考研数学复习有些概率计算的公式
考研数学概率论备考重点公式与解题思路整理

考研数学概率论备考重点公式与解题思路整理概率论是考研数学中的一大重点,掌握好概率论的基本公式和解题思路对于备考考研数学非常重要。
本文将对考研数学概率论的备考重点公式和解题思路进行整理,帮助考生更好地备考概率论。
一、基本概率公式1.1 事件的概率公式对于一个随机试验,其所有样本点组成的样本空间为S,一个事件A是样本空间S的一个子集。
那么,事件A发生的概率P(A)定义为: P(A) = n(A) / n(S)其中,n(A)表示事件A包含的样本点的个数,n(S)表示样本空间S 中所有样本点的个数。
1.2 事件的互斥与独立若两个事件A和B满足以下条件之一,则称事件A和事件B是互斥的:- 事件A和事件B不可能同时发生,即A∩B = ∅- 事件A和事件B的概率相加等于1,即P(A∪B) = P(A) + P(B)若两个事件A和B满足以下条件之一,则称事件A和事件B是独立的:- 事件A和事件B发生的概率等于事件A发生的概率乘以事件B发生的概率,即P(A∩B) = P(A) * P(B)二、常用的概率公式2.1 全概率公式对于一组互斥事件A₁,A₂,...,An,且它们的并集为样本空间S,那么对于任意一个事件B,可以得到全概率公式:P(B) = P(A₁) * P(B|A₁) + P(A₂) * P(B|A₂) + ... + P(An) * P(B|An)其中,P(Ai)表示事件Ai发生的概率,P(B|Ai)表示在事件Ai发生的条件下事件B发生的概率。
2.2 贝叶斯公式对于一组互斥事件A₁,A₂,...,An,且它们的并集为样本空间S,那么对于任意一个事件B,可以得到贝叶斯公式:P(Ai|B) = P(Ai) * P(B|Ai) / (P(A₁) * P(B|A₁) + P(A₂) *P(B|A₂) + ... + P(An) * P(B|An))其中,P(Ai|B)表示在事件B发生的条件下事件Ai发生的概率。
考研高数概率公式汇总

1 u 2第1页共21页高等数学公式导数公式: (tgx) sec x (ctgx) 2csc x (secx) secx tgx(cscx) cscx ctgx (a x) a x Ina (gx) 1 xI na (arcsin x) (arccos x) (arctgx) (arcctgx)_1_ J x 21 1 x2 基本积分表: tgxdx ctgxdx secxdx cscxdxdx~2 2a x dx ~2 2 x adx ~22a x dx2 2 a xIn cosx C In sin x CIn secx tgx C In cscx ctgx C 1 x-arctg - C a a 1 x a——C 2a x a 1 a x——C 2a a x arcs in° C a2 ~2l n sin n xdxcos n xdxoo、x 2 a 2dxx■ x 22\ a 2x 2dx 三角函数的有理式积分: xa 2 2 x 22usin x 2, c osx1 u 2dx 2— sec xdx tgx C cos x csc 2 xdxctgx Csin xsecx tgxdx secx C cscx ctgxdx cscx C xxa a x dx CIn ashxdx chx Cchxdx shx C dx ’ /22、In( x \ x a ) C 2 2x aI n2a 2 2、 In(x x a ) C 22 q -------------------------------- a . ; 2 2-——In x \ x a C 2 2a . x arcs inC 2 a, 2du dx 2一些初等函数: 两个重要极限:双曲正弦:shx 双曲余弦:chx xxe e2xxe e 2sin x .Iim 1x 0 xlim(1 -)x e 2.718281828459045…x双曲正切:thx shx chx x xe ex xe e arshx ln(x x 2 1) archx In(x x 2 1)arthx llnl x2 1 三角函数公式: •诱导公式:-和差化积公式:sin( )sincos cos sin cos( )cos cossin sintg( )Jtg1 tgtgctg( )ctgctg 1ctgctg-和差角公式: sin sin cos cossin sin cos cos2sin cos ----2 22 cos sin22 cos cos —2 22 sin —sin2sin 2 2si n cos2 2cos 2ctg2ctg 2 2ctg tg22tg2•倍角公式: 1cos1 1 2si n 22cos2sinsin3 3si n cos3 4cos 3tg3 3tg4sin 3 3cos .3tg2sin — 1 cos2 22 ,-半角公式: 2 1 cossin1 costg2岳sin 1 cos ctg-1 cos 1 cos1 cos sin -正弦定理:sin A sin B c2R sin C-余弦定理:sin 1 cos2b 2abcosC-反三角函数性质: arcsin x 一 arccosx 2 arctgx — arcctgx2高阶导数公式 来布尼兹 ( Leib niz n(n) (uv) k (n k) (k) C n u vk 0(n) (n 1) n(n 1) M (n 2) u v nu v u v 2! 中值定理与导数应用:拉格朗日中值定理:f(b) f(a) 柯西中值定理:丄也一型 口 F(b) F(a) F ( )公式: n(n 1) (n k 1)屮 k )v (k ) k! f ( )(b a) ) UV(n)当F(x) x 时,柯西中值定理就是 拉格朗日中值定理 曲率:弧微分公式:ds 1 y 2dx,其中y tg平均曲率:K .:从M 点到M 点,切线斜率的倾角变化量;M 点的曲率:K lim ---- s s|dds直线:K 0;半径为a 的圆:K1a定积分的近似计算:bb矩形法:f (x) (y 。
考研概率论与数理统计公式大全

考研概率论与数理统计公式大全一、概率论部分:1.概率公式:-事件的概率:P(A)=n(A)/n(S),其中n(A)表示事件A发生的可能性,n(S)表示样本空间S中的样本个数。
-互斥事件的概率:P(A∪B)=P(A)+P(B)。
-非互斥事件的概率:P(A∪B)=P(A)+P(B)-P(A∩B)。
2.条件概率公式:-事件A在事件B发生的条件下发生的概率:P(A,B)=P(A∩B)/P(B)。
3.乘法公式:-事件A、B同时发生的概率:P(A∩B)=P(A)*P(B,A)=P(B)*P(A,B)。
4.全概率公式:-事件A可以由一系列互斥且构成样本空间的事件B1、B2、..、Bn发生的概率:P(A)=P(A∩B1)+P(A∩B2)+...+P(A∩Bn)=ΣP(A∩Bi)。
5.贝叶斯公式:-已知事件A发生的条件下事件B发生的概率:P(B,A)=P(A∩B)/P(A)=P(A,B)*P(B)/P(A)。
6.重要的离散概率分布:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k),其中n为试验次数,k为成功次数,p为每次成功的概率。
-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!,其中λ为单位时间(或单位面积)内随机事件发生的平均次数。
7.重要的连续概率分布:-均匀分布:f(x)=1/(b-a),其中a为最小值,b为最大值。
-正态分布:f(x)=(1/(σ*√(2π)))*e^(-(x-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。
二、数理统计部分:1.基本概念:-总体:研究对象的全体。
-样本:从总体中抽取的一部分个体。
-参数:总体的特征数值。
-统计量:样本的特征数值。
2.基本统计量:- 样本均值:x̄ = (x1 + x2 + ... + xn) / n,其中x1、x2、..、xn为样本数据,n为样本容量。
- 样本方差:s^2 = ((x1-x̄)^2 + (x2-x̄)^2 + ... + (xn-x̄)^2) / (n-1)。
数学考研复习资料概率论重点公式整理

数学考研复习资料概率论重点公式整理概率论是数学考研中的重要考点之一,掌握概率论的基本概念和公式对于考生来说至关重要。
在本文中,将对数学考研概率论部分的重点公式进行整理,以便考生能够更好地复习和应对考试。
请注意,以下公式仅供参考,考生在复习过程中应结合教材和习题进行深入理解和练习。
一、基本概念在进一步讨论公式之前,首先了解一些概率论中的基本概念是必要的。
1. 事件与样本空间事件是指随机试验中可以观察到的结果,样本空间是指随机试验中所有可能结果的集合。
2. 概率的定义概率是对一个事件发生的可能性的度量,通常用一个介于0和1之间的实数表示。
3. 事件的互斥与独立互斥事件是指两个事件不能同时发生,独立事件是指两个事件的发生与否互不影响。
二、概率公式了解了基本概念后,我们来看一些重要的概率公式。
1. 加法定理加法定理用于计算两个事件的并的概率。
如果事件A和事件B是两个事件,那么它们的并的概率可以表示为:P(A∪B) = P(A) + P(B) -P(A∩B)2. 乘法定理乘法定理用于计算两个事件的交的概率。
如果事件A和事件B是两个事件,那么它们的交的概率可以表示为:P(A∩B) = P(A) × P(B|A)3. 全概率公式全概率公式用于计算一个事件的概率。
如果事件A可以被划分为有限个互斥事件B₁、B₂、...,那么事件A的概率可以表示为:P(A) =P(A∩B₁) + P(A∩B₂) + ...4. 贝叶斯定理贝叶斯定理用于计算已知某个事件发生的条件下,另一个事件发生的概率。
如果事件A和事件B是两个事件,那么在已知事件B发生的条件下,事件A发生的概率可以表示为:P(A|B) = (P(B|A)×P(A)) / P(B)三、重要概率分布公式除了上述基本的概率公式外,还需要掌握一些重要的概率分布公式,以便解决具体的问题。
1. 二项分布二项分布用于描述重复进行n次伯努利试验,且每次试验的结果只有两种可能的情况下,成功的次数的概率分布。
概率统计公式大全(复习重点)

概率统计公式大全(复习重点)概率统计公式大全(复习重点)在学习概率统计的过程中,熟练掌握相关的公式是非常关键的。
本文将为大家详细介绍一些常用的概率统计公式,并对其进行简要的说明和应用举例,以便复习和巩固知识。
一、基本概率公式1. 事件的概率计算公式P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率;n(A)表示事件A中有利的结果数;n(S)表示样本空间S中的全部结果数。
例如:从一副扑克牌中随机抽取一张牌,求抽到红心牌的概率。
解:样本空间S中共有52张牌,红心牌有13张,所以 P(红心牌) = 13 / 52 = 1 / 4。
2. 条件概率计算公式P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。
例如:某班级男女生分别有30人和40人,从中随机选择一名学生,求选到女生并且是优等生的概率。
解:女生优等生有20人,所以 P(女生且是优等生) = 20 / (30+ 40)= 1 / 7。
二、常用离散型随机变量的数学期望与方差1. 随机变量的数学期望计算公式E(X) = ∑[x * P(X=x)]其中,E(X)表示随机变量X的数学期望;x表示随机变量X的取值;P(X=x)表示随机变量X取值为x的概率。
例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的数学期望。
解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。
2. 随机变量的方差计算公式Var(X) = E((X - E(X))²)其中,Var(X)表示随机变量X的方差;E(X)表示随机变量X的数学期望。
例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的方差。
解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。
考研数学——概率公式(最全)

概率公式整理1.随机事件及其概率吸收律:AAB A AA A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)( )(AB A B A B A -==- 反演律:B A B A =⋃ B A AB ⋃=ni i ni i A A 11===ni i ni i A A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i k j i nj i j ini ini i A A A P A A A P A AP AP A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P )()(A P AB P乘法公式())0)(()()(>=A P A BP A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==ni i ik k B AP B P B A P B P 1)()()()(4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P kk(2) 二项分布 ),(p n B 若P ( A ) = pn k p p C k X P kn kkn ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b ax x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f xλλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ(3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x t t e x F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x2221)(πϕ+∞<<∞-=Φ⎰∞--x t ex xtd 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x Ay x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X XYX0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()( ⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X XYY )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X XY =)(x y f XY)(),(x f y x f X = )()()(x f y f y x f X Y Y X =10.随机变量的数字特征 数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩)(k X E X 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()lkY E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±=相关系数)()(),cov(Y D X D Y X XY =ρ简单整理了一下,中心极限定理及数理统计部分多概念少公式故未详细列出,有问题可以给我来信,希望能与大家多交流。
考研数学概率论重点公式速记

考研数学概率论重点公式速记概率论是数学中的一个重要分支,广泛应用于各个领域。
对于考研数学概率论的学习来说,熟悉并掌握相关的重点公式是非常必要的。
本文将为大家提供一些概率论中的重点公式,帮助大家更好地进行复习和备考。
一、基本概念1. 概率的加法定理:对于任意两个事件A和B,有P(A∪B) = P(A) + P(B) - P(A∩B)2. 概率的乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A)P(B|A) = P(B)P(A|B),其中P(B|A)表示在事件A已经发生的条件下,事件B发生的概率。
3. 全概率公式:若{B1, B2, ..., Bn}为样本空间的一个划分,即满足Bi与Bj互不相容且它们的并集为样本空间,同时假设P(Bi) > 0,那么对于任意一个事件A,有:P(A) = P(A∩B1) + P(A∩B2) + ... + P(A∩Bn) = P(B1)P(A|B1) +P(B2)P(A|B2) + ... + P(Bn)P(A|Bn)二、常用概率分布1. 二项分布:设试验成功的概率为p,则n次试验中成功次数的概率为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中C(n,k)为组合数,表示从n个元素中取出k个元素的组合数。
2. 泊松分布:设单位时间(或单位面积)内某事件发生的次数的平均值为λ,则单位时间(或单位面积)内某事件发生k次的概率为:P(X=k) = (e^(-λ) * λ^k) / k!其中e为自然对数的底数(约等于2.71828)。
3. 正态分布:对于服从正态分布N(μ,σ^2)的随机变量X,其概率密度函数为:f(x) = (1 / (σ * √(2π))) * e^(-((x-μ)^2 / (2σ^2)))三、常用性质1. 期望:对于离散随机变量X,其期望值E(X)为:E(X) = Σ(x * P(X=x))对于连续随机变量X,其期望值E(X)为:E(X) = ∫(x * f(x)) dx,其中f(x)为概率密度函数。
考研高数重点概率论数理统计公式整理(超全)

的事件。互斥未必对立。 ②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
∞
∞
∩ Ai = ∪ Ai
德摩根率: i=1
i=1
A∪B = A∩B, A∩B = A∪ B
(7)概率 的公理化 定义
设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满
这样一组事件中的每一个事件称为基本事件,用ω 来表示。
基本事件的全体,称为试验的样本空间,用 Ω 表示。
一个事件就是由 Ω 中的部分点(基本事件ω )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 Ω 的子集。 Ω 为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系:
(9)几何 概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空 间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何 概型。对任一事件 A,
P( A) = L( A) 。其中 L 为几何度量(长度、面积、体积)。 L(Ω)
(10)加法 公式
(11)减法 公式
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)
j =1
此公式即为贝叶斯公式。
P(Bi ) ,( i = 1 , 2 ,…, n ),通常叫先验概率。 P(Bi / A) ,( i = 1, 2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学复习有些概率计算的公式
在考研数学三中,参数估计占数理统计的一多半内容,所以参数估计是重点。
为大家精心准备了考研数学复习概率计算的公式指导,欢送大家前来阅读。
五大公式包括减法公式、加法公式、乘法公式、全概率公式、贝叶斯公式。
1、减法公式,P(A-B)=P(A)-P(AB)。
此公式事件关系中的差事件,再结合概率的可列可加性总结出的公式。
2、加法公式,P(A+B)=P(A)+P(B)-P(AB)。
此公式于事件关系中的和事件,同样结合概率的可列可加性总结出来。
学生还应掌握三个事件相加的加法公式。
以上两个公式,在应用当中,有时要结合文氏图来解释会更清楚明白,同时这两个公式在考试中,更多的会出现在填空题当中。
所以记住公式的形式是根本要求。
3、乘法公式,是由条件概率公式变形得到,考试中较多的出现在计算题中。
在复习过程中,局部分不清楚时候用条件概率来求,什么时候用积事件概率来求。
比方“第一次抽到红球,第二次抽到黑球”时,因为第一次抽到红球也是事件,所以要考虑它的概率,这时候用积事件概率来求;如果“在第一次抽到红球的情况下,第二次抽到黑球的概率”,这时候因为抽到了红球,它已经是一个确定的事实,所以这时候不用考虑抽红球的概率,直接用条件概率,求第二次取到黑球的概率即可。
4、全概率公式
5、贝叶斯公式
以上两个公式是五大公式极为重要的两个公式。
结合起来比拟容易理解。
首先,这两个公式首先背景是相同的,即,完成一件事情在逻辑或时间上是需要两个步骤的,通常把第一个步骤称为原因。
其次,如果是“由因求果”的问题用全概率公式;是“由果求因”的问题用贝叶斯公式。
例如;买零件,一个零件是由A、B、C三个厂家生产的,分别次品率是a%,b%,c%,现在求买到次品的概率时,就要用全概率公式;假设买到次品了,问是A厂生产的概率,这就要用贝叶斯公式了。
这样我们首先分清楚了什么时候用这两个公式。
那么,在应用过程中,我们要注意的问题就是,如何划分完备事件组。
通常我们用“因”来做为完备事件组划分的依据,也就是看第一阶段中,有哪些根本领件,根据他们来划分整个样本空间。
最后,在考试中,我们会和他们怎么相遇呢?由于全概率公式在整个概率中都占有非常重要的地位,近5年考试中,没有明确考查全概率公式的题目,但是在最后的计算题中,不止一次的出现,用全概率公式的思想去求分布律或密度函数。
所以同学在复习过程当中,对这个公式要重点掌握。
正态方和卡方(x2)出,卡方相除变F;
假设想得到t分布,一正n卡再相除;
第一个口诀的意思是标准正态分布的平方和可以生成卡方分布,而两卡方分布除以其维数之后相除可以生成F分步,第二个口诀的意思是标准正态分布和卡方分布相除可以得到分布。
参数的矩估计量(值)、最大似然估计量(值)也是经常考的。
很多同学遇到这样的题目,总是感觉到束手无策。
题目中给出的样本值完全用不上。
其实这样的题目非常简单。
只要你掌握了矩估计法
和最大似然估计法的原理,按照固定的程序去做就可以了。
矩法的根本思想就是用样本的阶原点矩作为总体的阶原点矩。
估计矩估计法的解题思路是:
(1)当只有一个参数时,我们就用样本的一阶原点矩即样本均值来估计总体的一阶原点矩即期望,解出参数,就是其矩估计量。
(2)如果有两个参数,那么除了要用一阶矩来估计外,还要用二阶矩来估计。
因为两个数,需要两个方程才能解出。
解出参数,就是矩估计量。
考纲上只要求掌握一阶、二阶矩。
最大似然估计法的最大困难在于正确写出似然函数,它是根据总体的分布律或密度函数写出的,我们给大家一个口诀,方便大家记忆。
样本总体相互换,矩法估计很方便;
似然函数分开算,对数求导得零蛋;
第一条口诀的意思是用样本的矩来替换总体的矩,就可以算出参数的矩估计;第二个口诀的意思是把似然函数中的参数当成变量,求出其驻点,在具体计算的时候就是在似然函数两边求对数,然后求参数的驻点,即为参数的最大似然估计。
如果大家记住了上面的口诀,那么统计局部的知识点就很容易掌握了,最后预祝考生在考试中能取得自己满意的成绩!
选择题丢分原因分析
第一,同学们学数学,一个薄弱环节就是根本概念和根本理论,内容都很熟悉,但不知道如何运用;
第二,虽然考研数学重根底,但不是说8道选择题都是很根本的题目,也有些题是有一定难度的;
第三,考生缺乏对选择题解答的方法和技巧,往往用最常规的方法去做,不但计算量大,浪费时间,还很容易出错,有时甚至得不出结论。
要想解决以上问题,首先,对我们的薄弱环节必须下功夫,实际上选择题里边考的知识点往往就是我们原来的定义或者性质,或者一个定理的外延,所以我们复习定理或性质的时候,既要注意它的内涵又要注意相应的外延。
比方说原来的条件变一下,这个题还对不对,平时复习的时候就有意识注意这些问题,这样以后考到这些的时候,你已经事先对这个问题做了准备,考试就很容易了。
其次,虽说有些题本身有难度,但是数量并不多,一般来说每年的8道选择题中有一两道是比拟难的,剩下的相对都是比拟容易的。
最后,就是掌握选择题的答题技巧,这一点非常重要,
选择题答题方法总结
(1)直推法
推法是由条件出发,运用相关知识,直接分析、推导或计算出结果,从而作出正确的判断和选择。
计算型选择题一般用这种方法,这是最根本、最常用、最重要的方法。
(2)赋值法
是指用满足条件的“特殊值”,包括数值、矩阵、函数以及几何图形,通过推导演算,得出正确选项。
(3)排除法
通过举例子或根据性质定理,排除三个,第四个就是正确答案。
这种方法适用于题干中给出的函数是抽象函数,抽象的对立面是具体,所以用具体的例子排除三项得出正确答案,这与上面介绍的赋值法有类似之处。
(4)反推法
就是由选择题的各个选项反推条件,与题设条件或已有的性质、定理及结论相矛盾的选项排除,从而得出正确选项。
这种方法适用于选项中涉及到某些具体数值的选择题。
(5)图示法
假设题干给出的函数具有某种特性,例如:周期性、奇偶性、对称性、凹凸性、单调性等,可考虑用该方法,画出几何图形,然后借助几何图形的直观性得出正确选项。
此外,概率中两个事件的问题也可用图示法,即文氏图。