专题二 第2讲 第1课时 等差数列、等比数列
高考数学大二轮复习第二部分专题2数列第1讲等差数列与等比数列课件理

答案:B
[题后悟通] 等差、等比数列性质问题的求解策略
抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰 抓关系
当的性质进行求解 数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等, 用性质 可利用函数的性质解题
第1讲 等差数列与等比数列
等差、等比数列的基本运算
考情调研
考向分析
以考查等差、等比数列的通项、前 n 项和
的运算为主,在高考中既可以以选择、填 1.等差(比)数列中 a1、n、d(q)、an、Sn 量的 空的形式进行考查,也可以以解答题的形 计算.
式进行考查.解答题往往与等差(比)数列、 2.等差、等比数列的交汇运算.
[题后悟通] 数列{an}是等差数列或等比数列的证明方法 (1)证明数列{an}是等差数列的两种基本方法 ①利用定义,证明 an+1-an(n∈N*)为一常数. ②利用等差中项,即证明 2an=an-1+an+1(n≥2). (2)证明{an}是等比数列的两种基本方法 ①利用定义,证明aan+n 1(n∈N*)为一常数. ②利用等比中项,即证明 a2n=an-1an+1(n≥2).
D. 2
解析:由题意,正项等比数列{an}中,a1a5+2a3a7+a5a9=16,可得 a23+2a3a7+a27= (a3+a7)2=16,即 a3+a7=4, a5 与 a9 的等差中项为 4,即 a5+a9=8, 设公比为 q,则 q2(a3+a7)=4q2=8, 则 q= 2(负的舍去),故选 D.
等差、等比数列的性质
考情调研
考向分析
以考查等差、等比数列的性质为主,在高考中既可以以
选择题、填空题的形式进行考查,也可以以解答题的形 1.等差、等比数列项的性质. 式进行考查.解答题往往与等差(比)数列、数列求和、 2.等差、等比数列和的性质. 不等式等问题综合考查.
专题2第1课时 等差数列与等比数列

【解析】由a1 a3 a5 105得3a3 105,即a3 35.
由a2 a4 a6 99得3a4 99即a4 33,故d -2, an 0 则an a4 n - 4 -2 41- 2n,由 an 1 0 得n 20
由T3=15得b2=5.故可设b1=5-d,b3=5+d,
又a1=1,a2=3,a3=9.由题意知(5-d+1)(5+d+9)=82, 解得d1=2,d2=-10. 又等差数列{bn}的前n项和Tn有最大值, 所以d=-10.从而Tn=20n-5n2.
【点评】 本题考查的是等差、等比数列定义的
应用,同时考查具有最值的等差数列中首项和 公差所必须满足的条件,在客观题中,这种类 型经常出现.
2
5. 设奇数项之和为SG,偶数项之和为S N SG an ⅰ 若 an 共有2n项,则S N SG nd; () ; S N an 1 SG n (ⅱ) 若 an 共有2n 1项,则SG S N an; . SN n 1
n a1 an n n 1 6.等差数列求和公式:S n na1 d 2 2 公式推导可用倒序相加法. 二、等比数列an an 1 an 1 an 2 1. ⅰ表示形式: q, () . an an an 1 (ⅱ)任意两项an、am之间的关系式:an am q n m (m、n N* ) 2. ⅰ若m n p q,m、n、p、q N*,则am an a p aq () (ⅱ) S n为数列an 的前n项和,则非零各项S n,S 2n S n, S3n S 2n 也成等比数列,公比为q n .
【解析】1由题设2a3 a1 a2,即2a1q a1 a1q,
高考数学(理科)二轮专题:第二篇专题二第1讲 等差数列、等比数列

专题二 数 列第1讲 等差数列、等比数列(限时50分钟,满分96分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·吉林省百校联盟联考)已知等差数列{a n }的前n 项和为S n ,若2a 11=a 9+7,则S 25等于A.1452B .145C.1752D .175解析 由题意可得2a 11=a 9+a 13,所以a 13=7,所以S 25=a 1+a 252×25=2a 132×25=25a 13=25×7=175.选D.答案 D2.(2019·安庆二模)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于A .1B .-1C.12D .2解析 由a n +1=λa n -1, 得a n +1-1=λa n -2=λ⎝⎛⎭⎫a n -2λ. 由于数列{a n -1}是等比数列, 所以2λ=1,得λ=2.答案 D3.(2019·广州市二模)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则{a n }的前6项和为A .-20B .-18C .-16D .-14解析 因为a 1,a 3,a 4成等比数列,所以a 23=a 1·a 4, 所以(a 1+4)2=a 1(a 1+6),所以a 1=-8,所以S 6=6×(-8)+6×52×2=-18.选B.答案 B4.设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析 若对任意的正整数n ,a 2n -1+a 2n <0,则a 1+a 2<0,又a 1>0,所以a 2<0,所以q =a 2a 1<0.若q <0,可取q =-1,a 1=1,则a 1+a 2=1-1=0,不满足对任意的正整数n ,a 2n -1+a 2n <0.所以“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要而不充分条件.故选C.答案 C5.(2019·湖北夷陵中学质检)已知等差数列{a n }的前n 项和为S n ,n ∈N *,且满足S 17>0,S 18<0,则数列S 1a 1,S 2a 2,…,S 17a 17中的最大项为A.S 6a 6B.S 7a 7C.S 8a 8D.S 9a 9解析 由⎩⎪⎨⎪⎧S 17>0,S 18<0,得⎩⎪⎨⎪⎧17a 9>0,9(a 9+a 10)<0,所以a 9>0,a 10<0,所以a 1>a 2>a 3>…>a 9>0>a 10>a 11>…,于是当n ≤9时,S na n>0,当10≤n ≤17时,S n a n <0,且S 9是S n 的最大值.又{a n }的正项中,a 9最小,所以S 9a 9最大.故选D. 答案 D6.(2019·云南玉溪高三适应性训练)程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为A .65斤B .184斤C .183斤D .176斤解析 由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996,设首项为a 1,结合等差数列前n 项和公式有 S 8=8a 1+8×72d =8a 1+28×17=996.解得a 1=65,则a 8=a 1+7d =65+7×17=184(斤). 即第八个孩子分得斤数为184斤.故选B. 答案 B7.(2019·大庆模拟)若数列{a n }满足1a n +1-pa n=0,n ∈N *,p 为非零常数,则称数列{a n }为“梦想数列”.已知正项数列⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,且b 1b 2b 3…b 99=299,则b 8+b 92的最小值是A .2B .4C .6D .8解析 依题意可得b n +1=pb n ,则数列{b n }为等比数列.由b 1b 2b 3…b 99=299,即b 9950=299,可知b 50=2,所以b 8+b 92≥2b 8b 92=2b 50=4,当且仅当b 8=b 92,即该数列为常数列时取等号.故选B.答案 B8.(2019·盐城模拟)已知a 1,a 2,a 3,a 4依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是A.1+52B.±1+52C.±1+32D.-1+32解析 因为公比q 不为1,所以删去的数不是a 1,a 4. ①若删去a 2,则由2a 3=a 1+a 4得2a 1q 2=a 1+a 1q 3, 又a 1≠0,所以2q 2=1+q 3, 整理得q 2(q -1)=(q -1)(q +1).又q ≠1,所以q 2=q +1,又q >0,得q =1+52;②若删去a 3,则由2a 2=a 1+a 4得2a 1q =a 1+a 1q 3, 又a 1≠0,所以2q =1+q 3, 整理得q (q +1)(q -1)=q -1. 又q ≠1,则可得q (q +1)=1,又q >0,得q =-1+52.综上所述,q =±1+52.故选B.答案 B二、填空题(本大题共4小题,每小题5分,共20分)9.(2019·大连八中模拟)若记等比数列{a n }的前n 项和为S n ,a 1=2,S 3=6,则S 4的值等于________.解析 由等比数列求和公式,求q ≠1时得 S 3=a 1(1-q 3)1-q =2(1-q )(1+q +q 2)1-q =6,所以q 2+q -2=0,所以q =-2或q =1(舍去), 当q =-2时,S 4=2×[1-(-2)4]1-(-2)=-10,当q =1时,S 4=4a 1=8. 答案 8或-1010.(2019·江苏)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析 解法一 由S 9=27⇒9(a 1+a 9)2=27⇒a 1+a 9=6⇒2a 5=6⇒2a 1+8d =6且a 5=3.又a 2a 5+a 8=0⇒2a 1+5d =0, 解得a 1=-5,d =2.故S 8=8a 1+8×(8-1)2d =16.解法二 同解法一得a 5=3.又a 2a 5+a 8=0⇒3a 2+a 8=0⇒2a 2+2a 5=0⇒a 2=-3. ∴d =a 5-a 23=2,a 1=a 2-d =-5.故S 8=8a 1+8×(8-1)2d =16.答案 1611.(2019·屯溪模拟)各项均为正数的等比数列{a n }中,a 1=18,a 1·a 2·…·a m =8m (m >2,m ∈N *),若从中抽掉一项后,余下的m -1项之积为(42)m -1,则被抽掉的是第________项.解析 由a 1·a 2·…·a m =a m 1·q 0+1+2+3+…+(m -1)=a m 1·qm (m -1)2,可得⎝⎛⎭⎫18m·qm (m -1)2=8m,q =84m -1.设被抽掉的是a k (k ≤m ),则a 1·a 2·…·a m a k =8m a k =(42)m -1=856(m -1),则a k =85+m 6=18·q k -1, 即q k -1=811+m 6.所以84(k -1)m -1=811+m 6,则4(k -1)m -1=11+m 6,即k -1=(m -1)(11+m )24,所以m =13,k =13. 答案 1312.(2019·衡水模拟)在数列{a n }中,若a 2n -a 2n -1=p (n ≥2,n ∈N *)(p 为常数),则称{a n }为“等方差数列”.下列是对“等方差数列”的判断:①若数列{a n }是等方差数列,则数列{a 2n }是等差数列; ②数列{(-1)n }是等方差数列;③若数列{a n }是等方差数列,则数列{a kn }(k 为常数,k ∈N *)也是等方差数列; ④若数列{a n }既是等方差数列,又是等差数列,则该数列必为常数列; 其中正确命题的序号为________.解析 ①因为{a n }是等方差数列,所以a 2n -a 2n -1=p (n ≥2,n ∈N *,p 为常数)成立,得到{a 2n }为首项是a 21,公差为p 的等差数列;②因为a 2n -a 2n -1=(-1)2n -(-1)2(n-1)=1-1=0,所以数列{(-1)n }是等方差数列;③数列{a n }中的项列举出来是:a 1,a 2,…,a k ,a k +1,a k +2,…,a 2k ,…,a 3k ,… 数列{a kn }中的项列举出来是:a k ,a 2k ,a 3k ,…因为a 2k +1-a 2k =a 2k +2-a 2k +1=a 2k +3-a 2k +2=…=a 22k -a 22k -1=p ,所以(a 2k +1-a 2k )+(a 2k +2-a 2k +1)+(a 2k +3-a 2k +2)+…+(a 22k -a 22k -1)=a 22k -a 2k =kp ,类似地,可得a 2k (n +1)-a 2kn =kp ,所以,数列{a kn }是等方差数列;④{a n }既是等方差数列,又是等差数列,所以a 2n -a 2n -1=p ,且a n -a n -1=d (d ≠0),所以a n +a n -1=p d ,联立解得a n =d 2+p2d,所以{a n }为常数列,当d =0时,显然{a n }为常数列,所以该数列为常数列.答案 ①②③④三、解答题(本大题共3小题,每小题12分,共36分)13.(2019·广州综合测试)已知{a n }是等差数列,且lg a 1=0,lg a 4=1. (1)求数列{a n }的通项公式;(2)若a 1,a k ,a 6是等比数列{b n }的前3项,求k 的值及数列{a n +b n }的前n 项和. 解析 (1)因为lg a 1=0,lg a 4=1,所以a 1=1,a 4=10. 设等差数列{a n }的公差为d , 则d =a 4-a 14-1=3.所以a n =a 1+3(n -1)=3n -2. (2)由(1)知a 1=1,a 6=16,因为a 1,a k ,a 6是等比数列{b n }的前3项, 所以a 2k =a 1a 6=16.又a n =3n -2>0,所以a k =4.因为a k =3k -2,所以3k -2=4,得k =2. 所以等比数列{b n }的公比q =b 2b 1=a 2a 1=4.所以b n =4n -1.所以a n +b n =3n -2+4n -1.所以数列{a n +b n }的前n 项和为S n =n (3n -1)2+1-4n 1-4=32n 2-12n +13(4n-1).14.(2019·贵阳质检)已知数列{a n }是等比数列,并且a 1,a 2+1,a 3是公差为-3的等差数列.(1)求数列{a n }的通项公式;(2)记b n =a 2n ,记S n 为数列{b n }的前n 项和, 证明:S n <163.解析 (1)设等比数列{a n }的公比为q , 因为a 1,a 2+1,a 3是公差为-3的等差数列,所以⎩⎪⎨⎪⎧a 2+1=a 1-3,a 3=(a 2+1)-3,即⎩⎪⎨⎪⎧a 1q -a 1=-4,a 1q 2-a 1q =-2,解得a 1=8,q =12.所以a n =a 1qn -1=8×⎝⎛⎭⎫12n -1=24-n .(2)证明 因为b n +1b n =a 2n +2a 2n =14,所以数列{b n }是以b 1=a 2=4为首项,14为公比的等比数列.所以S n =4⎣⎡⎦⎤1-⎝⎛⎭⎫14n1-14=163×⎣⎡⎦⎤1-⎝⎛⎭⎫14n <163.15.(2019·青岛模拟)2016年崇明区政府投资8千万元启动休闲体育新乡村旅游项目.规划从2017年起,在今后的若干年内,每年继续投资2千万元用于此项目.2016年该项目的净收入为5百万元,并预测在相当长的年份里,每年的净收入均在上一年的基础上增长50%.记2016年为第1年,f (n )为第1年至此后第n (n ∈N *)年的累计利润(注:含第n 年,累计利润=累计净收入-累计投入,单位:千万元),且当f (n )为正值时,认为该项目赢利.(参考数值:⎝⎛⎭⎫327≈17,⎝⎛⎭⎫328≈25,ln 3≈1.1,ln 2≈0.7) (1)试求f (n )的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.解析 (1)由题意知,第1年至此后第n (n ∈N *)年的累计投入为8+2(n -1)=2n +6(千万元),第1年至此后第n (n ∈N *)年的累计净收入为 12+12×⎝⎛⎭⎫321+12×⎝⎛⎭⎫322+…+12×⎝⎛⎭⎫32n -1=12⎣⎡⎦⎤1-⎝⎛⎭⎫32n 1-32=⎝⎛⎭⎫32n -1(千万元).所以f (n )=⎝⎛⎭⎫32n-1-(2n +6)=⎝⎛⎭⎫32n-2n -7(千万元). (2)因为f (n +1)-f (n ) =⎣⎡⎦⎤⎝⎛⎭⎫32n +1-2(n +1)-7-⎣⎡⎦⎤⎝⎛⎭⎫32n-2n -7=12⎣⎡⎦⎤⎝⎛⎭⎫32n -4, 所以当n ≤3时,f (n +1)-f (n )<0,故当n <4时,f (n )递减; 当n ≥4时,f (n +1)-f (n )>0, 故当n ≥4时,f (n )递增.又f (1)=-152<0,f (7)=⎝⎛⎭⎫327-21<0,f (8)=⎝⎛⎭⎫328-23>0.所以该项目将从第8年开始并持续赢利. 答:该项目将从2023年开始并持续赢利.。
第二章2.4第1课时等比数列的概念及通项公式

2. 4等比数列第1课时等比数列的概念及通项公式1•通过实例,理解等比数列的概念并学会简单应用. 2•掌握等比中项的概念并会应用. 3•掌握等比数列的通项公式并了解其推导过程.预冃案*自建迸习j 研读• M •営试新知提炼1.等比数列的定义(1) 从第2项起条件(2) 每一项与它的前一项的比等于同一个常数结论这个数列就叫做等比数列有关概念这个常数叫做等比数列的公比,通常用字母q(q M 0)表示2•等比数列的通项公式门―1a n = aq 1.3. 等比中项若a、G、b成等比数列,称G为a, b的等比中项且G= ± ab.■自我尝试‘1•判断(正确的打“V”,错误的打“x”)(1) 数列1,—1, 1, - 1,…是等比数列.()(2) 若一个数列从第2项起每一项与前一项的比为常数,则该数列为等比数列. ()⑶等比数列的首项不能为零,但公比可以为零. ()(4) 常数列一定为等比数列.()(5) 任何两个数都有等比中项. ()答案:(1)2 (2) x⑶x ⑷x ⑸x2.等比数列{a n} 中, a1 = 2, q = 3,贝U a n 等于()A. 6B. 3x 2n—13. 4与9的等比中项为()A . 6B . - 6=1,C . 2 x 3n —1 D . 6n答案:CA . 6B . - 6=1,C . i6D . 36 答案:C 11 14. 等比数列一10-而,一而0,…的公比为 -------------------- . 1 答案:105. ______________________________________________ 在等比数列{a n }中,已知a n = 4n 3,贝V a 1 = _____________________________________________ , q = ________1答案:1 4探究案讲练互普探究点一等比数列的通项公式H 在等比数列{a n }中, (1) a 4 = 2, a 7= 8,求 a n .(2) a 2 + a 5= 18, a 3+ a 6= 9, a n = 1,求 n. a 4= ag 3,[解](1)因为6 a 7= a 1q , a 1q 3= 2,① 所以a 1q 6= 8,②②3, 由①,得43= 4,从而q = - 4,而a 1q 3= 2,n — 1又a n = 1,所以32 x 即 26-n = 20,故 n = 6.方祛归纳于是a 1 = q 3=M2' 2n -5所以 a n = a 1q n -1 = 2 3a 2 + a 5= a 〔q + a 1q 4 = 18, ①⑵因为25② 1由①,得q =P 从而a 1 = 32.等比数列通项公式的求法a i 和q 是等比数列的基本量,只要求出这两个基本量,问题便迎刃而解.关于 a i 和q的求法通常有以下两种方法:⑴根据已知条件,建立关于a i , q 的方程组,求出a i , q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出 q 后,再求a i ,最后求a n ,这种方法带有一定的技巧性,能简化运算.”i.在等比数列{a n }中,(1) 已知 a i = 3, q = — 2,求 a 6; (2) 已知 a 3= 20, a 6 = i60,求 a n ; …9i 2十(3) 已知 a i = 8〉a n = 3, q = 3,求 n.解:⑴由等比数列的通项公式,得a 6= 3 X (— 2)6— i = — 96.⑵设等比数列的公比为 q ,a i q 2= 20,由已知可得a i q 5= i60,q= 2,解得a i = 5.所以 a n = a i q n — i = 5X 2n — i . ⑶由 a n = a i q n —i ,3,得 n = 4.探究点二等比数列的判定■- 在数列{a n }中,若a n >0,且a n +i = 2a n + 3(n € N *).证明:数列{a n + 3}是等比数列.[证明]法一:因为a n >0, 所以 a n + 3>0.i 9得 3=8 Xn — i又因为a n+1= 2a n+ 3,a n +1 + 3 2a n+ 3+ 3 2 (a n + 3)所以= = =2.a n + 3 a n+ 3 a n + 3所以数列{ a n+ 3}是首项为a i + 3,公比为2的等比数列. 法二:因为a n>0, 所以a n+ 3>0.又因为a n+1= 2a n+ 3,所以a n+ 2= 4a n+ 9.所以(a n+ 2+ 3)(a n + 3) = (4a n+ 12)(a n+ 3)=(2a n+ 6)2=(a n+1+ 3)2.即a n+ 3, a n +1 + 3, a n+2+ 3 成等比数列,所以数列{a n+ 3}是等比数列.Rm貝*本例的条件不变,若a1 = 2,求数列{a n}的通项公式.解:由数列{a n + 3}是等比数列,当a1= 2 时,a1 + 3 = 5,所以数列{a n+ 3}是首项为5,公比q= 2的等比数列,所以a n+ 3 = 5 x 2n-1,即a n= 5 x —1—3.方注归期等比数列的三种判定方法(1)定义法探究点三等比中项及其应用方祛归抽已知等比数列中的相邻三项 a n — 1 , a n , a n + 1,则a n 是a n — 1与a n + 1的等比中项, a n -1 a n +1,运用等比中项解决问题,会大大减少运算过程,同时等比中项常起到桥梁作用, 要认真感悟和领会."!" '||[3.(1)如果一1, a , b , c,— 9 成等比数列,那么()a n + 1—=q(q 为常数且q z 0)等价于{a n }是等比数列. a n (2)等比中项法a n +1 = a n a n + 2(n € N *且a n 丸)等价于{a n }是等比数列. (3)通项公式法a n = a 1q n —1(a 1^0且q z 0)等价于{a n }是等比数列.1”2.已知数列{a n }是首项为2,公差为一1的等差数列,令b n = 1,求证数列{b n }是等比数列,并求其通项公式.解:由已知得,a n = 2+ (n — 1)x (— 1) = 3— n ,1 3-( n + 1)b n + 1 2 故 = ~b n 1 3—n23 — ( n + 1) — 3+ n所以数列{ b n }是等比数列. 因为b 1= 114,所以 b n =X 2n —1 = 2n ― 3[解]由题意知 3 b 2, b ,243, c 这五个数成等比数列,求 32a ,b ,c 的值.23b2= — 2243 X—亦 3ab = — 2 27 27所以b = ±8•当b =—时,2 10243 3 初/曰bc =—五=—2 ,解得 c =3 6 =2 ,2,解得2 a =3 ;27 2同理,当 b =— "8■时,a =— 3, 3 c =—2综上所述,a , b , c 的值分别为2 27 3, 8 ,2 — 27 3, —8,A . b = 3, ac = 9 B. b =— 3, ac = 9 C. b = 3, ac =— 9 D. b =— 3, ac =— 9⑵已知等比数列{a n }的前三项依次为 a — 1, a +1, a + 4,贝U a n = _________解析:(1)因为 b 2= (— 1)x (— 9) = 9, 且b 与首项—1同号, 所以b =— 3,且a , c 必同号. 所以 ac = b 2= 9.⑵由已知可得(a + 1)2= (a — 1)(a + 4), 解得 a = 5,所以 a 1= 4, a 2= 6,所以a n = 4 x 31. 等比数列定义的再认识(1)每一项与它的前一项的比是同一个常数, 是具有任意性的,但须注意是从“第2项”⑵从“第2项”起,每一项与它的前一项的比是同一个常数,强调的是“同一个”.(3)对于公比q ,要注意它是每一项与它前一项的比,次序不能颠倒,q 不为零.⑷各项不为零的常数列既是等差数列,又是等比数列. 2. 等比数列的通项公式(1)已知首项a 1和公比q ,可以确定一个等比数列.⑵在公式a n = a 1q n 1中有a n , a 1, q , n 四个量,已知其中任意三个量,可以求得第四个量.⑶等比数列{a n }的通项公式的推导所以a 2a 12'答案:(1)B3 n — 1(2)4 x 3起.法一:(迭代法) 根据等比数列的定义,有2n — 2 n —1a n = a n -i q = a n — 2q 2=^= a 2q 2= a i q 1 法二:(累乘法) 根据等比数列的定义,可以得到把以上n -1个等式左右两边分别相乘,得 a 2 a 3 a 4 a i a 2 a 3即 an = q n —1, a i 所以 a n = a 1q n -1.3. 等比中项的理解(1) 当a , b 同号时,a , b 的等比中项有两个;当 a , b 异号时,没有等比中项.(2) 在一个等比数列中, 从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后 一项的等比中项.(3) “a , G , b 成等比数列”等价于“ G 2= ab ”(a , b 均不为0),可以用它来判断或证明 三数是否成等比数列.当堂检测 ♦1•数列{a n }的通项公式是a n = 5x 3n ,则此数列是( )A •公比为3的等比数列B •公比为5的等比数列C .首项为5的等比数列D .公差为3的等差数列 解析:选A.因为a n = 5x 3n , 所以 a n -1= 5x 3n -1(n 》2), 所以当n > 2时,—匹=3.a n - 1由等比数列的定义知,{a n }是公比为3的等比数列. 2.在首项a 1= 1,公比q = 2的等比数列{a n }中,当a n = 64时,序号n 等于()a 2 ar q , a 3 a 4 ar q ,aT q ,a na n -1q ,a n a n -1n -1A. 4B. 5C. 6解析:选 D.因为a n= a i q—1,所以 1 x 2n-1= 64,即1= 26,得 n— 1 = 6,解得n = 7.3. (2015高考广东卷)若三个正数a, b, c成等比数列,其中a = 5+ 2丁6, c= 5—2.6,则b= ________ .解析:因为a, b, c成等比数列,所以b2= a c= (5 + 2 '6) (5 — 2 .:6)= 1.又b>0,所以b= 1.答案:14•求下列各等比数列的通项公式:(1) a1 = —2, a3= —8;(2) a1 = 5,且2a n+1 = —3a n.解:(1)因为a3= a1q2,所以q2= 4,所以q= ±2.当q = 2 时,a n= (—2) x 2n—1= —2n;当q = — 2 时,a n= ( —2)x (—2)n—1= (—2)n.a n+1 3(2)因为q= "a^ =—2,又a1 = 5,3 n—1 所以a n= 5 x — 2.应用案巩固提升丄[A 基础达标]1. 若{a n}为等比数列,且2a4= a6 —a5,则公比是()A. 0 B . 1 或一2D . —1或一2解析:选 C.由已知得2a1q3= a1q5—ag4,得2= q2—q,所以q=—1或q = 2.2. 在等比数列{a n}中,a n>0,且a i+ a2= 1, a3+ a4= 9,贝U a4+ a5 的值为()A. 16B. 27C. 36D. 81解析:选 B.由a3+ a4= q2(a1 + a2)= 9,所以q2= 9,又a n>0,所以q= 3.a4+ a5= q(a3 +a4)= 3X 9 = 27.3. 彳,是等比数列4,2, 4, 2 2,…的()A .第10项B .第11项C.第12项 D .第13项解析:选B.由题意可知q=痣二乎,令¥= 4返x普,所以土= 32=扌210,故n— 1 = 10,即n= 11.4. 在数列{a n}中,a1= 1,点(a n, a n+1)在直线y= 2x上,贝U a4的值为()A . 7B . 8C. 9D. 16解析:选B.因为点(a n, a n+1)在直线y= 2x上,所以a n+1= 2a n.因为a1= 1丰0,所以a n丸,所以{a n}是首项为1,公比为2的等比数列,所以a4= 1 x 23= 8.5. 一个数分别加上20, 50, 100后得到的三个数成等比数列,其公比为()5 4A・3 %3 1CQ DQ解析:选A.设这个数为x,则(50+ x)2= (20 + x) (100 + x).解得x= 25,所以这三个数为45, 75, 125,75 5公比q为45= 36.右一1, 2, a, b成等比数列,则a + b=解析:根据题意有=身=b,解得a=—4, b= 8,—1 2 a所以a+ b= (-4) + 8 = 4.答案:47•下面各数列一定是等比数列的是(填序号).①一1, —2, —4, —8;② 1 , 2, 3, 4;1111③x, x, x, x;④a,評評尹解析:根据等比数列的定义,①④是等比数列,②不是等比数列,③中x可能为0,故③不一定是等比数列.答案:①④1 r,&在等比数列{a n}中,若a4= 27, q= —3,贝卩a6= ,a n =1解析:因为a4= a1q3= a1 —3 = 27,所以a1= —36,所以a6= a1q5= —36x=36x 3 = 3,n- 11a n=—36X—1= (—1)n37—n答案:3 (—1)n37 —n16 a3=—4,且公比为正数.9.已知数列{a n}为等比数列,首项a1=—9,(1)写出此等比数列的通项公式a n;⑵—20丁是否为{a n}中的项?若是,是第几项?若不是,请说明理由.解:(1)设公比为q(q>0),由a3= a i q2,得一4 =—£q2,3解得q=3,16 3 n—1所以a n=—— X 2 .n —1人16、/ 3 1 81⑵令—-X 2 = —204= —7,3 n—1819 3 6得2 =乎X 16= 3,解得n = 7.1故—204是{a n}中的第7项.10.已知数列{a n}的前n项和为S n,对一切正整数n,点(n, S n)都在函数f(x)= 2x+ 2—4的图象上.求证:数列{a n}是等比数列.证明:由题意得S n = 2n+ 2—4,4, n=1,S1, n = 1, 所以a n=S n—S n—1, n》22n+ 1, n》2.又a i= 4 也符合a n= zZln G N*, n》2),所以a n= 2n+ 1(n € N ),a n +1 2n+ 2因为百=产=2,所以数列{a n}是等比数列.[B 能力提升]1. 已知数列{a n},下列选项正确的是()A .若a2= 4n, n € N*,则{a n}为等比数列B. 若a n a n+2= a n+1, n € N*,则{a n}为等比数列C. 若a m a n= 2m n, m, n €N*,则{a n}为等比数列D .若a n a n+ 3= a n+ 1a n+ 2, n€ N*,则{ a n}为等比数列解析:选C•由a2= 4n知|a n| = 2n,则数列{a n}不一定是等比数列;对于 B , D选项,满足条件的数列中可以存在为零的项,所以数列{a n}不一定是等比数列;对于C选项,由a m a na n + 1=2m+n知,a m a n+ 1= 2m+ n+ S两式相除得石 =2(n € N ),故数列{a n}是等比数列.故选C.12. ___________________________________________________________________ 已知等比数列{a n}中,a i= 1,且a i, 2玄3, 2a2成等比数列,则a n = _____________________ 解析:设等比数列{a n}的公比为q,贝U a2= q, a3 = q2.1因为a i, §a3, 2a2成等比数列,1所以4q4= 2q,解得q= 2,所以an= 2n—I答案:2n_13. 已知数列{a n}的前n项和S n= 2a n + 1.(1)求证:{a n}是等比数列,并求出其通项公式;⑵设b n= a n+ 1+ 2a n,求证:数列{b n}是等比数列.解:(1)因为S= 2a n+ 1,所以S n+1= 2a n+1+ 1,S n + 1 —S n = a n+ 1 = (2a n + 1 + 1) —(2a n+ 1) = 2a n+ 1 —2a n,所以a n+ 1 = 2a n①,由已知及①式可知a n M O.a n+1所以由丁 = 2,知{a n}是等比数列.a n由a1= S1= 2a1 + 1,得a1=—1,所以a n = —2n—1.⑵证明:由(1)知,a n= —2n—1,所以b n= a n+1+ 2a n=—2n—2X 2n—1=—2X 2n=—2n +1= —4X 2n —1.所以数列{b n}是等比数列.4. (选做题)已知等比数列{a n}中,a1 = 1,公比为q,且b n= a n+1—a n.(1)判断数列{b n}是否为等比数列?说明理由;⑵求数列{b n}的通项公式.解:⑴因为等比数列{a n}中,a i= 1, 公比为q,所以a n = 1 x q n—1= q n一1, 若q = 1 ,贝y a n=1 , b n = a n+ 1 —a n= 0,所以数列{b n}是各项均为0的常数列,不是等比数列.若q丰1,由于b n+ 1a n+2—a n+1 q n+1—q nb n - =a n+1—a n = q n—q n-1q n(q —1)=q,q n —1(q —1)所以数列{ b n}是首项为b1= a2—a1= q —1,公比为q的等比数列.⑵由(1)可知,当q = 1时,b n= 0;当q 工 1 时,b n= (q —1)q n—1。
等差等比数列的证明ppt课件

1、定义法 an+1 - an=d 或 an-an-1=d
2、中项法 2an=an-1+an+1 (n>1)
3、通项公式法 an=pn+q(关于n的一次函数)
4、前n项和法 Sn=An2+Bn
1
等差、等比数列的证明 一、等差数列的证明
例1 已知数列an的前n项和为Sn=3n2 -2n, 证明数列an 成等差数列,并求其首项、
11
12
13
14
(2)
证明
an 2n
为等差数列,并求an
5
第七课时B组
8.已知数列an 的前n项和为Sn,Sn
=
1 3
(an
1)
(1)求a1、a2 .
(2)求证:数列an 是等比数列
6
等差、等比的计算问题的常用方法
方法1、利用等差、等比的性质 方法2、利用基本量(解方程组)
项(an)的性质: an=am+(n-m)d 任两项的关系式
am+an=ap+aq(m+n=p+q)角标和性质
和(Sn)的性质: Sm ,S2m -Sm ,S3m -S2m ,L 成等差
Sn与项an的关系:
7
重点回顾
数列
等差数列
等比
定义 通项公式
an+1-an=d 或 an-an-1=d
an= a1+(n-1)d
前n项和
性质 和Sn与项an 的关系
aanm=+ama+n(=n-amp)+d aq(m+n=p+q)
公差、通项公式
2
第四课时拓展延伸(2015新课标全国卷)
等比等差数列的所有公式

等比等差数列的所有公式等差数列和等比数列是数学领域里比较基础且常见的两种数列。
它们不仅在高中阶段的数学学习中出现,同时也在大学的高级数学科目中应用广泛。
本文将会全面介绍等差数列和等比数列的定义、公式以及应用,以期为读者提供一个全面且清晰的了解。
一、等差数列等差数列是指一种数列,其任意两个相邻项之间的差值是相等的,这个相等的差值叫做公差。
举个例子,1,3,5,7,9....,就是一个公差为2的等差数列。
等差数列的通项公式对于任意一个等差数列,其通项公式可以表示为an=a1+(n-1)d,其中an表示该数列的第n项,a1表示该数列的首项,d表示该数列的公差。
这个公式用起来非常方便,读者只需要知道该数列的首项和公差,就可以轻松地得出该数列的任意一项。
等差数列的和公式等差数列的和公式就是数列的所有数值之和,它能够帮助我们快速计算数列中所有数值之和。
韦达定理是该公式的基础,韦达定理是指求等差数列和时将数列上下颠倒,在叠加两个相同的数列使其首项与末项分别相加后,其中的所有项均相等,其和是所求等差数列的和的两倍。
求和公式: Sn=n(a1+an)/2其中n表示项数,a1表示首项,an表示末项。
(特殊情况下)如果公差为1,那么求和公式可以变为:Sn=n(a1+an)/2=n(a1+1)/2 。
二、等比数列等比数列是指一种数列,其任意两个相邻项之间的比值是相等的,这个相等的比值叫做公比。
例如,1,2,4,8,16....就是一个公比为2的等比数列。
等比数列的通项公式对于任意一个等比数列,其通项公式可以表示为an=a1×r^(n-1),其中an表示该数列的第n项,a1表示该数列的首项,r表示该数列的公比。
与等差数列的情况类似,知道等比数列的首项和公比,就可以很容易地得出该数列的任意一项。
等比数列的和公式等比数列的和公式可以帮助我们快速计算数列中所有数值之和。
其中,如果公比r=1,那么求和公式就是Sn=na1,这个公式表示如果公比为1的等比数列中有n个元素,那么这个数列的和就是该数列第一个元素的值与这n 个元素数值之和相等。
07第一部分 板块二 专题二 数 列 第2讲 数列求和及数列的简单应用(大题)

本课结束
① ②
=2+2×411--22n-1-(2n-1)·2n+1=-6+2n+2-(2n-1)·2n+1=-6+2n+1(3-2n),
∴Tn=6+(2n-3)·2n+1.
2
PART TWO
真题体验 押题预测
真题体验 (2019·全国Ⅰ,文,18)记Sn为等差数列{an}的前n项和.已知S9=-a5. (1)若a3=4,求{an}的通项公式;
(2)求数列{an}的前n项和Sn.
解 由(1)知,当an=5时,Sn=5n. 当 an=2n+1 时,a1=3,则 Sn=n3+22n+1=n2+2n(n∈N*).
热点二 数列的证明问题
判断数列是否为等差或等比数列的策略 (1)将所给的关系式进行变形、转化,以便利用等差数列和等比数列的定义进行 判断; (2)若要判断一个数列不是等差(等比)数列,则只需说明某连续三项(如前三项) 不是等差(等比)数列即可.
=141-n+1 1=4nn+1.
跟踪演练3 (2019·龙岩模拟)已知等差数列{an}的前n项和为Sn,且a2=3,S6=36. (1)求数列{an}的通项公式;
解 ∵a2=3,∴a1+d=3, ∵S6=36,∴6a1+15d=36, 则a1=1,d=2, ∴an=2n-1.
(2)若数列{bn}满足bn=2n·an,n∈N*,求数列{bn}的前n项和Tn.
板块二 专题二 数 列
内容索引
NEIRONGSUOYIN
热点分类突破 真题押题精练
1
PART ONE
热点一 等差、等比数列基本量的计算 热点二 数列的证明问题 热点三 数列的求和问题
热点一 等差、等比数列基本量的计算
解决有关等差数列、等比数列问题,要立足于两个数列的概念,设出相应基本量, 充分利用通项公式、求和公式、数列的性质确定基本量.解决综合问题的关键在于 审清题目,弄懂来龙去脉,揭示问题的内在联系和隐含条件,形成解题策略.
(三轮冲刺)2013年高考数学复习 点睛专题(考向聚焦+解题反思) 第2讲 等差、等比数列的概念与性质课件

(1) ∵ n =pn +qn, an+ 1=p( 1) +q( 1) 解: a ∴ n+ n+ , 2 于是 an+ 1-an =[ n+1) +q( 1) -( 2+qn) 2pn+p+q, p( n+ ] pn = 要使{an }为等差数列, 则 2pn+p+q应是一个与 n无关的常数, 因此只有 2p= 0, p= 0, 即 故当 p= 0, q∈R 时, n }是等差数列. {a (2) 证明: an+ 1-an =2pn+p+q, ∵ ∴ n+ 2-an+ 1= 2p( a n+1) +p+q, ∴an+ 2-an+ 1) an+ 1-an ) 2p是一个与 n无关的常数, ( -( =2p, ∴ n+ 1-an }是等差数列. {a
【例 2】(1) (2011 年江西九校联考)在等差数列{an}中, n是其前 n S 项和, a 3+ 2a 7+a11= 60, S 13 等于( 若 则 (A)195 (B)200 (C)205 (D)210 )
(2) (2011 年 浙 江 温 州 五 校 联 考 ) 已 知 等 比 数 列 {an} 中, 1+a 2+a3= 40, 4+a 5+a6= 20, a a 则其前 9 项之和等于( ) (A)50(B)70 (C)80(D)90
解析: (1)因为 a 3+ 2a 7+a11=60, 所以(a 3+a7)+(a7+a 11)=60, 因此 2a 5+ 2a 9=60, 所以 a 5+a 9=30, 即 2a 7= 30, 7=15, a 于是 S 13= = 13a 7= 13× 195, 15= 故选 A.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[A 组 小题提速练]1.(等差数列求和及性质)在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5·a 6的最大值等于( ) A .3 B .6 C .9D .36解析:∵a 1+a 2+…+a 10=30, 得a 5+a 6=305=6,又a n >0, ∴a 5·a 6≤⎝⎛⎭⎪⎫a 5+a 622=⎝ ⎛⎭⎪⎫622=9. 答案:C2.(等差数列求和及不等式)设等差数列{a n }满足a 2=7,a 4=3,S n 是数列{a n }的前n 项和,则使得S n >0的最大的自然数n 是( ) A .9 B .10 C .11D .12解析:∵{a n }的公差d =3-74-2=-2,∴{a n }的通项为a n =7-2(n -2)=-2n +11,∴{a n }是递减数列,且a 5>0>a 6,a 5+a 6=0,于是S 9=9a 5>0,S 10=a 5+a 62·10=0,S 11=11a 6<0,故选A. 答案:A3.(等差数列求和)设数列{a n }是等差数列,且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( ) A .S 4<S 3 B .S 4=S 3 C .S 4>S 1D .S 4=S 1解析:设{a n }的公差为d ,由a 2=-6,a 6=6,得⎩⎨⎧a 1+d =-6,a 1+5d =6,解得⎩⎨⎧a 1=-9,d =3.于是,S 1=-9,S 3=3×(-9)+3×22×3=-18,S 4=4×(-9)+4×32×3=-18,所以S 4=S 3,S 4<S 1,故选B. 答案:B4.(等差数列求和及最值)在等差数列{a n }中,a 6+a 11=0,且公差d >0,则数列{a n }的前n 项和取最小值时n 的值为( ) A .6 B .7 C .8D .9解析:由题意知a 6<0,a 11>0,且a 1+5d +a 1+10d =0,所以a 1=-152d .又数列{a n }的前n 项和S n =na 1+n n -12d =d2[(n -8)2-64],所以当n =8时,数列{a n }的前n 项和取得最小值.故选C. 答案:C5.(数学文化与等比数列求和)中国古代数学著作《算法统宗》中有这样一个问题:三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还.其大意为:有一人走378里路,第一天健步行走,从第二天起因为脚痛每天走的路程都为前一天的一半,走了6天后到达目的地,问此人每天走多少里路.则此人第五天走的路程为( ) A .48里 B .24里 C .12里D .6里解析:依题意知,此人每天走的路程数构成以12为公比的等比数列a 1,a 2,…,a 6,由S6=a1⎝⎛⎭⎪⎫1-1261-12=378,解得a1=192,所以此人第五天走的路程为a5=192×124=12(里).故选C.答案:C6.(等比数列性质及基本不等式)已知首项与公比相等的等比数列{a n}满足a m a2n=a2 4(m,n∈N*),则2m+1n的最小值为( )A.1 B.3 2C.2 D.9 2解析:设该数列的首项及公比为a,则由题可得a m×a2n=a4×2,即a m×a2n=a m+2n=a4×2,得m+2n=8,所以2m+1n=18(m+2n)·⎝⎛⎭⎪⎫2m+1n=182+2+4nm+mn≥182+2+24nm×mn=1,当且仅当4nm=mn,即m=4,n=2时等号成立,故选A.答案:A7.(等比数列前n项和)在等比数列{a n}中,a1+a n=34,a2·a n-1=64,且前n 项和S n=62,则项数n等于( )A.4 B.5C.6 D.7解析:设等比数列{a n}的公比为q,由a2a n-1=a1a n=64,又a1+a n=34,解得a1=2,a n=32或a1=32,a n=2.当a1=2,a n=32时,S n=a11-q n1-q=a1-a n q1-q=2-32q1-q=62,解得q=2.又a n=a1q n-1,所以2×2n-1=2n=32,解得n=5.同理,当a1=32,a n=2时,由S n=62,解得q=12.由a n=a1q n-1=32×⎝⎛⎭⎪⎫12n-1=2,得⎝⎛⎭⎪⎫12n-1=116=⎝⎛⎭⎪⎫124,即n-1=4,n=5.综上,项数n等于5,故选B.答案:B8.(等差数列前n 项和性质)在等差数列{a n }中,a 1=-2 015,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 016的值等于( ) A .-2 015 B .2 015 C .2 016D .0解析:设数列{a n }的公差为d ,S 12=12a 1+12×112d ,S 10=10a 1+10×92d , 所以S 1212=12a 1+12×112d 12=a 1+112d .S 1010=a 1+92d ,所以S 1212-S 1010=d =2, 所以S 2 016=2 016×a 1+2 015×2 0162d =0.答案:D9.(等比数列前n 项和性质)已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2nD .1+(n -1)×2n解析:设等比数列{a n }的公比为q ,∵S 3=7,S 6=63,∴q ≠1,∴⎩⎪⎨⎪⎧a 11-q 31-q =7,a 11-q 61-q =63,解得⎩⎨⎧a 1=1,q =2,∴a n =2n -1,∴na n =n ·2n -1,设数列{na n }的前n 项和为T n ,∴T n =1+2×2+3×22+4×23+…+(n -1)·2n -2+n ·2n -1,2T n =2+2×22+3×23+4×24+…+(n -1)·2n -1+n ·2n ,∴-T n =1+2+22+23+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n -1,∴T n =1+(n -1)×2n ,故选D. 答案:D10.(递推关系、通项及性质)已知数列{a n }满足a 1=2,2a n a n +1=a 2n +1,设b n =a n -1a n +1,则数列{b n }是( ) A .常数列 B .摆动数列 C .递增数列D .递减数列解析:由2a n a n +1=a 2n +1可得a n +1=a 2n +12a n ,b n +1=a n +1-1a n +1+1=a 2n +12a n -1a 2n +12a n+1=a 2n -2a n +1a 2n +2a n +1=a n -12a n +12=b 2n ,由b n >0且b n ≠1,对b n +1=b 2n 两边取以10为底的对数,可得lgb n +1=2lg b n ,所以数列{lg b n }是以lg b 1=lg 2-12+1=lg 13为首项,2为公比的等比数列,所以lg b n =2n -1lg 13,b n =(13)2n -1,故数列{b n }是递减数列,故选D. 答案:D11.(等比数列、等差数列混合及性质)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值是( )A .1B .22C .-22D .- 3解析:{a n }是等比数列,{b n }是等差数列,且a 1·a 6·a 11=33,b 1+b 6+b 11=7π,∴a 36=(3)3,3b 6=7π,∴a 6=3,b 6=7π3, ∴tan b 3+b 91-a 4·a 8=tan 2b 61-a 26=tan2×7π31-32=tan ⎝ ⎛⎭⎪⎫-7π3=tan ⎝ ⎛⎭⎪⎫-2π-π3=-tan π3=- 3.答案:D12.(等差数列性质,等比数列通项)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析:由3S 1,2S 2,S 3成等差数列,得4S 2=3S 1+S 3,即3S 2-3S 1=S 3-S 2,则3a 2=a 3,得公比q =3,所以a n =a 1q n -1=3n -1. 答案:3n -113.(S n 与a n 关系及等差数列通项)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=3S n ,n ∈N *,则a n =________. 解析:当n =1时,a 2=3S 1=3a 1=3. 当n ≥2时,∵a n +1=3S n ,∴a n =3S n -1,两式相减得a n +1-a n =3(S n -S n -1)=3a n ,即a n +1=4a n ,当n ≥2时,{a n }是以3为首项,4为公比的等比数列,得a n =3×4n -2.综上,a n =⎩⎨⎧1,n =1,3×4n -2,n ≥2.答案:⎩⎨⎧1,n =1,3×4n -2,n ≥2.14.(等差数列通项)已知函数y =f (x )的定义域为R ,当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,等式f (x )f (y )=f (x +y )恒成立.若数列{a n }满足a 1=f (0),且f (a n +1)=1f-2-a n(n ∈N *),则a 2 016的值为________.解析:根据题意,不妨设f (x )=(12)x,则a 1=f (0)=1,∵f (a n +1)=1f-2-a n,∴a n +1=a n +2,∴数列{a n }是以1为首项、2为公差的等差数列,∴a n =2n -1,∴a 2 016=4 031. 答案:4 03115.(等差数列及性质、不等式)已知数列{a n }满足a 2=2a 1=2,na n +2是(2n +4)a n ,λ(2n 2+4n )的等差中项,若{a n }为单调递增数列,则实数λ的取值范围为________.解析:因为na n +2是(2n +4)a n ,λ(2n 2+4n )的等差中项,所以2na n +2=(2n +4)a n +λ(2n 2+4n ),即na n +2-(n +2)a n =λ(n 2+2n ),所以a n +2n +2-a nn =λ.设b n =a nn,则b n +2-b n =λ,因为a 1=1,a 2=2,所以b 1=b 2=1. 所以当n 为奇数时,b n =1+n -12λ;当n 为偶数时,b n =1+n -22λ.所以a n=⎩⎪⎨⎪⎧n +n n -1λ2,n 为奇数,n +n n -2λ2,n 为偶数.由数列{a n }为单调递增数列,得a n <a n +1. ①当n 为奇数且n >1时,n +n n -1λ2<n +1+n +1n +1-2λ2,所以λ>21-n, 又-1≤21-n<0,所以λ≥0; ②当n 为偶数时,2n +nn -2λ2<2n +1+n +1n +1-1λ2,所以λ>-23n ,又-13≤-23n<0,所以λ≥0. 综上,实数λ的取值范围为[0,+∞). 答案:[0,+∞)[B 组 大题规范练]1.(S n 与a n 的关系,等比数列的证明)已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)设b n =a n +3,证明数列{b n }为等比数列,并求a n . 解析:(1)因为数列{a n }的前n 项和为S n , 且S n =2a n -3n (n ∈N *).所以n =1时,由a 1=S 1=2a 1-3×1,解得a 1=3,n =2时,由S 2=2a 2-3×2,得a 2=9, n =3时,由S 3=2a 3-3×3,得a 3=21.(2)证明:因为S n =2a n -3×n ,所以S n +1=2a n +1-3×(n +1), 两式相减,得a n +1=2a n +3,*把b n =a n +3及b n +1=a n +1+3,代入*式, 得b n +1=2b n (n ∈N *),且b 1=6,所以数列{b n }是以6为首项,2为公比的等比数列, 所以b n =6×2n -1, 所以a n =b n -3=6×2n -1-3=3(2n-1).2.(等差数列定义、等比数列通项及求和)已知数列{a n }满足a 1=1,a n +1-a n =3,数列{b n }满足b n =3a n . (1)求数列{b n }的通项公式; (2)求数列{a n +b n }的前n 项和S n . 解析:(1)因为a 1=1,a n +1-a n =3,所以数列{a n }是首项为1,公差为3的等差数列, 所以a n =1+3(n -1)=3n -2, 故b n =3a n =33n -2.(2)由(1)知b n +1b n =33n +133n -2=27,所以数列{b n }是以3为首项,27为公比的等比数列,则数列{a n +b n }的前n 项和S n =a 1+b 1+a 2+b 2+…+a n +b n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =[1+4+…+(3n -2)]+(3+34+…+33n -2) =32n 2-12n +326·27n -326. 3.(a n 与S n 关系、等比数列证明及不等式最值)已知数列{a n }的前n 项和为S n ,满足a n +S n =2n .(1)证明:数列{a n -2}为等比数列,并求出a n ; (2)设b n =(2-n )(a n -2),求{b n }的最大项. 解析:(1)证明:由a 1+S 1=2a 1=2,得a 1=1.由a n +S n =2n 可得a n +1+S n +1=2(n +1),两式相减得,2a n +1-a n =2, ∴a n +1-2=12(a n -2),∴{a n -2}是首项为a 1-2=-1,公比为12的等比数列,a n -2=(-1)×⎝ ⎛⎭⎪⎫12n -1,故a n =2-⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知b n =(2-n )×(-1)×⎝ ⎛⎭⎪⎫12n -1=(n -2)×⎝ ⎛⎭⎪⎫12n -1,由b n +1-b n =n -12n-n -22n -1=n -1-2n +42n=3-n 2n≥0,得n ≤3,由b n +1-b n <0得n >3,∴b 1<b 2<b 3=b 4>b 5>…>b n >…,故{b n }的最大项为b 3=b 4=14.4.(等差、等比数列通项及和的最值)设S n ,T n 分别是数列{a n },{b n }的前n 项和,已知对于任意n ∈N *,都有3a n =2S n +3,数列{b n }是等差数列,且T 5=25,b 10=19.(1)求数列{a n }和{b n }的通项公式; (2)设c n =a nb nn n +1,求数列{c n }的前n 项和R n ,并求R n 的最小值.解析:(1)由3a n =2S n +3,得 当n =1时,有a 1=3; 当n ≥2时,3a n -1=2S n -1+3, 从而3a n -3a n -1=2a n ,即a n =3a n -1, 所以a n ≠0,a na n -1=3, 所以数列{a n }是首项为3,公比为3的等比数列,因此a n =3n . 设数列{b n }的公差为d ,由T 5=25,b 10=19, 得⎩⎨⎧5b 1+10d =25,b 1+9d =19,解得b 1=1,d =2, 因此b n =2n -1.(2)由(1)可得c n =2n -13nn n +1=[3n -n +1]3n n n +1=3n +1n +1-3nn,R n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫-31+322+⎝ ⎛⎭⎪⎫-322+333+…+⎝ ⎛⎭⎪⎫-3nn +3n +1n +1=3n +1n +1-3,因为c n =2n -13nn n +1>0,所以数列{R n }单调递增.所以n =1时,R n 取最小值,故最小值为32.。