高聚物结构与性能关系

合集下载

高聚物的结构与性能—聚合物的力学状态及其转变

高聚物的结构与性能—聚合物的力学状态及其转变

侧基的极性越强,数目越多,Tg越高,如:
CH2 CH
CH2CH
CH2CH
CH2CH
CH3
Cl
OH
CN
聚丙烯) -18
81
85
90
刚性侧基的体积越大,分子链的柔顺性越差,Tg越高,
如:
CH2 CH
CH2 CH
CH2CH
CH2CH
CH3
H3C C CH3
N
CH3
聚丙烯 Tg (oC) -18
率突变区,这两个突变区把热-机械曲线分为三个区域,分
别对应于三种不同的力学状态,三种状态的性能与分子运
动特征各有不同。
III
形 变I
II 温度
第七章 聚合物的结构与性能



形 变
I
III II
温度
在区域I,温度低,链段运动被冻结,只有侧基、链节、 链长、键角等的局部运动,因此聚合物在外力作用下的形 变小,具有虎克弹性行为:形变在瞬间完成,当外力除去 后,形变又立即恢复,表现为质硬而脆,这种力学状态与 无机玻璃相似,称为玻璃态。
Tm<Tf
Tm>Tf


高结晶度(>40%)
聚合物
Tg
温度
Tm
第七章 聚合物的结构与性能
7.5.3 力学状态的分子运动特点
聚合物的分子运动具有以下特点: (1)运动单元的多重性:
聚合物的分子运动可分小尺寸单元运动(即侧基、支链、 链节、链段等的运动)和大尺寸单元运动(即 整个分子运 动)。 (2)聚合物分子的运动是一个松弛过程:
CH2 CH
CH2-CH=CH-CH 2
CH3
CH3

第一章 高分子聚合物结构特点与性能

第一章  高分子聚合物结构特点与性能

第一章高分子聚合物结构特点和性能一、概念1.塑料:塑料是以高分子聚合物为原料,在一定温度和压力条件下可塑制成形的高分子材料。

2.高分子聚合物:由成千上万个结构相同的小分子单体通过加聚或缩聚反应形成的长链大分子。

例如:聚氯乙稀就是由氯乙烯(CH2=CHCl)单体通过加聚反应形成的长链大分子。

方括号内为高聚物的结构单元,也是其重复结构单元并简称为重复单元,也是也称为链节。

n代表重复单元数,又称为平均聚合度。

第一节聚合物分子的结构特点二、高分子合成反应高分子化合物一般是利用煤或石油中得到的有机小分子化合物作为单体,通过聚合反应而合成的。

具体的合成方法有加聚反应、缩聚反应等。

1. 加聚含有重键的单体分子,如乙烯、氯乙烯等,它们可以通过加成聚合反应得到聚合物。

在此反应过程中除了生成聚合物外,再没有任何其他产物生成,聚合物中包含了单体的全部原子。

这种反应可以在同一种物质的分子间进行(其反应产物称为均聚物),也可以在不同物质的分子间进行(其反应产物为共聚体)。

(2)缩聚反应含有双官能团或多官能团的单体分子,通过分子间官能团的缩合反应把单体分子聚合起来,同时生成水、醇、氨等小分子化合物,简称缩聚反应。

如聚酰胺是用已二胺和已二酸作为单体通过缩水聚合反应形成的长链高分子,同时形成水。

三、高分子物理结构1.高分子链的近程结构(1)高分子链结构单元的化学组成通常的合成高分子是由单体通过聚合反应连接而成的链状分子,称为高分子链,高分子链的重复结构单元数目称为聚合度,高分子链一般分为碳链高分子(-C-C-C),杂链高分子(C-C-O-C),元素有机与无机高分子(O-Si-O,侧基有无有机基团)等,高分子链的化学组成不同,高分子的化学和物理性能不同。

(2)高分子链结构单元的键接方式键接方式是结构单元在分子链中的连接方式。

在缩聚反应中结构单元的连接方式是固定的。

而在共聚物与均聚物中的键接方式比较复杂。

以氯乙烯为例,其结构单元在分子键中的键接方式可以有三种,即头-尾键接,尾-尾键接和头-头键接。

高分子化合物的合成和反应、结构与性能间的关系

高分子化合物的合成和反应、结构与性能间的关系
结构单元
重复单元
-C-O-CH2-CH2-O] nH O
结构单元
单体单元 ≠ 结构单元 ≠重复单元=链节 结论
重复单元≥结构单元
返回Biblioteka 聚合度(Degree of polymerization)
聚合度单个聚合物分子所含单体单元的数目。 是衡量高分子大小的一个指标。
有两种表示法:
以大分子链中的结构单元数目表示,记作
侧基(侧链、支链)
是由小分子氯乙烯通过双键打开连接而成的。小分子氯乙 烯称为单体。
返回
什么是单体?
聚 合 反 应 小 分 子 高 分 子
Polymerization
单 体
Monomer
单体 ——能够进行聚合反应,并构成高分子基本结构组成 单元的小分子。 *注:书P8 1.3.2 中(3)“原料”不准确
塑料
纤 维 性 质 和 用 途
以聚合物为基础,加入(或不加)各种助剂 和填料,经加工形成的塑性材料或刚性材料。
纤细而柔软的丝状物,长度至少为直径的 100倍。 具有可逆形变的高弹性材料。 涂布于物体表面能成坚韧的薄膜、起装饰和 保护作用的聚合物材料 能通过粘合的方法将两种以上的物体连接在 一起的聚合物材料
或少一个链节不会影响其基本性能时,称为高分子。
返回
1.2
高分子的分类
(1)根据高分子主链结构分类
碳链高分子:主链(链原子)完全由C原子组成。 主链元素 (链原子) 组成 杂链高分子:链原子除C外,还含O,N,S等杂原子。 元素有机高分子:链原子由Si,B,Al,O,N,S,P等杂原子组 成。 无机高分子:无论在主链还是侧链上均没有碳元素。 如玻璃、陶瓷等。不在本课程讨论之列。
[ CH2 CH ]n [ CH2 Cl CH ]m O C CH3 O

高分子的结构和性能的关系

高分子的结构和性能的关系

高分子的结构和性能的关系高分子的结构和性能的关系高分子化合物分子的大小对化学性质影响很小,一个官能团,不管它在小分子中或大分子中,都会起反应。

大分子与小分子的不同,主要在于它的物理性质,而高分子之所以能用作材料,也正是由于这些物理性质。

下面简要讨论高分子的结构与物理性能的关系。

一、高分子的两种基本结构及其性能特点高分子的分子结构可以分为两种基本类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物。

第二种是体型结构,具有这种结构的高分子化合物称为体型高分子化合物。

此外,有些高分子是带有支链的,称为支链高分子,也属于线型结构范畴。

有些高分子虽然分子链间有交联,但交联较少,这种结构称为网状结构,属体型结构范畴。

在线型结构(包括带有支链的)高分子物质中有独立的大分子存在,这类高聚物的溶剂中或在加热熔融状态下,大分子可以彼此分离开来。

而在体形结构(分子链间大量交联的)的高分子物质中则没有独立的大分子存在,因而也没有相对分子质量的意义,只有交联度的意义。

交联很少的网状结构高分子物质也可能被分离的大分子存在(犹如一张张"鱼网"仍可以分开一样)。

应该指出,上述两种基本结构实际上是对高分子的分子模型的直观模拟,而分子的真实精细结构除了少数(如定向聚合物)外,一般并不清楚。

两种不同的结构,表现出相反的性能。

线型结构(包括支链结构)高聚物由于有独立的分子存在,故具有弹性、可塑性,在溶剂中能溶解,加热能熔融,硬度和脆性较小的特点。

体型结构高聚物由于没有独立大分子存在,故没有弹性和可塑性,不能溶解和熔融,只能溶胀,硬度和脆性较大。

因此从结构上看,橡胶只能是线型结构或交联很少的网状结构的高分子,纤维也只能是线型的高分子,而塑料则两种结构的高分子都有。

二、高分子化合物的聚集状态高聚物的性能不仅与高分子的相对分子质量和分子结构有关,也和分子间的互相关系,即聚集状态有关。

同属线型结构的高聚物,有的具有高弹性(如天然橡胶),有的则表现出很坚硬(如聚苯乙烯),就是由于它们的聚集状态不同的缘故。

第一篇第一章聚合物结构与性能

第一篇第一章聚合物结构与性能

2 粘度法 溶液的粘度一方面与聚合物的分子量有关,却也决定 于聚合物分子的结构、形态和在溶剂中的扩散程度。因此 该法为相对方法。 一、粘度的定义 流体流动时,可以设想有无数个流动的液层,由于液 体分子间相互摩擦力的存在,各液层的流动速度不同。单 位面积液体的粘滞阻力为ζ,切变速度为ξ,那么粘度为 η= ζ/ ξ 即流速梯度为1秒-1、面积为1厘米2的两层液体间的内摩 擦力。其单位为泊(厘泊): 1P=100cP=1gs-1cm-1=0.1kg s-1m-1 =0.98(Ns2m-1) s-1m-1 =0.98Nm-2s=0.98Pa·s≈1Pa·s 以上所定义的粘度是绝对粘度。对于高分子溶液,我们感 兴趣的是高分子进入溶液后引起的粘度变化,一般采用以 下几种参数:
1
端基分析 聚合物的化学结构明确,每个高分子链末端有一个或 x个可以用化学方法分析的基团,那么一定重量试样中 端基的数目就是分子链数目的x倍。所以从化学分析的 结果就可以计算分子量。 M= xw/n w为试样重量,n为被分析端基的摩尔数。 注意: • 该法要求聚合物结构必须明确。 • 分子量越大,单位重量试样中可分析基团的数目越少, 分析误差越大,故此法只适于分析分子量较小的聚合物, 可分析分子量的上限为2×104左右。 • 一般用于缩聚物。加聚反应产物分子量较大,且一般无 可供化学分析的基团,应用较少。 • 还可用于分析聚合物的支化情况,但要与其他方法配合 才行。 • 数均分子量。
第一篇 聚合物加工的理论基础
• • • • 聚合物的结构 聚合物的流变性质(聚合物的分子运动) 材料的力学性能 聚合物加工过程的物理和化学变化
第一章 聚合物的构
• 聚合物的结构 • 高分子的链结构与高分子的柔顺性 • 高分子的聚集态结构
第一章 聚合物的结构

高聚物的结构与性能

高聚物的结构与性能

9/24/2019
32
1.相对分子质量
聚合物的性能决定于平均相对分子量和相对分子量 分布。
除少数特殊用途(涂料、胶黏剂等)使用低相对分 子量的聚合物外,多数对材料力学性能要求较高的用途 都需要聚合物具有较高的相对分子质量。越高越好?
例:聚乙烯:聚合度为1~2时呈气态;聚合度为3~10时 为液体;聚合度为10~100时为黏性、力学性能极差的蜡 状固体;聚合度超过1000时,开始表现塑料的韧性、强度 和成膜特性,并随着聚合度的增加而增加。
5.共聚物序列结构
共聚物性能倾向于组分均聚物性能互补。
不同序列结构的特点: • 无规、交替——
改变了结构单元的相互作用状况, 因此其性能与相应的均聚物有很大差别 • 嵌段、接枝—均聚物有一定联系
25
① 无规共聚
两种高分子无规则地平行联结 — A—B—A—A—B—A—A —A—B—B—A— B— 由于两种高分子平行无规则地排列改变了结构单元的相
➢ 自由结合:无键角的限制,也不考虑空间位阻对移 动的影响(理想的)
39
小分子内旋转: 例如最简单的乙烷:如果C—C发生内旋转,则分子内与C
相连的H的相对位置就要发生变化: 分子内的旋转受
阻,使得高分子链在
空间可能有的构象数
交叉式 反式位能最低
叠同式 顺式位能最高
反式,氢原子间距离最远(0.25nm),斥 力最小;顺式,氢原子间距离最小 (0.228nm),斥力最大;氢原子半径 0.12nm。
远远小于自由内旋转 的情况。受阻程度越 大,可能有构象数就 越少。
40
影响旋转的因素
CH3-CH3分子旋转的位垒为11.7kJ·mol-1
◆ 若氢被甲基或卤素(极性、位阻) 取代,则位垒增大,取 代的基团越多,位垒越大;

高分子聚合物及其结构与性能关系的三个层次

高分子聚合物及其结构与性能关系的三个层次

高分子聚合物及其结构与性能关系的三个层次姓名:刘灵芝学号:2011020214 高分子聚合物指由许多相同的、简单的结构单元通过共价键重复连接而成的高分子量(通常可达104~106)化合物。

例如聚氯乙烯分子是由许多氯乙烯分子结构单元—CH2CHCl—重复连接而成,因此—CH2CHCl—又称为结构单元或链节。

由能够形成结构单元的小分子所组成的化合物称为单体,是合成聚合物的原料。

n代表重复单元数,又称聚合度,聚合度是衡量高分子聚合物的重要指标。

聚合度很低的(1~100)的聚合物称为低聚物,只有当分子量高达104~106(如塑料、橡胶、纤维等)才称为高分子聚合物。

由一种单体聚合而成的聚合物称为均聚物,如上述的聚氯乙烯、聚乙烯等。

由两种以上单体共聚而成的聚合物则称为共聚物,如氯乙烯—醋酸乙烯共聚物等。

1. 聚合物的分类聚合物的分类可以从不同的角度对聚合物进行分类,如从单体来源、合成方法、最终用途、加热行为、聚合物结构等。

(1)按分子主链的元素结构,可将聚合物分为碳链、杂链和元素有机三类。

碳链聚合物指大分子主链完全由碳原子组成。

杂链聚合物指大分子主链中除碳原子外,还有氧、氮、硫等杂原子。

元素有机聚合物指大分子主链中没有碳原子,主要由硅、硼、铝和氧、氮、硫、磷等原子组成,但侧基却由有机基团组成,如甲基、乙基、乙烯基等。

有机硅橡胶就是典型的例子。

元素有机又称杂链的半有机高分子,如果主链和侧基均无碳原子,则成为无机高分子。

(2)按材料的性质和用途分类,可将高聚物分为塑料、橡胶和纤维。

橡胶通常是一类线型柔顺高分子聚合物,分子间次价力小,具有典型的高弹性,在很小的作用力下,能产生很大的形变,外力除去后,能恢复原状。

纤维通常是线性结晶聚合物,平均分子量较橡胶和塑料低,纤维不易形变,伸长率小,弹性模量和抗张强度都很高。

塑料通常是以合成或天然聚合物为主要成分,辅以填充剂、增塑剂和其他助剂在一定温度和压力下加工成型的材料或制品。

高分子聚合物的结构特点与性能

高分子聚合物的结构特点与性能
第一章 高分子聚合物的结构特点与性能
1.1 高分子聚合物的结构特点 (研究高分子结构-性能关 系)
1.2 聚合物的热力学性能(研究形变-温度的关系) 1.3 聚合物的流变学性质(研究变形-流动的关系)研究 高分子聚合物的结构的意义 1.4 聚合物熔体在成型过程中的流动状态高分子材料定义 (研究流动方程) 1.5 聚合物成型过程中的物理化学变化高分子材料的结构
链节:大分子链中的重复结构单元叫链节, CH2一CHCl 聚合度:大分子链中链节的重复次数称为聚合度。n即为聚合度。 大分子链长:聚合度越高,分子链越长, 链节数越多。聚合度反映了大分子链的长短
第一章 高分子聚合物的结构特点与性能
1.1高分子聚合物的结构特点(研究高分子结构-性能关系 )
⑴高分子链结构特点与性能:
第一章 高分子聚合物的结构特点与性能
1.2.2聚合物的热力学性能
1.非晶态高聚物的热力学性能
(2)三种力学状态 ①玻璃态:当θb<θ<θg时,高 聚物呈玻璃态符合虎克定律;是塑料和 纤维使用状态。 ②高弹态:θg<θ<θf时 从玻璃态转入了能自由运动的高弹 态,是橡胶的使用状态 ③粘流态:θf<θ<θd时 从而使高聚物成为流动的粘液,进 行成型加工
第一章 高分子聚合物的结构特点与性能
⑵高聚物的聚集态结构特点
⒉)高聚物的聚集态结构 ②链状结构与聚集态结构关系: 线型高聚物:按结晶度可分为晶态和部分晶态两类, 体型高聚物:只能为非晶态(玻璃态) ③结晶度:用来表示聚合物中结晶区域所占的比例,聚合物结晶度 变化的范围很宽,一般从30%~80% ; 影响聚合物结晶的因素:内部结构的规整性(主链上带有的侧基体 积小,对称性高);外部的浓度、溶剂、温度等。结构越规整,越容易 结晶,反之则越不容易,成为无定型聚合物。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

++
++ ++
<0℃
265℃ 215℃
橡胶
纤维、橡胶 纤维、塑料
聚已二酸乙二酯
聚对苯二甲酸乙二酯

- -
++
++ +

- ++
++
++ ++
54℃
265℃ 20℃
纤维
纤维 橡胶
天 然
橡 胶
高聚物结构与性能的关系
三、高分子材料的结构与性能 高分子材料性能与结构、合成、成型的关系
高分子材料性能
结构
链结构
聚集态结构
高分子合成制备
高分子材料成型
高聚物结构与性能的关系
常见高聚物的结构与性能及用途 高 聚 物 吸引力 对称性 柔顺性 结晶性 软化点 用 途


烯 乙 烯
- + +
++ + ++
+ + +
++ - ++
115℃ 130℃ 185℃
纤维、塑料 纤维、塑料 纤维、塑料
聚 氯
聚偏二氯乙烯
聚 丙 烯 腈
聚丙烯酸甲酯 聚 乙 烯 醇
++
- ++

+ +

+ -

- ++
220℃
10℃ 150℃
纤维
塑料、橡胶 纤维
聚 异 丁 烯
聚已二酰已二胺 聚已内酰胺

++ ++
++
++ ++

+ +
高聚物结构与性能的关系
二、高分子链内和高分子间的相互作用
作用的原因:质点间的吸引与排斥
(a)
非晶区
结晶区
(b) 高分子链形态示意
(a)为形象化串珠 (b)为热运动高分子链
高聚物聚集态
高聚物结构与性能的关系
作用的结果:
一定条件(T、P) 高分子内、间排斥与吸引达到平衡
组成的高聚物大分子、原子空间排列一定 高聚物的聚集态呈现静止可稳定状态 高聚物的聚集态结构与性能一定
项目1
课件一
绪论----高聚物结构与性能关系
高聚物结构与性能的关系
一、高分子物理的研究范畴 高分子物理主要研究高分子结构与性能的关系





聚集态结构
变化规律
影响
性能 功能
提供使用高分子材料原理的知识
提供高分子设计、合成的信息
高聚物结构与性能的关系
从时间上看高分子物理的发展情况:
不同高聚物结构不同、性能不同 同种高聚物形成不材料、性能不同 指导高分子材料的成型加工技术 20世纪 促进高分子材料潜在性能利用 促进高分子工业的发展 21世纪 研究结构多变性而赋予的多性能
相关文档
最新文档