2019年苏州市中考一轮复习第23讲《特殊四边形》讲学案
2019版中考数学专题复习 专题五(19-2)特殊的平行四边形教案

2019版中考数学专题复习专题五(19-2)特殊的平行四边形教案一、【教材分析】教学目标知识技能1、进一步理解平行四边形、矩形、菱形、正方形的概念及其相互联系2、掌握平行四边形、矩形、菱形、正方形的性质和判定3、会把各种平行四边形的相关知识进行结构化整理过程方法在复习的过程中,通过练习回忆已学过的知识,提高逻辑思维能力、合情推理能力和归纳概括能力,训练思维的灵活性,领悟数学思想.情感态度在整理知识点的过程中,以生为本,正视学生学习能力、认知水平等个体差异,发展学生的独立思考习惯,使之感受成功,并找到解决平行四过形问题的一般方法.教学重点理解并掌握几种特殊四边形的性质和判定.教学难点发展合情推理和初步的演绎推理能力.二、【教学流程】教学环节教学问题设计师生活动二次备课知识回顾【回顾练习】1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形2.平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BDC.AC⊥BDD.AB⊥BD3.在下列命题中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形4. 矩形的两条对角线的一个交角为60 o,两条对通过课前热身练习,让学生对知识进行回忆,进一步体会特殊平行四边形的性质、判定。
角线的长度的和为8cm,则这个矩形的一条较短边为cm.5.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是.6. 若正方形的一条对角线的长为2cm,则这个正方形的面积为.7、如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_____________.概念再现,知识梳理。
2019年苏州市中考一轮复习第23讲《特殊四边形》讲学案

2019年中考数学一轮复习第23讲《特殊四边形》【考点解析】知识点一、矩形的性质及判定的应用【例1】(2019·四川宜宾)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.2【考点】矩形的性质.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△A O D=S△A O P+S△D O P=OA•PE+OD•PF求得答案.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形A B C D=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△A C D=S矩形A B C D=24,∴S△A O D=S△A C D=12,∵S△A O D=S△A O P+S△D O P=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故选:A.【变式】(2019·四川眉山·3分)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△E OA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BCM=S△AOE:S△BOE=1:2,故④错误;所以其中正确结论的个数为3个;故选B【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.知识点二、菱形的性质及判定的应用【例2】(2019辽宁朝阳)如图,在△ABC中,点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC,从中选择一个条件使四边形BECF是菱形,并给出证明,你选择的条件是(只填写序号).【答案】③,证明见解析.【分析】由点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可得到四边形BECF是平行四边形,由AF是BC的中垂线,得到BE=CE,从而得到结论.【解析】∵BD=CD,DE=DF,∴四边形BECF是平行四边形,①BE⊥EC时,四边形BECF是矩形,不一定是菱形;②四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;③AB=AC时,∵D是BC的中点,∴AF是BC的中垂线,∴BE=CE,∴平行四边形BECF是菱形.故答案为:③..【点评】此题主要考查了菱形的判定以及等腰三角形的性质,能根据已知条件来选择让问题成立的条件是解题关键.【变式】(2019·青海西宁·2分)如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是16 .【考点】菱形的性质;三角形中位线定理.【分析】先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.【解答】解:∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=16.故答案为16.知识点三、正方形的性质及判定的应用【例3】(2019·四川眉山·3分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A. B.6 C. D.【分析】由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.【解答】解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴B′C=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6.故选:A.【点评】本题考查了旋转的性质、正方形的性质以及等腰直角三角形的性质.此题难度适中,注意连接BC′构造等腰Rt△OBC′是解题的关键,注意旋转中的对应关系.【变式】(2019·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数为()A.2 B.3 C.4 D.5【考点】四边形综合题.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OG F=1,∴OG2=1,解得OG=,∴BE=2OG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.知识点四、特殊平行四边形的综合应用【例4】(2019辽宁铁岭)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.【答案】(1)证明见解析;(2)25.【分析】(1)由四边形ABCD为矩形,得到AB=CD,AB∥CD,由DE=BF,得到AF=CE,AF∥CE,即可证明四边形AFCE是平行四边形;(2)由四边形AFCE是菱形,得到AE=CE,然后设DE=x,表示出AE,CE的长度,根据相等求出x的值,继而可求得菱形的边长及周长.【解析】(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是菱形,∴AE=CE,设DE=x,则,CE=8﹣x8x=-,解得:x=74,则菱形的边长为:784-=254,周长为:4×254=25,故菱形AFCE的周长为25.【点评】本题考查了矩形的性质、平行四边形的判定、菱形的性质以及勾股定理等知识,能正确地分析图形的特点是解决此类问题的关键.【变式】(2019·四川内江)如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF =BD ,连接BF .(1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.[考点]三角形例行,特殊四边形的性质与判定。
苏科版初三数学特殊四边形复习教学课件

则第四块田的面积是多少?
AG D
E 10
P
F
14 36
B
H
C
第二十页,共28页。
• 如图1,在边长为5的正方形ABCD中,点E、F分别是 BC、CD边上的点,且AE⊥EF,BE=2
• (1)求EC:CF值; • (2)延长EF交正方形∠BCD的外角平分线CP于点P
C、菱形
第十页,共28页。
• 5、(浙江金华)国家级历史文化名城——金华,
风光秀丽,花木葱茏.某广场上一个形状是平
行四边形的花坛(如图),分别种有红、黄、
蓝、绿、橙、紫6种颜色的花.如果有,,那 么下列说法中错误的是………………( )
• A.红花、绿花种植面积一定相等
B.紫花、橙花种植面积一定相等
• 图象理解
• (3)求慢车和快车的速度;
B
O
4
12 x/h
• (4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;
• 问题解决
• (5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列
快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚
出发多少小时?
第二十五页,共28页。
第二十六页,共28页。
第二十七页,共28页。
谢谢观赏
第二十八页,共28页。
• (A)4cm (B)6cm
• (C)8cm
(D)10cm
第十二页,共28页。
• ADCB第9题图ADBCEF第10题图
• 9、(四川成都)如图,如果要使平行四边形
ABCD成为一个菱形,需要添加一个条件,那么你添加的Fra bibliotek件是.
【K12学习】XX年中考数学一轮复习特殊四边形讲学案

XX年中考数学一轮复习特殊四边形讲学案XX年中考数学一轮复习第23讲《特殊四边形》【考点解析】知识点一、矩形的性质及判定的应用【例1】如图,点P是矩形ABcD的边AD上的一动点,矩形的两条边AB、Bc的长分别是6和8,则点P到矩形的两条对角线Ac和BD的距离之和是A.4.8B.5c.6D.7.2【考点】矩形的性质.【分析】首先连接oP,由矩形的两条边AB、Bc的长分别为3和4,可求得oA=oD=5,△AoD的面积,然后由S△AoD=S △AoP+S△DoP=oA•PE+oD•PF求得答案.【解答】解:连接oP,∵矩形的两条边AB、Bc的长分别为6和8,∴S矩形ABcD=AB•Bc=48,oA=oc,oB=oD,Ac=BD=10,∴oA=oD=5,∴S△AcD=S矩形ABcD=24,∴S△AoD=S△AcD=12,∵S△AoD=S△AoP+S△DoP=oA•PE+oD•PF=×5×PE+×5×PF==12,解得:PE+PF=4.8.故选:A.【变式】如图,矩形ABcD中,o为Ac中点,过点o的直线分别与AB、cD交于点E、F,连结BF交Ac于点,连结DE、Bo.若∠coB=60°,Fo=Fc,则下列结论:①FB垂直平分oc;②△EoB≌△cB;③DE=EF;④S△AoE:S△Bc=2:3.其中正确结论的个数是A.4个B.3个c.2个D.1个【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△oB≌△oEB得△EoB≌△cB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△Bc≌△BEo,则面积相等,△AoE和△BEo 属于等高的两个三角形,其面积比就等于两底的比,即S△AoE:S△BoE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2oE=2AE,得出结论S△AoE:S△BoE=AE:BE=1:2.【解答】解:①∵矩形ABcD中,o为Ac中点,∴oB=oc,∵∠coB=60°,∴△oBc是等边三角形,∵Fo=Fc,∴FB垂直平分oc,故①正确;②∵FB垂直平分oc,∴△cB≌△oB,∵oA=oc,∠Foc=∠EoA,∠Dco=∠BAo,∴△Foc≌△EoA,∴Fo=Eo,易得oB⊥EF,∴△oB≌△oEB,∴△EoB≌△cB,故②正确;③由△oB≌△oEB≌△cB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BoE中∵∠3=30°,∵∠oAE=∠AoE=30°,∴AE=oE,∴BE=2AE,∴S△AoE:S△Bc=S△AoE:S△BoE=1:2,故④错误;所以其中正确结论的个数为3个;故选B【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.知识点二、菱形的性质及判定的应用【例2】如图,在△ABc中,点D是Bc的中点,点E、F 分别是线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥Ec;②BF∥Ec;③AB=Ac,从中选择一个条件使四边形BEcF是菱形,并给出证明,你选择的条件是.【答案】③,证明见解析.【分析】由点D是Bc的中点,点E、F分别是线段AD 及其延长线上,且DE=DF,即可得到四边形BEcF是平行四边形,由AF是Bc的中垂线,得到BE=cE,从而得到结论.【解析】∵BD=cD,DE=DF,∴四边形BEcF是平行四边形,①BE⊥Ec时,四边形BEcF是矩形,不一定是菱形;②四边形BEcF是平行四边形,则BF∥Ec一定成立,故不一定是菱形;③AB=Ac时,∵D是Bc的中点,∴AF是Bc的中垂线,∴BE=cE,∴平行四边形BEcF是菱形.故答案为:③.【点评】此题主要考查了菱形的判定以及等腰三角形的性质,能根据已知条件来选择让问题成立的条件是解题关键.【变式】如图,在菱形ABcD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABcD的周长是16 .【考点】菱形的性质;三角形中位线定理.【分析】先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABcD的周长.【解答】解:∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABcD为菱形,∴AB=Bc=cD=DA=4,∴菱形ABcD的周长=4×4=16.故答案为16.知识点三、正方形的性质及判定的应用【例3】把边长为3的正方形ABcD绕点A顺时针旋转45°得到正方形AB′c′D′,边Bc与D′c′交于点o,则四边形ABoD′的周长是A.B.6c.D.【分析】由边长为3的正方形ABcD绕点A顺时针旋转45°得到正方形AB′c′D′,利用勾股定理的知识求出Bc′的长,再根据等腰直角三角形的性质,勾股定理可求Bo,oD′,从而可求四边形ABoD′的周长.【解答】解:连接Bc′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线Ac′上,∵B′c′=AB′=3,在Rt△AB′c′中,Ac′==3,∴B′c=3﹣3,在等腰Rt△oBc′中,oB=Bc′=3﹣3,在直角三角形oBc′中,oc==6﹣3,∴oD′=3﹣oc′=3﹣3,∴四边形ABoD′的周长是:2AD′+oB+oD′=6+3﹣3+3﹣3=6.故选:A.【点评】本题考查了旋转的性质、正方形的性质以及等腰直角三角形的性质.此题难度适中,注意连接Bc′构造等腰Rt△oBc′是解题的关键,注意旋转中的对应关系.【变式】如图,正方形纸片ABcD中,对角线Ac、BD交于点o,折叠正方形纸片ABcD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、Ac于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S △AGD=S△oGD;④四边形AEFG是菱形;⑤BE=2oG;⑥若S △oGF=1,则正方形ABcD的面积是6+4,其中正确的结论个数为A.2B.3c.4D.5【考点】四边形综合题.【分析】①由四边形ABcD是正方形,可得∠GAD=∠ADo=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>oG,可得△AGD的面积>△oGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2oG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAo=45°,∠GoF=90°可得出△oGF时等腰直角三角形,由S△oGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABcD是正方形,∴∠GAD=∠ADo=45°,由折叠的性质可得:∠ADG=∠ADo=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AoB=90°,∴AG=FG>oG,△AGD与△oGD同高,∴S△AGD>S△oGD,故③错误.∵∠EFD=∠AoF=90°,∴EF∥Ac,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠oGF=∠oAB=45°,∴EF=GF=oG,∴BE=EF=×oG=2oG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAo=45°,∠GoF=90°,∴△oGF时等腰直角三角形.∵S△oGF=1,∴oG2=1,解得oG=,∴BE=2oG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABcD=AB2=2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.知识点四、特殊平行四边形的综合应用【例4】如图,矩形ABcD中,AB=8,AD=6,点E、F分别在边cD、AB上.若DE=BF,求证:四边形AFcE是平行四边形;若四边形AFcE是菱形,求菱形AFcE的周长.【答案】证明见解析;25.【分析】由四边形ABcD为矩形,得到AB=cD,AB∥cD,由DE=BF,得到AF=cE,AF∥cE,即可证明四边形AFcE是平行四边形;由四边形AFcE是菱形,得到AE=cE,然后设DE=x,表示出AE,cE的长度,根据相等求出x的值,继而可求得菱形的边长及周长.【解析】∵四边形ABcD为矩形,∴AB=cD,AB∥cD,∵DE=BF,∴AF=cE,AF∥cE,∴四边形AFcE是平行四边形;∵四边形AFcE是菱形,∴AE=cE,设DE=x,则AE=,cE=8﹣x,则,解得:x=,则菱形的边长为:=,周长为:4×=25,故菱形AFcE的周长为25.【点评】本题考查了矩形的性质、平行四边形的判定、菱形的性质以及勾股定理等知识,能正确地分析图形的特点是解决此类问题的关键.【变式】如图所示,△ABc中,D是Bc边上一点,E是AD的中点,过点A作Bc的平行线交cE的延长线于F,且AF=BD,连接BF.求证:D是Bc的中点;若AB=Ac,试判断四边形AFBD的形状,并证明你的结论.[考点]三角形例行,特殊四边形的性质与判定。
江苏省2019届中考数学一轮复习第23课时特殊四边形和中位线导学案无答案358

第23课时特殊四边形和中位线班级:姓名:学习目标:1.掌握平行四边形、矩形、菱形、正方形的性质和判定方法,能够应用知识解决相关问题。
2.掌握三角形中位线定理,并利用该定理解决相关问题。
重难点:利用知识解决相关问题学习过程一、知识梳理四边形性质(在相应的性质内打“√”)对角相平行四边形的判定:①的四边形是平行四边形;②的四边形是平行四边形;③的四边形是平行四边形;④的四边形是平行四边形。
矩形的判定:① 的平行四边形是矩形;② 的平行四边形是矩形;③ 的四边形是矩形; 菱形的判定:① 的平行四边形是菱形;② 的平行四边形是菱形;③ 的四边形是菱形; 正方形的判定:① 的矩形是正方形;② 的矩形是正方形;③ 的菱形是正方形;④ 的菱形是正方形;三角形中位线定理:三角形的中位线 ,并且等于 。
二、典型例题1.平行四边形的性质和判定: (1)(2017武汉)如图,在ABCD 中,100D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE ,若AE AB =,则EBC ∠的度数为 . (2)(2017丽水)如图,在ABCD 中,连结AC ,45ABC CAD ∠=∠=︒,2AB =,则ABCD 的周长是2.矩形的性质和判定:(2017怀化)如图,在矩形ABCD 中, 对角线AC ,BD 相交于点O ,60AOB =∠°,6cm AC =,则BC 的长是 3.菱形的性质和判定:(1)(2017孝感)如图,四边形ABCD 是菱形,2410AC BD DH AB ==⊥,,于点H ,则线段BH 的长为 .(2)(2017张家界)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF BE ,. (1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由. 4.正方形的性质和判定:(1)(2017黔东南)如图,正方形ABCD 中,E 为AB 中点,FE AB ⊥,2AF AE =,FC 交BD 于O ,则DOC ∠的度数为( )A .60?︒B .67.5?︒C .75?︒D .54︒(2)(2017青岛)已知:如图,在菱形ABCD 中,点E O F ,,分别为AB AC AD ,,的中点,连接CE CF OE OF ,,,. (1)求证:△BCE ≌△DCF ;(2)当AB 与BC 满足什么关系时,四边形AEOF 是正方形?请说明理由.5.四边形的综合应用(1)(中考指要例1)如图,点A B C D ,,,在同一条AE DF A D =∠=∠,,直线上,点E F ,分别在直线AD 的两侧,且(1)求证:四边形BFCE 是平行四边形; (2)若10360AD DC EBD ==∠=︒,,,则。
中考数学 第23讲 特殊的平行四边形复习讲义 苏科版

第23讲特殊的平行四边形一、矩形矩形是特殊的平行四边形,从运动变化的观点来看,当平行四边形的一个内角变为90°时,其它的边、角位置也都随之变化。
因此矩形的性质是在平行四边形的基础上扩充的。
1、矩形:有一个角是直角的平行四边形叫做短形(通常也叫做长方形)2、矩形性质定理1:矩形的四个角都是直角。
3.矩形性质定理2:矩形的对角线相等。
4、矩形判定定理1:有三个角是直角的四边形是矩形。
说明:因为四边形的内角和等于360度,已知有三个角都是直角,那么第四个角必定是直角。
5、矩形判定定理2:对角线相等的平行四边形是矩形。
说明:要判定四边形是矩形的方法是:法一:先证明出是平行四边形,再证出有一个直角(这是用定义证明)法二:先证明出是平行四边形,再证出对角线相等(这是判定定理1)法三:只需证出三个角都是直角。
(这是判定定理2)二、菱形菱形也是特殊的平行四边形,当平行四边形的两个邻边发生变化时,即当两个邻边相等时,平行四边形变成了菱形。
1、菱形:有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质1:菱形的四条边相等。
3、菱形的性质2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。
4、菱形判定定理1:四边都相等的四边形是菱形。
5、菱形判定定理2:对角线互相垂直的平行四边形是菱形。
说明:要判定四边形是菱形的方法是:法一:先证出四边形是平行四边形,再证出有一组邻边相等。
(这就是定义证明)。
法二:先证出四边形是平行四边形,再证出对角线互相垂直。
(这是判定定理2)法三:只需证出四边都相等。
(这是判定定理1)三、正方形正方形是特殊的平行四边形,当邻边和内角同时运动时,又能使平行四边形的一个内角为直角且邻边相等,这样就形成了正方形。
1、正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形性质定理1:正方形的四个角都是直角,四条边都相等。
3、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
2019年中考数学一轮复习课件:第四章图形的认识4.5特殊的平行四边形

2
∴在Rt△B'EG中,由勾股定理得B'G=12,∴B'H=GH-B'G=4.在Rt△B'DH中,由勾股定理得DB'=
4 5(易知此时点F在BC上且不与点C、B重合). 综上所述,DB'=16或4 5 . 思路分析 分DB'=DC、CB'=CD和CB'=DB'三种情况讨论.
(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
请根据上图完成这个推论的证明过程.
证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),
S =S -( 矩形EBMF △ABC
+
).
易知,S△ADC=S△ABC,
=
,
=
.
可得S =S . 矩形NFGD 矩形EBMF
2.(2016江苏,15,3分)如图,已知AD∥BC,AB⊥BC,AB=3.点E为射线BC上一个动点,连接AE,将△
ABE沿AE折叠,点B落在点B'处,过点B'作AD的垂线,分别交AD,BC于点M,N.当点B'为线段MN的
三等分点时,BE的长为
.
答案 3 2 或 3 5
2
5
解析 ∵AD∥BC,AB⊥BC,MN⊥AD, ∴四边形ABNM为矩形,∴MN=AB=3, ∵B'为线段MN的三等分点,∴B'M=1或2, ∵∠AB'E=∠ABC=90°,∴∠AB'M+∠EB'N=90°. ∵∠EB'N+∠B'EN=90°,∴∠AB'M=∠B'EN.
2019年苏州市石牌中学中考专题复习导学案23:特殊四边形

2019年中考数学专题练习23《特殊四边形》【知识归纳】一、矩形1.定义:有一个角是的平行四边形叫做矩形2.性质(1)矩形的四个角都是;(2)矩形的对角线互相平分并且(3)矩形是一个轴对称图形,它有条对称轴3.判定(1)根据矩形的定义;(2)有个角是直角的平行四边形是矩形;(3)对角线的平行四边形是矩形二.菱形1.定义有一组邻边相等的平行四边形是菱形2.性质(1)菱形的四条边;(2)菱形的对角线互相平分;(3)每条对角线平分(4)菱形是对称图形,两条对角线所在的直线是它的对称轴,菱形是中心对称图形,它的对称中心是两条对角线的交点3.判定(1)根据菱形的定义;(2)四条边的四边形是菱形;(3)对角线互相的平行四边形是菱形三.正方形1.定义有一组邻边相等,且有一个角是直角的叫做正方形2.性质①正方形对边平行;②正方形四边;③正方形四个角都是;④正方形对角线相等,互相垂直平分,每条对角线平分;⑤正方形既是轴对称图形也是图形,对称轴有条,对称中心是对角线的交点3.判定(1)根据正方形的定义;(2)有一组邻边相等的是正方形;(3)有一个角是直角的是正方形【基础检测】1.(2019•舟山)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B.C.1 D.2.(2019•兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED的面积()A.2B.4 C.4D.83. (2019·云南昆明)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个4.(2019·黑龙江齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使其成为菱形(只填一个即可).5. (2019山东烟台)如图,□ABCD的周长为36.对角线AC,BD相交于点O.点E是CD的中点.BO=12.则△DOE的周长为___________.6. (2019四川雅安)在□ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.7.(2019·贵州安顺·10分)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.8.(2019广西南宁)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【达标检测】一.选择题1.如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为( )A.45° B.55° C.60° D.75°2.(2019·四川攀枝花)下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分3.(2019·四川内江)下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形4.(2019·四川南充)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°5.(2019·四川泸州)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC 上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.6.(2019·湖北荆门)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF二.填空题7. (2019·内蒙古包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.8. (2019·陕西)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.9. 如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.10. 如图,矩形ABCD中,AD=5,AB=7. 点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为 .11. 如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=13a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=13A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为.三.解答题12.(2019·黑龙江哈尔滨)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.13.(2019广西南宁)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.14.(2019河南)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE= ;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.15.(2019·陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC 上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【知识归纳答案】一、矩形1.定义有一个角是直角的平行四边形叫做矩形2.性质(1)矩形的四个角都是直角;(2)矩形的对角线互相平分并且相等(3)矩形是一个轴对称图形,它有 2 条对称轴3.判定(1)根据矩形的定义;(2)有 1 个角是直角的平行四边形是矩形;(3)对角线相等的平行四边形是矩形二.菱形1.定义有一组邻边相等的平行四边形是菱形2.性质(1)菱形的四条边相等;(2)菱形的对角线互相垂直平分;(3)每条对角线平分一组对角(4)菱形是轴对称图形,两条对角线所在的直线是它的对称轴,菱形是中心对称图形,它的对称中心是两条对角线的交点3.判定(1)根据菱形的定义;(2)四条边相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形三.正方形1.定义有一组邻边相等,且有一个角是直角的平行四边形叫做正方形2.性质①正方形对边平行;②正方形四边相等;③正方形四个角都是直角;④正方形对角线相等,互相垂直平分,每条对角线平分一组对角;⑤正方形既是轴对称图形也是中心图形,对称轴有四条,对称中心是对角线的交点3.判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形;(3)有一个角是直角的菱形是正方形【基础检测答案】1.(2019•舟山)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B.C.1 D.【分析】过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB∥CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到,于是得到AE=AF,列方程即可得到结论.【解答】解:过F作FH⊥AE于H,∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE,∴DE=BF,∴AF=3﹣DE,∴AE=,∵∠FHA=∠D=∠DAF=90°,∴∠AFH+∠HAF=∠DAE+∠FAH=90°,∴∠DAE=∠AFH,∴△ADE∽△AFH,∴,∴AE=AF,∴=3﹣DE,∴DE=,故选D.【点评】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,平行四边形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.2.(2019•兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED的面积()A.2B.4 C.4D.8【分析】连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到ODEC为平行四边形,根据邻边相等的平行四边形为菱形得到四边形ODEC为菱形,得到对角线互相平分且垂直,求出菱形OCEF的面积即可.【解答】解:连接OE,与DC交于点F,∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,∵OD∥CE,OC∥DE,∴四边形ODEC为平行四边形,∵OD=OC,∴四边形ODEC为菱形,∴DF=CF,OF=EF,DC⊥OE,∵DE∥OA,且DE=OA,∴四边形ADEO为平行四边形,∵AD=2,DE=2,∴OE=2,即OF=EF=,在Rt△DEF中,根据勾股定理得:DF==1,即DC=2,则S菱形O D E C=OE•DC=×2×2=2.故选A【点评】此题考查了矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键.3. (2019·云南省昆明市·4分)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个【考点】正方形的性质;全等三角形的判定与性质.【分析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF﹣GF=CD﹣FC=DF;②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=180°;③同②证明△EHF≌△DHC即可;④若=,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2.【解答】解:①∵四边形ABCD为正方形,E F∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;故选:D.4.(2019·黑龙江齐齐哈尔·3分)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AC⊥BC或∠AOB=90°或AB=BC 使其成为菱形(只填一个即可).【考点】菱形的判定;平行四边形的性质.【分析】利用菱形的判定方法确定出适当的条件即可.【解答】解:如图,平行四边形ABCD的对角线AC,BD相交于点O,添加一个适当的条件为:AC⊥BC或∠AOB=90°或AB=BC使其成为菱形.故答案为:AC⊥BC或∠AOB=90°或AB=BC5. (2019山东烟台)如图,□ABCD的周长为36.对角线AC,BD相交于点O.点E是CD的中点.BO=12.则△DOE的周长为__________________.【答案】15【解题思路】根据平行四边形的性质,对角线互相平分,两组对边分别相等,可以分别求出OD、OE+DE的长,即可求解.∵□ABCD的周长为36,∴BC+CD=18,∵四边形ABCD为平行四边形,∴O是BD的中点,∴OD=6,又∵E是CD的中点,∴OE是△BCD的中位线,∴OE+DE=9,∴△DOE的周长=OD+OE+DE=6+9=15【方法指导】本题考查了平行四边形的性质、三角形的中位线定理以及整体思想的运用.求三角形的周长可以分别求出三边的长,但是本题较新颖,根据对角线的交点是对角线的中点,可以求出其中一边的长,而另外两边运用整体思想,求出这两边的长度和后即可求解.在平行四边形中,由于对角线的交点即为中点,再加上另一中点,所以中位线定理是我们的首选.6. (2019四川雅安)在□ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.【答案】 (1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵AE=CF,∴△ADE≌△CBF.(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF,∴BE=DF,BE∥DF,∴四边形DEBF是平行四边形,∵DF=BF,∴□DEBF是菱形.【解析】(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.【方法指导】此题主要考查了全等三角形的判定,以及菱形的判定,关键是掌握全等三角形的判定定理,以及菱形的判定定理,平行四边形的性质.7.(2019·贵州安顺)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形时,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,(6分)▱ABCD的BC边上的高为2×sin60°=,(7分)∴菱形AECF的面积为2.(8分)【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.8.(2019广西南宁)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【考点】四边形综合题.【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE 即可解决问题.【解答】(1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=15°,在RT△EFH中,∠CEF=15°,∴∠EFH=75°,∵∠AFE=60°,∴∠AFH=∠EFH﹣∠AFE=15°,∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°,在RT△CHF中,∵∠CFH=30°,CF=2﹣2,∴FH=CF•cos30°=(2﹣2)•=3﹣.∴点F到BC的距离为3﹣.【点评】本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.【达标检测答案】一.选择题(每小题4分,满分40分)1.如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为( )A.45° B.55° C.60° D.75°【答案】C.【解析】∵四边形ABCD是正方形,∴AB= AD,∠ABC=∠BAD=90°,∠BAC=∠BCA=45°.∵△ADE是等边三角形,∴AE=AD,∠BCA=45°.∴∠BCE=135°,AB=AD.∴∠ABE=15°.∴∠CBF=75°.∴∠BFC=60°.故选C.2.(2019·四川攀枝花)下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【考点】矩形的判定与性质.【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.【点评】本题考查了矩形的性质和判定的应用,能熟记矩形的性质和判定定理是解此题的关键.3.(2019·四川内江)下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形[答案]C[考点]特殊四边形的判定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学一轮复习第23讲《特殊四边形》【考点解析】知识点一、矩形的性质及判定的应用【例1】(2019·四川宜宾)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.2【考点】矩形的性质.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△A O D=S△A O P+S△D O P=OA•PE+OD•PF求得答案.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形A B C D=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△A C D=S矩形A B C D=24,∴S△A O D=S△A C D=12,∵S△A O D=S△A O P+S△D O P=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故选:A.【变式】(2019·四川眉山·3分)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△E OA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BCM=S△AOE:S△BOE=1:2,故④错误;所以其中正确结论的个数为3个;故选B【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.知识点二、菱形的性质及判定的应用【例2】(2019辽宁朝阳)如图,在△ABC中,点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC,从中选择一个条件使四边形BECF是菱形,并给出证明,你选择的条件是(只填写序号).【答案】③,证明见解析.【分析】由点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可得到四边形BECF是平行四边形,由AF是BC的中垂线,得到BE=CE,从而得到结论.【解析】∵BD=CD,DE=DF,∴四边形BECF是平行四边形,①BE⊥EC时,四边形BECF是矩形,不一定是菱形;②四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;③AB=AC时,∵D是BC的中点,∴AF是BC的中垂线,∴BE=CE,∴平行四边形BECF是菱形.故答案为:③..【点评】此题主要考查了菱形的判定以及等腰三角形的性质,能根据已知条件来选择让问题成立的条件是解题关键.【变式】(2019·青海西宁·2分)如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是16 .【考点】菱形的性质;三角形中位线定理.【分析】先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.【解答】解:∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=16.故答案为16.知识点三、正方形的性质及判定的应用【例3】(2019·四川眉山·3分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A. B.6 C. D.【分析】由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.【解答】解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴B′C=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6.故选:A.【点评】本题考查了旋转的性质、正方形的性质以及等腰直角三角形的性质.此题难度适中,注意连接BC′构造等腰Rt△OBC′是解题的关键,注意旋转中的对应关系.【变式】(2019·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数为()A.2 B.3 C.4 D.5【考点】四边形综合题.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OG F=1,∴OG2=1,解得OG=,∴BE=2OG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.知识点四、特殊平行四边形的综合应用【例4】(2019辽宁铁岭)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.【答案】(1)证明见解析;(2)25.【分析】(1)由四边形ABCD为矩形,得到AB=CD,AB∥CD,由DE=BF,得到AF=CE,AF∥CE,即可证明四边形AFCE是平行四边形;(2)由四边形AFCE是菱形,得到AE=CE,然后设DE=x,表示出AE,CE的长度,根据相等求出x的值,继而可求得菱形的边长及周长.【解析】(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是菱形,∴AE=CE,设DE=x,则,CE=8﹣x8x=-,解得:x=74,则菱形的边长为:784-=254,周长为:4×254=25,故菱形AFCE的周长为25.【点评】本题考查了矩形的性质、平行四边形的判定、菱形的性质以及勾股定理等知识,能正确地分析图形的特点是解决此类问题的关键.【变式】(2019·四川内江)如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF =BD ,连接BF .(1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.[考点]三角形例行,特殊四边形的性质与判定。