牛顿差商

合集下载

牛顿法代数插值ndash差商表的求法

牛顿法代数插值ndash差商表的求法

牛顿法代数插值ndash 差商表的求法原文地址:牛顿法代数插值–差商表的求法作者:大关牛顿法代数插值–差商表的求法下面的求插商的方法并不是好的求插商的方式,因为他的效率并不是很高,不论是从空间效率还是时间效率,但是下面主要探讨的是一种将塔形的数据转换成一位数组的方式。

实际上求插商仅通过一个n个元素的一位数组就能解决,但本文强调的是一种思路,希望对大家有所借鉴。

牛顿插商公式:f[xi,xj]=(f(xj)– f(xi))/(xj– xi)f[xi,xj,xk]=(f[xj,xk]– f[xi,xj])/(xk– xi)….f[x0,x1,x2…,xn]=(f[x1,x2,…,xn]– f[x0,x1,…,xn-1])/(xn– x0)转换成均插表(或称差商表)形式如下:定义1:f[xi,xi+1,…xj]简记为f(i,j)其中i=0&&i=n&&j=0&&j=n&&i j;记f(xi)为f[xi,xi]即f(i,i)根据定义1可以推出:f[x0,x1]=f(0,1),f[x0,x1…xn]=f(0,n)….根据定义1:可以将插商表转换为如下形式。

根据上图,可以给出实际一维数组存储时的序列关系,如下图所示:此时f(0,0)位置是数组下标0,f(1,1)是数组下标为1….这样,我们从中找出相应的规律。

推论1:已知f(i,j),n为变量的数目,令k=j– i。

当k不等于0时,f(i,j)在数组中的下标通过计算得:Index=k*n–((k-1)*k)/2+i当k等于0时Index=i。

推论1很容易证明(实际就是一个等差数列求和问题)这里证明略。

推论2:n为变量的数目,则一维数组的长度可以计算得((1+n)*n)/2推论2可以通过等差数列求和得以证明。

证明略。

推论3:各阶插商就是f(0,k)k=1,2….n.推论3:根据插商的定义和定义1可以直接推出。

插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)

插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)

插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)插值是数值分析中的一种方法,通过已知数据点的函数值来估计函数在其他点的值。

MATLAB提供了多种方法来实现插值,包括牛顿差商插值、插值误差分析、龙格现象和切比雪夫插值。

下面将详细介绍这些方法的实现原理和MATLAB代码示例。

1.牛顿差商插值:牛顿差商插值是一种基于多项式插值的方法,其中差商是一个连续性的差分商。

该方法的优势在于可以快速计算多项式的系数。

以下是MATLAB代码示例:```matlabfunction [coeff] = newton_interpolation(x, y)n = length(x);F = zeros(n, n);F(:,1)=y';for j = 2:nfor i = j:nF(i,j)=(F(i,j-1)-F(i-1,j-1))/(x(i)-x(i-j+1));endendcoeff = F(n, :);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,返回值coeff表示插值多项式的系数。

2.插值误差分析:插值误差是指插值函数与原始函数之间的差异。

一般来说,通过增加插值节点的数量或使用更高次的插值多项式可以减小插值误差。

以下是MATLAB代码示例:```matlabfunction [error] = interpolation_error(x, y, x_eval)n = length(x);p = polyfit(x, y, n-1);y_eval = polyval(p, x_eval);f_eval = sin(pi*x_eval);error = abs(f_eval - y_eval);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,x_eval表示插值节点的x坐标,error表示插值误差。

3.龙格现象:龙格现象是插值多项式在等距插值节点上错误增长的现象。

数值分析2-3(牛顿插值法)差商和与牛顿插值

数值分析2-3(牛顿插值法)差商和与牛顿插值

确定插值多项式的次数
根据已知数据点的数量确定插值多项式的最高次 数。
计算插值多项式
利用差商表,通过拉格朗日插值公式计算插值多 项式。
3
进行插值
将需要插值的x值代入插值多项式中,得到对应 的y值。
05
牛顿插值法的优缺点分析
优点
计算简单
局部性质好
相比于其他多项式插值方法,牛顿插 值法的计算过程相对简单,不需要求 解高阶方程,降低了计算的复杂度。
数值分析2-3:牛顿 插值法、差商和
目录
• 引言 • 牛顿插值法的基本概念 • 差商的计算方法 • 牛顿插值法的实现步骤 • 牛顿插值法的优缺点分析 • 实际应用案例 • 总结与展望
01
引言
主题简介
数值分析是数学的一个重要分支,主 要研究如何用数值方法解决各种数学 问题。
本章节将介绍牛顿插值法、差商和的 概念及其应用。
03
差商的计算方法
差商的递推公式
差商的递推公式
$f[x_0, x_1, ldots, x_n] = frac{f[x_1, ldots, x_n] - f[x_0, x_1, ldots, x_{n-1}]}{x_n - x_0}$
应用
通过递推公式,我们可以计算任意点之间的差商,从而得到插值多项式的导数。
在数据点附近,牛顿插值具有较好的 局部性质,能够提供较为准确的插值 结果。
适用性强
牛顿插值法适用于各种数据分布情况, 无论是线性还是非线性数据,都能得 到较好的插值结果。
缺点
全局误差较大
由于牛顿插值多项式的构造方式, 其全局误差通常较大,尤其是在 数据点较少的情况下。
对数据点敏感
如果数据点发生微小的变动,牛 顿插值多项式可能会发生较大的 变化,导致插值结果不稳定。

牛顿插值法公式

牛顿插值法公式

牛顿插值法公式牛顿插值法公式,这可真是个有趣又实用的数学工具!还记得我当年读书的时候,有一次参加数学竞赛的集训。

那时候,我们一群对数学充满热情的小伙伴天天聚在一起钻研各种难题。

有一天,老师就给我们讲到了牛顿插值法公式。

当时,我们都被这个看起来有点复杂的公式给难住了。

老师在黑板上写下:$N(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x -x_0)(x - x_1) + \cdots + f[x_0, x_1, \cdots, x_n](x - x_0)(x - x_1) \cdots (x - x_{n-1})$ ,然后开始给我们讲解每个部分的含义。

老师说,这个公式就像是一个神奇的魔法,能够通过已知的几个点,帮我们推测出其他未知点的大致情况。

比如说,我们知道了一些温度随时间变化的几个特定时间点的数值,用牛顿插值法公式就能大概猜到其他时间点的温度。

咱来仔细瞅瞅这个公式。

首先,$f[x_0]$ 就是我们已知的第一个点的函数值。

而 $f[x_0, x_1]$ 呢,它叫一阶差商,计算方法是$\frac{f(x_1) - f(x_0)}{x_1 - x_0}$ 。

再往后的二阶差商 $f[x_0, x_1,x_2]$ 、三阶差商 $f[x_0, x_1, x_2, x_3]$ 等等,计算起来就更复杂一点啦,但原理都是相通的,就是通过不断地找差值的差值来找到规律。

举个简单的例子吧。

假设我们知道三个点,$(1, 2)$ 、$(2, 5)$ 和$(3, 10)$ 。

先算一阶差商,$f[1, 2] = \frac{5 - 2}{2 - 1} = 3$ ,$f[2, 3] =\frac{10 - 5}{3 - 2} = 5$ 。

然后算二阶差商,$f[1, 2, 3] = \frac{5 - 3}{3 - 1} = 1$ 。

这样,我们就能用牛顿插值法公式写出通过这三个点的插值多项式啦。

差商与牛顿插值

差商与牛顿插值
4.3 差商及其性质
• 差商的概念
函数f (x),其
零阶差商:f [x0 ] = f (x0 )
一阶差商:f [x0 , x1 ] =
f [x1 ] − f [x0 ] x1 − x0
二阶差商:f [x0 , x1, x2 ] =
f [x1, x2 ] − f [x0 , x1 ] x2 − x0
n阶差商:f [x0 , x1,K, xn ] =
4.3 牛顿插值公式
• Lagrange插值法计算的问题
新增插值节点需要重新计算所有基函数
• 解决方法
基于差商的特点推导构造Newton插值公式 从一阶差商开始推导一直到n差商
N n (x) = a0 + a1 (x − x0 ) + a2 (x − x0 )(x − x1 ) + L+an (x − x0 )L(x − xn−1 )
Rn (x)插值余项 Rn (x) = f [x, x1,L, xn ](x − x0 )(x − x1 ) L(x − xn )
• Newton插值法计算过程
先计算差商
xi f (xi ) 一阶差商 二阶差商 三阶差商 x0 f (x0) x1 f (x1) f [x0 , x1 ] x2 f (x2) f [x1, x2] f [x0 , x1, x2] x3 f (x3 ) f [x2 , x3 ] f [x1, x2 , x3 ] f [x0, x1, x2 , x3 ]
f [x1,K, xn ] − f [x0 ,K, xn−1 ] xn − x0
• 差商的性质
性质1:n阶差商可以表示为n+1个函数值的线性组合
f
[x0 ,
x1 ,K,xn]来自=(x0−

牛顿均差差值

牛顿均差差值
n+ f ( n+1) (ξ x ) f [ x , x 0 , ... , x n ]ω n +1 ( x ) = ω n +1 ( x ) ( n + 1) !
f ( n ) (ξ ) f [ x 0 , ... , x n ] = , ξ ∈ ( x min , x max ) n!
的函数表如下, 例 f(x)的函数表如下,用三次牛顿插值计算 的函数表如下 用三次牛顿插值计算f(0.596)的近似值 的近似值

y ← y+t*A(k,k) k ← k+1
N
k>N
Y
输出y 输出
§2 Newton’s Interpolation
等距节点公式 /* Formulae with Equal Spacing */ 牛顿基本插值公式对结点是否等距没有限制. 牛顿基本插值公式对结点是否等距没有限制.不过当 结点等距时前述牛顿插值公式可进行简化.首先介绍 结点等距时前述牛顿插值公式可进行简化. 差分概念. 差分概念. x −x 当节点等距分布时: 等距分布时 当节点等距分布时 x i = x 0 + i h ( i = 0 , ... , n ) h =
0.62)+0.21303(x-0.55)(x-0.65)(x-0.80) f(0.596) ≈N3(0.596)=0.63192
牛顿插值算法设计
N n ( x ) = f ( x0 ) + f [ x0 , x1 ]( x − x0 ) + f [ x0 , x1 , x2 ]( x − x0 )( x − x1 ) + ...
f [ x 0 , x 1 , x 2 ,⋯ , x n] =

差商与牛顿插值多项式

差商与牛顿插值多项式

⇒ f [x, x0 ,⋯, xn−1 ] = f [x0 , x1 ,⋯, xn ] + f [ x, x0 ,⋯, xn ]( x − xn ) (d )
f x x x ] x − xx f [ x,, x00]]= f [ x0 , x1 ] + f [x,, x00,,x11(]( x − 1 )1 ) (b) x
f ( x0 ) f ( x1 ) f ( x1 ) − f ( x0 ) f [ x0,x1 ] = + =1时 当k =1时, ⇐ f [x0 , x1 ] = x0 − x1 x1 − x0 x1 − x0 利用(1)很容易得到。 (1)可用归纳法证明。(2)利用(1)很容易得到。只证(1) )可用归纳法证明。(2)利用(1)很容易得到 只证(1) f ( x1 ) − f ( x0 ) f ( x0 ) f ( x1 ) ( =1时 = + 证明: ) 证明: 1)当k =1时, f [x0 , x1 ] = x1 − x0 x0 − x1 x1 − x0
f [x2 , x3 ] f [x1, x2 , x3 ] f [x3 , x4 ] f [x2 , x3 , x4 ]
⋮ ⋮ f [xk−1, xk ] f [xk−2 , xk−1, xk ]
f [x0 , x1, x2 , x3 ] f [x1, x2 , x3 , x4 ]
⋮ ⋱
f ( x4 )
f [x0 , x1 ,⋯, xk ] = ∑
k j =0
f (xj )
( x j − x0 )(x j − x1 )⋯( x j − x j−1 )(x j − x j+1 )⋯( x j − xk ) k k f (xj) f (x j ) =∑ k =∑ j =0 ′ Π ( x j − x i ) j = 0 ω k +1 ( x j )

差商与牛顿基本插值公式

差商与牛顿基本插值公式
同理可证 ak f x0 , x1,, xk k 0,1,2,, n
可以得到 n 次牛顿插值多项式为
N n x f x0 f x0 , x1 x x0 f x0 , x1 , x2 x x0 x x1 f x0 , x1 , , xn x x0 x x1 x xn 1
定义 f x 在点 x0 , x1 ,, xm 处的 m 阶差商为
f x0 , x1 ,, xm
f x1 ,, xm x0 , x1 ,, xm1 xm x0

j 0
m
x
j
x0 x j x j 1 x j x j 1 x j xm
n 次牛顿插值多项式为
Nn x a0 a1 x x0 a2 x x0 x x1 an x x0 x x1 x xn1
定义零阶差商为
f xi f xi
定义 f x 在点 xi , x j 处的一阶差商为
f xj
通过上式可以发现差商具有对称性,即任意调换节点的次序,不会影响差商的值,例如
f x0 , x1, x2 f x1, x2 , x0 f x1, x0 , x2
通过满足插值条件 Nn xi f xi
i 0,1,2,, n ,有
return;
已知函数表
x
x
用线性插值得
100 10
121 11
144 12
169 13
115 N1 115 10.7143
用抛物线插值得
115 N 2 115 10.7228
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档