,P (B ) = 0.7,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少? (2) 在什么条件下P (AB )取到最小值,最小值是多少? 解:因为)()()()(B A P B P A P AB P -+≤, 又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==0.6.(2)1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=0.6+0.7-1=0.3.3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以.1)(1)(p A P B P -=-=4.已知P (A ) = 0.7,P (A – B ) = 0.3,试求)(AB P .解:因为P (A – B ) = 0.3,所以P (A )– P(AB ) = 0.3, P(AB ) = P (A )– 0.3, 又因为P (A ) = 0.7,所以P(AB ) =0.7– 0.3=0.4,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少?解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k : 法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k -=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k =-25C法五:考虑对立事件:410C k =-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p 6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少?解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则 3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0x ,y 1}事件A =“两数之和小于6/5”= {(x ,y): x + y6/5}因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图?11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P.311216141)()()()(=-+=-+=AB P B P A P B A P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少?解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

概率论和数理统计课后习题集答案解析徐雅静版

概率论和数理统计课后习题集答案解析徐雅静版

习题答案第1章 三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的? (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = 0.6,P (B ) = 0.7,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少? (2) 在什么条件下P (AB )取到最小值,最小值是多少? 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==0.6.(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=0.6+0.7-1=0.3. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以 .1)(1)(p A P B P -=-=4.已知P (A ) = 0.7,P (A – B ) = 0.3,试求)(AB P .解:因为P (A – B ) = 0.3,所以P (A )– P(AB ) = 0.3, P(AB ) = P (A )– 0.3, 又因为P (A ) = 0.7,所以P(AB ) =0.7– 0.3=0.4,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少? 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k -=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k =-25C法五:考虑对立事件:410C k =-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p 6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少?解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间Ω = {(x ,y ):0 ≤ x ,y ≤ 1} 事件A =“两数之和小于6/5”= {(x ,y ) ∈ Ω : x + y ≤ 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图?11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,θ表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间Ω={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P .311216141)()()()(=-+=-+=AB P B P A P B A P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少?解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

《概率论与数理统计》(复旦大学出版社)第七章习题答案

习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)e e eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=.(2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑求这批股民的收益率的平均收益率及标准差的矩估计值.【解】 0.094x =- 0.101893s =9n = 0.094.EX x ==-由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有 ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计. 【解】(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计.(2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大,所以θ的极大似然估计值ˆθ=0.9.因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}i i x ≤≤不是θ的无偏计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i i i XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,则 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭ 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=-所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0n n ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L n x θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本(1) 求θ的矩估计量;(2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤=其中θ(0<θ<12)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值. 【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ=. 由于71,122+> 所以θ的极大似然估计值为ˆθ=15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0,1.xx f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i n i i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏其他显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰【解】26~ 3.4,X N n ⎛⎫⎪⎝⎭,则~(0,1),X Z N ={1.4 5.4}33210.95333Z P X P P ZΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛⎫⎛⎛=-=-≥-⎪ ⎝⎭⎝⎭⎝⎭于是0.975Φ≥ 1.96≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. 解 (1) 由于121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为32X θ=-. (2) 似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令d ln ()0,d L θθ=得 Nnθ=, 所以θ的最大似然估计为N nθ=.。

中国传媒大学《概率论与数理统计》2019-2020学年第二学期期末试卷A卷

一、 填空题(共6题,每题3分,共18分)1.已知事件A 和B 互斥,()0.3,()0.2,P B P A B =-= 则()P A B ⋃= .2.三人独立地去破译一份密码,已知各人能译出的概率分别为111,534,,则三人中至少有一人能破译此密码的概率是 .3. 设打车等待时间X (分钟) 在(0,10)上服从均匀分布,某人周一至周五均打车上班,则至少有一天等待时间大于5分钟的概率为 .4. 二维正态分布的参数形式为221212(,,,,)N μμσσρ,若随机变量(,)(1,2,4,1,0)X Y N ,则23X Y -服从________分布(要求分布包括参数).5. 设125,,,X X X ⋅⋅⋅是来自总体(0,1)N 的样本,则C = 时,122221/2345()(++)C X X Y X X X +=服从t 分布. 6. 设某产品的某项质量指标服从正态分布,已知其标准差是σ。

从中随机抽取n 名, X ̅是样本均值,则该质量指标平均值的置信水平为 95% 的双侧置信区间为 .二、单项选择题(共6题,每题3分,共18分)1. 下列说法不.正确..的是( ). A. 设X 是连续型随机变量,a 是一个实数,则P {X=a }=0; B. 设连续型随机变量X 的概率密度为f(x), 则∫f (t )dt =1∞−∞ C. 设随机变量X 的分布函数是F(x), 则 F(x)是连续的;D .设离散型随机变量X 的分布律是P {X =x k }=p k ,k =1,2,⋯, 则 ∑p k ∞k=1=1; 2.若协方差(,)0Cov X Y =,以下哪个选项不是..其充分且必要条件( ). (A) (+)()()D X Y D X D Y =+ (B) ()()()E X Y E X E Y +=+ (C) (D) 0XY ρ=3.随机变量X 和Y 的相关系数ρXY =0.5,21Z X =-+,则ρYZ =( ). A. −0.5 B. 0.5 C. −1 D. 14. 已知某班概率统计课程成绩的平均分是80,方差是16,利用切比雪夫不等式估算, 随机抽取一名学生其成绩及格 (在60到100分之间) 的概率至少是 ( ). A.1625; B. 2425 ; C. 1516; D. 34)()()(Y E X E XY E=5.n X X X ,,,21 为总体~(0,1)X N 的一个样本,X 为样本均值,2S 为样本方差,则有( ).(A ) ~(0,1)X N ; (B )~(0,1)nX N ;(C )/~(1)X S t n -; (D )22(1)~(1)n S n χ--6.假设检验中,关于显著性检验,下列说法错误..的是( ). A. 显著性检验的基本思想是“小概率原则”,即小概率事件在一次实验中是几乎不可能发生.B. 显著性水平 α 是该检验犯第一类错误的最大概率,即“拒真”概率. C .如果在α=0.01下拒绝H 0,那么在α=0.05下一定拒绝H 0。

概率论与数理统计课后习题答案_徐雅静版


1
2
1 1 C8 ⋅ C6 为恰有 1 双配对的方法数 2!
其中: C1 5 ⋅
1 2 法三:分两种情况考虑: k = C5 (C82 − C 1 4 ) + C5 2 1 其中: C1 5 ( C8 − C 4 ) 为恰有 1 双配对的方法数 1 2 法四:先满足有 1 双配对再除去重复部分: k = C5 C8 - C52 4 4 法五:考虑对立事件: k = C10 - C54 (C 1 2) 4 其中: C54 (C 1 为没有一双配对的方法数 2) 4 法六:考虑对立事件: k = C10 − 1 1 1 C10 ⋅ C8 ⋅ C6 ⋅ C1 4 4!
3
任取两个数的所有结果构成样本空间 Ω = {(x,y):0 ≤ x,y ≤ 1} 事件 A =“两数之和小于 6/5”= {(x, y) ∈ Ω : x + y ≤ 6/5} 因此 1 ⎛ 4⎞ 1− ×⎜ ⎟ A 的面积 2 ⎝ 5⎠ 17 . P( A) = = = Ω的面积 1 25 图?
M = M 1 ∪ M 2 且M 1 ∩ M 2 = φ .
所以 P( M ) = P( M 1 ∪ M 2 ) = P( M 1 ) + P( M 2 ) =
C2 C2 13 5 3 + = . 2 2 C8 C8 28
10. 若在区间(0,1)内任取两个数,求事件“两数之和小于 6/5”的概率. 解:这是一个几何概型问题.以 x 和 y 表示任取两个数,在平面上建立 xOy 直角坐标系,如图. 2
1 1 1 , P( B A) = , P ( A B ) = ,求 P( A ∪ B) . 4 3 2 P( AB) 1 1 1 1 1 1 解: P( AB) = P( A) P( B A) = × = = ÷ = , , P( B ) = 4 3 12 P( A | B ) 12 2 6

《概率论与数理统计答案》第二章 徐静雅

第二章2一、填空题:1. {}x X P ≤,)()(12x F x F -2. ==}{k X P k n kk n p p C --)1(,k = 0,1,…,n3. 0,!}{>==-λλλe k k X P k为参数,k = 0,1,…4.λ+115. ⎪⎩⎪⎨⎧<<-=其它,0 ,1)(b x a a b x f 6. +∞<<-∞=--x ex f x ,21)(22)(σμσπ7. +∞<<-∞=-x e x x ,21)(22πϕ8. )()(σμσμ-Φ--Φa b9.分析:由题意,该随机变量为离散型随机变量,根据离散型随机变量的分布函数求法,可观察出随机变量的取值及概率。

10. 649分析:每次观察下基本结果“X ≤1/2”出现的概率为412)(2121-==⎰⎰∞xdx dx x f ,而本题对随机变量X 取值的观察可看作是3重伯努利实验,所以{}649)411()41(223223=-==-C Y P11. {}7257.0)212.2(212.2212.2=-Φ=⎭⎬⎫⎩⎨⎧-<-=<X P X P ,{},8950.01)3.1()4.2()3.1()4.2()216.1()218.5(218.521216.15.86.1=-Φ+Φ=-Φ-Φ=--Φ--Φ=⎭⎬⎫⎩⎨⎧-<-<--=<<-X P X P 同理,P {| X | ≤ 3.5} =0.8822.12. {})31(3113)(-=⎭⎬⎫⎩⎨⎧-≤=≤+==y F y X P y X Y P y G . 13.4813,利用全概率公式来求解: {}{}{}{}{}{}{}{}{}.4813414141314121410 442332 2221122=⨯+⨯+⨯+⨯====+===+===+=====X P X Y P X P X Y P X P X Y P X P X Y P Y P 二、单项选择题:1. B ,由概率密度是偶函数即关于纵轴对称,容易推导F (-a)=dx x f dx x f dx x f dx x f dx x f a a ⎰⎰⎰⎰⎰-===∞--∞-00a -0a -0)(21)(-21)(-)()(2. B ,只有B 的结果满足1)(lim )(==+∞+∞→x F F x3. C ,根据分布函数和概率密度的性质容易验证4. D ,⎩⎨⎧<≥=2,2,2X X X Y ,可以看出Y 不超过2,所以{}{}0,2,12 ,12,12 ,12,2 ,1)(0>⎪⎩⎪⎨⎧<-≥=⎪⎩⎪⎨⎧<≥=⎩⎨⎧<≤≥=≤=--⎰θθθϑy e y y dx e y y y X P y y Y P y F y x y Y ,可以看出,分布函数只有一个间断点.5. C, 事件的概率可看作为事件A (前三次独立重复射击命中一次)与事件B (第四次命中)同时发生的概率,即p p p C B P A P AB P p ⋅-===-2313)1()()()(.三、解答题(A )1.(1)分析:这里的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有1-612⨯C (这里12C 指任选某次点数为1,6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为612⨯C 多算了一次)或1512+⨯C 种,故{}36113615361-611212=+⨯=⨯==C C X P ,其他结果类似可得.(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤=+=+=+=+=<≤=+=+=+=<≤=+=+=<≤=+=<≤=<=6165}5{}4{}3{}2{}1{54 }4{}3{}2{}1{43 }3{}2{}1{32}2{}1{21}1{1 0 )(x x X P X P X P X P X P x X P X P X P X P x X P X P X P x X P X P x X P x x F ,,,,,,,⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=6 165363554 363243 36273236202136111 0 x x x x x x x ,,,,,,, 2.注意,这里X 指的是赢钱数,X 取0-1或100-1,显然{}1261299510===C X P . 3.1!==-∞=∑λλae k ak k,所以λ-=e a .4.(1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤-<=⎪⎪⎩⎪⎪⎨⎧≥<≤=+-=<≤--=<=3x 132432141-1x 03x 132}2{}1{21}1{-1x 0)(,,,,,,,,x x x X P X P x X P x f , (2) {}41121=-==⎭⎬⎫⎩⎨⎧≤X p X P 、 {}2122523===⎭⎬⎫⎩⎨⎧≤<X P X P 、{}{}{}{}{}{}43323232==+=====≤≤X P X P X X P X P ; 5.(1) {}3121121121lim 212121222242=⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=++++==∞→ii i X P 偶数, (2) {}{}16116151415=-=≤-=≥X P X P , (3) {}7121121121lim 21333313=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-===∞→∞=∑i i i i X P 的倍数.6.(1) ()()5.15.0~P t P X = {}5.10-==e X P . (2) 5.25.0=t {}{}5.21011--==-=≥e x P x P .7.解:设射击的次数为X ,由题意知().20400~,B X {}{}kk k kC X P X P -=∑-=≤-=≥4001040098.002.011129972.028.01!81810=-=-≈-=∑e k k K ,其中8=400×0.02.8.解:设X 为事件A 在5次独立重复实验中出现的次数,().305~,B X 则指示灯发出信号的概率{}{})7.03.07.03.07.03.0(1313322541155005C C C X P X P p ++-=<-=≥=1631.08369.01=-=;9. 解:因为X 服从参数为5的指数分布,则51)(xex F --=,{}2)10(110-=-=>e F X P ,()25~-e B Y ,则50,1,k ,)1()(}{5225 =-==---k k ke e C k Y P 0.516711}0{-1}1{52=--===≥-)(e Y P Y P10. (1)、由归一性知:⎰⎰-∞+∞-===222cos )(1ππa xdx a dx x f ,所以21=a . (2)、42|sin 21cos 21}40{4040===<<⎰πππx xdx X P . 11. 解 (1)由F (x )在x =1的连续性可得)1()(lim )(lim 11F x F x F x x ==-→+→,即A=1.(2){}=<<7.03.0X P 4.0)3.0()7.0(=-F F .(3)X 的概率密度⎩⎨⎧<<='= ,010,2)()(x x x F x f .12. 解 因为X 服从(0,5)上的均匀分布,所以⎪⎩⎪⎨⎧<<=其他05051)(x x f若方程024422=+++X Xx x 有实根,则03216)4(2≥--=∆X X ,即 12-≤≥X X ,所以有实根的概率为 {}{}53510511252152==+=-≤+≥=⎰⎰-∞-x dx dx X P X P p 13. 解: (1) 因为4)(3~,N X 所以 )2()5(}52{F F X P -=≤<5328.016915.08413.01)5.0()1(=-+=-Φ-Φ={})4()10(104--=≤<-F F X P996.01998.021)5.3(21)5.3()5.3(=-⨯=-Φ=--Φ-Φ={}{}212≤-=>X P X P {}221≤≤--=X P[])2()2(1---=F F [])5.2()5.0(1-Φ--Φ-= [])5.0()5.2(1Φ-Φ-=3023.01-=6977.0={}{}313≤-=>X P X P )3(1F -=)0(1Φ-=5.01-=5.0=(2) {}{}c X P c X P ≤-=>1,则{}21=≤c X P 21)23()(=-Φ==c c F ,经查表得21)0(=Φ,即023=-c ,得3=c ;由概率密度关于x=3对称也容易看出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档