聚合物结构与性能
聚合物材料结构与性能分析

聚合物材料结构与性能分析随着科技的不断发展,聚合物材料在人们的生活中扮演着越来越重要的角色。
聚合物材料被广泛应用在塑料制品、涂料、胶水、纺织品、电力电缆、医疗器械、汽车零部件、航空航天工程等领域中,成为了工业化生产的主要材料之一。
为了更好地研究聚合物材料的性能,需要深入了解其结构。
一、聚合物材料的结构聚合物材料的结构可以分为线性、支化和交联三种形态。
其中,线性聚合物是由一种或者几种单体按照化学键的方式以链状排列而成,分子量较小;支化聚合物是通过在线性聚合物中引入支链而形成的,支链数量影响聚合物的分子量;交联聚合物是聚合物分子之间通过交联点相互连接形成的,具有较高的强度和硬度。
聚合物材料的结构对其性能具有较大的影响。
线性聚合物因分子之间的顺序排列有序,故具有较强的延展性和柔软性,但同时也很脆弱。
与之相比,支化聚合物分子之间存在交叉和支链,增加了分子间的空间间隙,分子不易移动,故其延展性和柔软性较差,但抗拉强度和耐磨性等方面表现出了优异的性能。
交联聚合物由于分子之间的连接非常紧密,形成了三维连通结构,具有优异的耐热性、耐压性和耐化学腐蚀性等方面性能。
二、聚合物材料的性能聚合物材料的性能可分为物理性能和化学性能两个方面。
1. 物理性能聚合物材料的物理性能包括密度、硬度、热膨胀率、热导率、电导率等方面。
其中,密度是聚合物材料中分子的堆积情况,影响材料的重量和容积比例;硬度是指材料表面对受力的抵抗力,硬度越大,耐磨性和耐刮性也越强;热膨胀率是指在温度变化下材料的长度、面积或体积变化程度;热导率是指在导热过程中单位时间内的热通量和面积比例;电导率则是指电流通过单位长度材料的电阻大小。
2. 化学性能聚合物材料的化学性能包括耐酸碱性、耐热性、阻燃性、耐紫外线性等方面。
其中,耐酸碱性是指聚合物材料在酸碱介质中稳定性和抗腐蚀性;耐热性是指材料在高温环境下变形程度和防止氧化剥蚀的能力;阻燃性是指材料在火灾中的燃烧速度和发出有害气体的程度;耐紫外线性是指材料对紫外线的抵抗程度。
聚合物材料的化学结构与特殊性能

聚合物材料的化学结构与特殊性能聚合物材料是一类由大量重复单元组成的高分子化合物,其化学结构和分子排列方式决定了其特殊性能。
本文将探讨聚合物材料的化学结构与特殊性能之间的关系。
一、线性聚合物的化学结构与特殊性能线性聚合物是由相同或不同的单体通过共价键连接而成的高分子化合物。
其化学结构决定了其特殊性能。
1.1 聚乙烯(PE)聚乙烯是一种由乙烯单体聚合而成的线性聚合物。
其化学结构中的碳链使得聚乙烯具有良好的柔韧性和可塑性。
聚乙烯具有较高的拉伸强度和耐磨性,同时具有较低的密度和良好的电绝缘性能。
这些特殊性能使得聚乙烯广泛应用于包装材料、电线电缆绝缘层等领域。
1.2 聚丙烯(PP)聚丙烯是一种由丙烯单体聚合而成的线性聚合物。
其化学结构中的甲基基团使得聚丙烯具有较高的熔点和热稳定性。
聚丙烯具有良好的刚性和耐腐蚀性,同时具有较低的密度和良好的电绝缘性能。
这些特殊性能使得聚丙烯广泛应用于汽车零部件、管道系统等领域。
二、交联聚合物的化学结构与特殊性能交联聚合物是由线性聚合物通过交联剂连接而成的高分子化合物。
其化学结构决定了其特殊性能。
2.1 聚氨酯(PU)聚氨酯是一种由异氰酸酯和多元醇通过反应交联而成的聚合物。
其化学结构中的酯键和尿素键使得聚氨酯具有较高的强度和耐磨性。
聚氨酯具有良好的弹性和耐候性,同时具有较低的密度和良好的耐化学腐蚀性能。
这些特殊性能使得聚氨酯广泛应用于涂料、胶粘剂、弹性体等领域。
2.2 聚合氯乙烯(PVC)聚合氯乙烯是一种由氯乙烯单体聚合而成的聚合物。
其化学结构中的氯原子使得聚合氯乙烯具有较高的耐腐蚀性和耐候性。
聚合氯乙烯具有良好的刚性和耐热性,同时具有较低的密度和良好的电绝缘性能。
这些特殊性能使得聚合氯乙烯广泛应用于建筑材料、电线电缆护套等领域。
三、共聚物的化学结构与特殊性能共聚物是由两种或多种不同单体通过共聚反应聚合而成的高分子化合物。
其化学结构决定了其特殊性能。
3.1 丙烯腈-丁二烯橡胶(NBR)丙烯腈-丁二烯橡胶是一种由丙烯腈和丁二烯单体通过共聚反应聚合而成的共聚物。
聚合物材料制备工艺的结构与性能优化

聚合物材料制备工艺的结构与性能优化聚合物材料是由多个单体分子经过聚合反应形成的高分子化合物,具有多种优异的性能,如高强度、优良的耐热性和耐化学腐蚀性等。
聚合物材料的结构与性能直接相关,通过优化制备工艺,可以提高聚合物材料的结构组成和性能表现。
聚合物材料的结构与性能主要包括以下几个方面:1. 分子量:聚合物材料的分子量决定了其物理性能,如强度、弹性等。
分子量大的聚合物通常具有更高的强度和更好的耐热性。
在制备过程中,可以通过控制反应时间和添加适当的调节剂来控制分子量。
2. 支链结构:聚合物材料的支链结构对其性能有显著的影响。
适量的支链可以提高聚合物材料的韧性和抗冲击性。
通过在聚合反应中引入适量的共聚单体或交联剂,可以控制支链的数量和长度。
3. 结晶性:聚合物材料中的结晶结构可以影响其力学性能、热性能和光学性能等。
通过控制聚合反应的温度和挤出、拉伸等制备工艺,可以调控聚合物材料的结晶行为。
4. 分子排列方式:聚合物材料中的分子排列方式也对其性能有重要影响,如聚丙烯的区域结晶和畸变排列对其力学性能具有重要影响。
通过控制制备工艺和添加适当的添加剂,可以改变聚合物分子的排列方式,从而改善聚合物材料的性能。
为了优化聚合物材料的结构与性能,需要结合具体的要求和应用场景,采取适当的制备工艺。
一种常用的制备工艺是挤出熔融法,通过将聚合物料粒加热熔融后挤出成型。
在这个过程中,可以通过改变挤出温度、挤出速度、挤出模具的设计等参数,来优化聚合物材料的结构和性能。
此外,还可以采用溶液法、乳液法、熔体共混法等不同的制备工艺,针对不同的聚合物材料和要求进行优化。
例如,采用溶液法制备聚合物材料可以获得高分子量、低聚合度分散性好的成分,适用于制备具有高强度要求的材料。
综上所述,聚合物材料的结构与性能是相互关联的,通过优化制备工艺,可以改变聚合物材料的结构组成和性能表现。
根据具体要求和应用场景,选择适当的制备工艺,调控聚合物的分子量、支链结构、结晶性和分子排列方式等因素,可以提高聚合物材料的性能,并且满足不同领域的需求。
第一篇第一章聚合物结构与性能

2 粘度法 溶液的粘度一方面与聚合物的分子量有关,却也决定 于聚合物分子的结构、形态和在溶剂中的扩散程度。因此 该法为相对方法。 一、粘度的定义 流体流动时,可以设想有无数个流动的液层,由于液 体分子间相互摩擦力的存在,各液层的流动速度不同。单 位面积液体的粘滞阻力为ζ,切变速度为ξ,那么粘度为 η= ζ/ ξ 即流速梯度为1秒-1、面积为1厘米2的两层液体间的内摩 擦力。其单位为泊(厘泊): 1P=100cP=1gs-1cm-1=0.1kg s-1m-1 =0.98(Ns2m-1) s-1m-1 =0.98Nm-2s=0.98Pa·s≈1Pa·s 以上所定义的粘度是绝对粘度。对于高分子溶液,我们感 兴趣的是高分子进入溶液后引起的粘度变化,一般采用以 下几种参数:
1
端基分析 聚合物的化学结构明确,每个高分子链末端有一个或 x个可以用化学方法分析的基团,那么一定重量试样中 端基的数目就是分子链数目的x倍。所以从化学分析的 结果就可以计算分子量。 M= xw/n w为试样重量,n为被分析端基的摩尔数。 注意: • 该法要求聚合物结构必须明确。 • 分子量越大,单位重量试样中可分析基团的数目越少, 分析误差越大,故此法只适于分析分子量较小的聚合物, 可分析分子量的上限为2×104左右。 • 一般用于缩聚物。加聚反应产物分子量较大,且一般无 可供化学分析的基团,应用较少。 • 还可用于分析聚合物的支化情况,但要与其他方法配合 才行。 • 数均分子量。
第一篇 聚合物加工的理论基础
• • • • 聚合物的结构 聚合物的流变性质(聚合物的分子运动) 材料的力学性能 聚合物加工过程的物理和化学变化
第一章 聚合物的构
• 聚合物的结构 • 高分子的链结构与高分子的柔顺性 • 高分子的聚集态结构
第一章 聚合物的结构
聚合物结构与性能

1、分析HIPS结构组成、加工原理、结构特点与性能高抗冲聚苯乙烯,是将少量聚丁二烯接技到聚苯乙烯基体上。
具有“海岛结构”,基体是塑料,分散相是橡胶 .具有诸多的特性 :①耐冲击聚苯乙烯为热塑性树脂;②无臭、无味、硬质材料、成形后尺寸安定性良好;③有优秀的高介电性绝缘性;④为非晶质低吸水性材料;⑤其光泽性良好易于涂装。
2、分析ABS结构组成、结构特点、性能ABS树脂是丙烯酸、丁二烯和苯乙烯的三元共聚物。
共聚的方式是无规共聚与接枝共聚相结合:它可以是以丁苯橡胶为主链,将苯乙烯、丙烯腈接在支链上;也可以是丁腈橡胶为主链,将苯乙烯接在支链上;也可以以苯乙烯-丙烯腈的共聚物为主链,将丁二烯和丙烯腈接在支链上等等。
ABS三元接枝共聚物兼有三种组分的特性。
其中丙烯腈有氰基,能使聚合物耐化学腐蚀,提高制品的抗张强度和硬度;丁二烯能使聚合物呈现橡胶状的韧性,这是材料抗张强度增强的主要因素;苯乙烯的高温流动性能好,便于加工成型,且可改善制品的表面光洁度,是一种性能优良的热塑性塑料。
3、聚合物的增韧增强增韧:①橡胶增韧,如通过橡胶增韧苯乙烯-丙烯腈共聚物树脂,制备性能优良的ABS工程塑料。
②刚性无机填料增韧,如纳米碳酸钙粒子增韧高密度聚乙烯。
③热塑性塑料增韧,如热塑性塑料增韧双马来酰亚胺树脂。
④液晶聚合物增韧,如热致性液晶聚合物增韧环氧树脂。
增强:添加无机纳米粒子如TiO2、SiO2、Al2O3、CaCO3 等和橡胶纳米粒子以及蒙脱土等片状硅酸盐等形成聚合物基纳米复合材料;添加纤维状填料如碳纤维、石墨纤维、硼纤维和单晶纤维-晶须或短玻璃纤维等。
4、PE结构、材料的加工原理聚乙烯的分子是长链线型结构或支结构,为典型的结晶聚合物。
在固体状态下,结晶部分与无定型共存。
结晶度视加工条件和原处理条件而异,一般情况下,密度高结晶度就越大。
LDPE结晶度通常为55 %-- 65%,HDPE结晶度为80%-90%。
高密度聚乙烯通常使用Ziegler-Natta聚合法制造,其特点是分子链上没有支链,因此分子链排布规整,具有较高的密度。
聚合物的结构与性能

2. 分子主链由两种或两种以上的原子以共价键联结的杂链 高分子带有极性,易水解、醇解或酸解;
元素高分子具有无机物的热稳定性及有机物的 弹性和塑性;
分子主链不是一条单链而是像“梯子”和“双 股螺线”那样的高分子链;
为防止链断裂从端基开始,有些高分子需要封 头,以提高耐热性。
II. 高分子的柔顺性
高分子链能够通过内旋转作用改变其构象的性能称为高分 子链的柔顺性。 高分子链能形成的构象数越多,柔顺性越大。 ①静态柔顺性:又称为平衡态或热力学柔性,是指高分子链 处在较稳定状态时的卷曲程度。 ②动态柔顺性:指在外界条件的影响下,从一种构象向另一 种构象转变的容易程度,这是一个速度过程,又称动力学柔 性。 高分子的柔性是静态柔性和动态柔性的综合效应 。
SBS树脂是用阴离子聚合法制得的苯乙烯 和丁二烯的嵌段共聚物。其分子链的中段 是聚丁二烯(顺式),两端是聚苯乙烯。 SBS具有两相结构。SBS是一种可用注塑 的方法进行加工而不需要硫化的橡胶,又 称为热塑性弹性体。
高分子链的构型
构型是对分子中的最邻近的原子见的相对位置的表征,是
指分子中有化学键所固定的原子在空间的集合排列,要改变 构型必须经过化学键的断裂和重组。构型不同的异构体有
强度,这一数值称为临界聚合度。对极性强的高聚物来说,其临
界聚合度约为40;非极性高聚物的临界聚合度约为80;弱极性的介 于二者之间。
机械强度
极性聚合物 非极性聚合物
100 200 300 400 500 聚合度
高聚物的分子量愈大, 则机械强度愈大。然而, 高聚物分子量增加后, 分子间作用力也增强, 使高聚物的高温流动粘 度增加,给加工成型带 来困难。高聚物的分子 量应兼顾使用和加工两 方面的要求。
聚合物中的分子结构与性能

聚合物中的分子结构与性能聚合物是一种由大量相同或类似分子(称为“单体”)通过共价化学键连接而成的高分子化合物。
聚合物的性质取决于分子结构,因此分子结构对聚合物的性能有着非常重要的影响。
本文将介绍聚合物中的分子结构与性能之间的关系。
一、线性聚合物与支化聚合物聚合物可以根据分子结构的形态分为线性聚合物和支化聚合物。
线性聚合物的分子链是直线型的,通常具有规则、连续的结构,例如聚丙烯和聚乙烯。
支化聚合物的分子链上会有分支或侧链,这些分支可以与主链结合,使分子形状多样化。
支化聚合物通常比线性聚合物更容易形成有序晶体结构,因此在物理性能、热稳定性和耐化学腐蚀性方面具有优势。
例如,聚乙烯可支化使其具有更高的耐热性和耐化学腐蚀性能。
二、分子量分布对聚合物性能的影响聚合物的分子量也会直接影响其性能。
分子量分布对聚合物的分子结构和性能有着直接的影响。
聚合物可分为单分散聚合物和多分散聚合物。
单分散聚合物的分子量分布非常狭窄。
由于它们的分子量比较统一,因此它们的物理性质、力学性能和加工工艺都非常稳定和可预测。
多分散聚合物的分子量分布范围较广。
由于它们的分子量和分子结构不均匀,使其在加工和使用方面有一定的不确定性。
因此,控制聚合物分子量分布是制备高品质聚合物的重要环节之一。
三、共聚物结构与性能共聚物是同时使用两种或两种以上不同单体制成的高分子化合物。
共聚物的分子结构和性能取决于各单体之间的相互作用。
共聚物可以分为随机共聚物、交替共聚物和嵌段共聚物。
随机共聚物是指不同单体按随机顺序聚合而成的高分子化合物。
交替共聚物是交替聚合两种或多种不同单体而成的高分子化合物。
嵌段共聚物是指在高分子链中不同单体按均匀方式排列并形成相同长度的片段。
共聚物具有比单一组分聚合物更多样化的化学和物理性能,可以通过合理选择单体组合,来调节其性能。
例如,丙烯酸甲酯和丙烯酸乙酯可以聚合成随机共聚物,由于甲基侧链比乙基侧链更大,制得的共聚物可以具有更高的玻璃化转变温度和更好的玻璃稳定性。
聚合物的结构与性能

对应用做材料的高分子来说,关心的不是具体构型(左旋 或右旋),而是构型在分子链中的异同,即全同(等规)、间 同或无规。
聚合物的结构与性能
Isotactic 全同立构
Syndiotactic 间同立构
Atactic 无规立构
结构规整 较规整 不规整
等规度(tacticity): 全同或间同立构单元所占的百分数
非反应性:-CH3、-OCH3, 如聚甲醛受热降解从端羟基开始,必须进行酯化或醚化以封端。
HO-CH2-O-CH2-O-CH2 CH3O-CH2-O-CH2-O-CH2
-O-CH2-O-CH2-OH 酯化
-O-CH2-O-CH2-OCH3
聚合物的结构与性能
反应性:-OH、-COOH、-NH2, 可进一步反应合成复杂结构
聚合物的结构与性能
一、(单根)高分子链的结构
高分子链结构的特点
●既简单又复杂; ●长而柔; ●分子量大而不均匀
聚合物的结构与性能
1.一级结构
1).化学组成
结构术语
主链
支链
聚合物的结构与性能
端基
侧基
➢ 主链
(A) 碳链高分子
主链全部由碳原子组成
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
聚乙烯
聚合物的结构与性能
有机氟高分子的化学特性:
最好的化学稳定性: 高抗紫外线性、高耐候性、高耐化学性、高耐老化性 特异的表面性能—表面能最低: 拒水性好、拒油性好、耐沾污性好 理想的生物稳定性和生物相容性: 优异的光学性能: 可有低折射率、高透明性 优异的电学性能:
低介电常数、高绝缘性 有机氟高分子材料被誉为“有机材料之王”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、名词解释(5个)
聚合物分子(高聚物分子,通常简称为高分子):(1)这些部分是由相对低分子质量的分子衍生的单元(所谓的单体单元或链节) (2)并且只有一种或少数几种链节(3)这些需要的链节多重重复重现。
长周期:在纤维轴方向片晶和非晶能重复出现的最短距离,即片晶和非晶的平均厚度之和缚结分子:连结至少两个晶体的分子。
初期结晶:是指液态或气态初步形成晶体的过程
预先成核:晶核预先存在,成核速率与时间无关。
二、概念的区别与联系(4对)
1、微构象与宏构象
微构象:分子中的一小部分由于一个或数个键的内旋转所引起的构象。
宏构象:表示在单键周围的原子和原子基团的旋转产生的空间排列。
2、玻璃化转变温度与熔融温度
玻璃化转变温度:非晶态聚合物或部分结晶聚合物中非晶相发生玻璃化转变所对应的温度。
熔融温度:晶体物质由固态向液态转变时固液两相共存的温度。
3. 应力与应变
应力:受力物体截面上内力的集度,即单位面积上的内力。
应变:物体内任一点因各种作用引起的相对变形。
4、质量结晶度与体积结晶度
质量结晶度:X-射线被高聚物中原子散射的强度与原子所处的状态无关,原子的聚集状态只决定衍射线的位置与形状,不影响总强度。
因此可以认为非晶部分的质量与结晶部分的质量之比,等于非晶部分的衍射强度与结晶部分的衍射强度之比。
即()。
理论上,只要知道晶区和非晶区衍射的X射线的总强度,就可计算结晶度。
在实际工作中,只能在一定的角度范围收集衍射强度数据,无法收集到样品衍射或散射X射线的总强度。
这样,在所收集的数据中,晶区或非晶区对衍射强度的贡献可能偏高或偏低。
所以,应加入比例常数即,,式中,K为比例常数。
体积结晶度:用X-射线衍射法体积结晶度。
根据微原纤结构模型即可测得结晶度式中,D为晶片厚度,L为长周期。
三、球晶的光学性质与其内部结构的关系
在正交偏光显微镜下,球晶呈现特有的黑十字消光图像及明暗相间的消光环,其中黑十字消光图像反映的是球晶中晶片的径向生长,消光环反映的是球晶中晶片的扭曲生长。
四、什么是超分子结构?超分子结构参数有哪些?用简述或图示法说明用X-射线图确定超分子结构参数的基本依据。
答:超分子结构:高分子链之间通过强的或弱的相互作用所形成的聚集体。
结构参数:1.结晶度 2. 取向度 3 .晶粒尺寸 4.长周期
X-射线可测定质量结晶度和体积结晶度。
假设:X-射线被高聚物中原子散射的强度与原子所处的状态无关,原子的聚集状态只决定衍射线的位置与形状,不影响总强度。
因此可以认为非晶部分的质量与结晶部分的质量之比,等于非晶部分的衍射强度与结晶部分的衍射强度之比。
理论上,只要知道晶区和非晶区衍射的X射线的总强度,就可根据上式计算结晶度。
在实际工作中,只能在一定的角度范围收集衍射强度数据,无法收集到样品衍射或散射X射线的总强度。
这样,在所收集的数据中,晶区或非晶区对衍射强度的贡献可能偏高或偏低。
所以,
应在上式中加入比例常数
式中,K为比例常数。
晶区的衍射强度Ic和非晶区的散射强度Ia则表示在一定角度范围内收集到的X射线衍射的积分强度。
对有些高聚物,晶区和非晶区对衍射强度的贡献集中在一定的角度范围内,可近似取K值为1。
为计算方便,有时用衍射峰的面积代替积分强度。
主要计算方法有:作图法,Ruland法(考虑晶格畸变的影响),拟合分峰法(Hindeleh),回归线法
(1) 晶峰和非晶峰可以分开的样品(作图法)
(2) 非晶峰和晶峰重叠的样品(Hindeleh, Farrow, Ruland, 回归线法)
体积结晶度:
用X-射线衍射法体积结晶度。
根据微原纤结构模型:
式中,D为晶片厚度,L为长周期。
五、概述结晶高聚物从低温到高温升温时,可能发生的热转变,其相应温度的名称;并给出转变的分子运动解释。
答、随着受热温度的增加,结晶高聚物可能发生的热转变有:玻璃化转变,对应的温度名称为玻璃化温度Tg;熔融态转变,对应的温度名称为熔点Tm;最后到达向粘流态转变,对应的温度名称为粘流温度Tf。
分子运动角度对发生的热转变解释如下:结晶高聚物由于含有非结晶部分,因此其温度形变曲线也会出现玻璃化转变,但由于结晶部分的存在,链段运动受到限制,模量下降较少。
对于结晶度很高的材料也会不出现玻璃化转变,即在Tg-Tm之间并不出现高弹态,只有达到熔点Tm,结晶瓦解,链段热运动程度迅速增加,模量才迅速下降。
为什么PE能制成高强高模纤维就是这个道理。
若高聚物分子量较高Tm<Tf,则在Tm与Tf 之间可以出现高弹态;若高聚物分子量较低,则Tm>Tf,大分子晶体熔融后直接变成粘流态。
六、绘出玻璃态聚合物纤维在单轴拉伸时的应力–应变曲线,并指出从应力应变曲线可获得的参数
σb断裂强度,σy屈服强度,εb断裂伸长率,εy屈服伸长率。
七、影响高聚物材料强度的因素
1)化学结构的影响:①链结构。
提高化学结构的规整性,使之具有结晶性,引入交联键或增加分子链的刚性均有利于提高材料的强度。
②分子量。
随着分子量的增大,强度增加,但当分子量相当大时,强度与分子量几乎无关。
③交联的影响,通过化学交联,物体形成坚硬网络结构,有利于提高材料的强度。
材料的强度不只受交联密度的影响,主要还取决于分子间作用力和结果的均匀性。
④分子间作用力的影响,分子间作用力愈强(极性基团),高聚物的强度也愈高。
2)超分子结构影响:①单位立方体模型的影响,在串联模型中,两相的应力相等,应变为两相应变之和,在并联模型中,两相的应变相等,应力为两相应力之和,混合模型则可以看成并串联之间的组合。
②结晶度。
结晶度增大,E增大。
③晶粒尺寸。
在结晶度一定时,晶粒的体积越小,纤维的强度越大。
同时,晶粒的长径比越大,纤维的强度越大。
④取向度。
取向度提高强度增大。
⑤织态结构的影响,高聚物中加入增塑剂、填料,以及高聚物共混物等复合材料都会影响其强度。
3)测试条件影响:①湿度的影响,湿度对纤维力学性能影响最严重的是初始模量,湿度增加,初始模量减少。
②温度的影响,一般说来,随着温度的降低,材料的断裂强度有所提高。
③试样夹持长度的影响,夹持长度越长,纤维的强度越低,伸长率越大。
④拉伸速率的影响,拉伸速率越小,伸长率越高,强度越低,拉伸速率越大,伸长率越小,强度越高。
八、材料结构、性能、制备工艺之间的关系(先综述后举例)
不同的材料具有不同的性能,材料的组成与结构决定材料的性能,而组成和结构又是合成和
制备过程(制备工艺)的产物。
材料的组成与结构是指构成材料物质的原子、分子以及它们在不同层次上彼此结合的形式、状态和空间分布;性能是指材料固有的物理化学特性,也是确定材料用途的依据;制备工艺是指促使原子、分子结合而构成材料的化学与物理过程。
材料的组成和结构决定材料的性能,如组成物质的基本单元是原子,各种原子以不同的结合键形成材料,其性能也有所差异;如:以离子键为主的材料强度高,硬度大,脆性大(力学性能);熔点高,热膨胀系数小(热学性能);导电性较差,熔融态为离子导体(电学性能);对红外光吸收较强,多是无色或浅色透明的(光学性能)。
制备工艺影响性能,如:制备多孔陶瓷的过程中,不同的成孔方法所制备的多孔陶瓷性能不同,添加造孔剂法可制备气孔形状复杂的材料,此类材料可作为催化剂载体;有机泡沫浸渍工艺可制备高气孔率且强度高的制品,用作金属熔体过滤器等,而且除此之外,制备过程中原料粉末松装程度,成型压力,烧结温度等对制品气孔率,气孔尺寸都有影响。