光伏组件遮挡对功率影响实验
光伏组件布局对发电效率的影响及优化分析

光伏组件布局对发电效率的影响及优化分析摘要:本论文研究了光伏组件布局对太阳能发电效率的影响,并进行了优化分析。
通过对不同布局方式的光伏组件进行实验和模拟,研究了组件之间的间距、角度、朝向等参数对发电效率的影响。
结果显示,合理的组件布局可以显著提高太阳能发电系统的效率。
优化布局使得光伏组件能够更好地捕获太阳辐射,减少阴影遮挡和光能损失。
本研究为光伏电站的设计和建设提供了有益的指导和参考。
关键词:光伏组件布局;太阳能发电效率;优化分析;太阳能捕获;光能损失引言:随着对可再生能源的需求日益增长,太阳能发电作为一种清洁、无污染的能源逐渐受到广泛关注。
然而,光伏发电系统的效率直接影响其经济可行性和实际应用价值。
因此,对光伏组件布局对发电效率的影响进行深入研究和优化分析变得尤为重要。
本论文旨在探究不同布局方式对太阳能发电效率的影响,并通过实验和模拟为光伏电站的设计提供有益的指导和参考。
我们相信,通过合理的布局优化,将能够进一步提高光伏发电系统的性能,推动可再生能源的可持续发展。
一、光伏组件布局对太阳能发电效率的影响随着全球对清洁能源的需求日益增加,太阳能发电作为一种环保、可再生的能源形式,受到了越来越多的重视。
光伏组件作为太阳能发电系统的核心部分,其布局方式对整个系统的发电效率有着重要影响。
在光伏电站的设计和建设过程中,合理的组件布局可以最大限度地利用太阳能资源,提高光能转换效率,降低能源成本,增加发电量。
1、光伏组件的布局涉及到多个因素,包括组件之间的间距、角度、朝向等。
首先,适当的组件间距可以减少阴影遮挡,避免不必要的能量损失。
合理的间距设计可以确保光伏组件之间不会互相遮挡,从而充分利用太阳辐射,使每个组件都能发挥最大发电能力。
其次,组件布置的角度和朝向对太阳能的捕获和利用效率也有重要影响。
根据所在地的纬度、季节和太阳高度角等因素,调整光伏组件的倾斜角度和朝向,可以最大程度地使组件正对着太阳,从而最大限度地吸收太阳辐射,提高发电效率。
光伏组件横向竖向发电量对比分析

光伏组件竖向、横向布置不同,发电量差异大!在光伏电站的设计中,光伏组件的放置有两种设计方案:方案一:竖向布置,如下图。
图1光伏组件竖向布置的光伏电站方案二:横向布置,如下图。
图2光伏组件横向布置的光伏电站根据我的了解,目前竖向布置的电站会更多一些。
主要原因是,竖向布置安装方便,横向布置时,最上面的一块安装比较费劲!这就影响了施工进度。
经过与业内的多位专家探讨之后,发现一横、一竖,对发电量的影响太大了!逐步说明这个问题。
1、前后遮挡造成电站电量损失在电站设计过程中,阵列间距是非常重要的一个参数。
由于土地面积的限制,阵列间距一般只考虑冬至日6个小时不遮挡。
然而,6小时之外,太阳能辐照度仍是足以发电的。
从本人获得的光伏电站的实测数据来看,大部分电站冬至日的发电时间在7小时以上,在西部甚至可以达到9个小时。
(一个简单的判别方法,日照时数是辐射强度≥120W/m2的时间长度,而辐射强度≥50W/m2时,逆变器就可以向电网供电。
因此,当12月份的日照时数在6h以上时,发电时间肯定大于6h。
)结论1:我们为了减少占地面积,在早晚前后光伏方阵必然会有遮挡,造成发电量损失。
2、光伏组件都有旁路二极管热斑效应:一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量,被遮蔽的太阳电池组件此时会发热,这就是热斑效应。
这种效应能严重的破坏太阳电池。
有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。
为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。
因此,旁路二极管的作用就是:当电池片出现热斑效应不能发电时,起旁路作用,让其它电池片所产生的电流从二极管流出,使太阳能发电系统继续发电,不会因为某一片电池片出现问题而产生发电电路不通的情况。
上一张60片的光伏组件的电路结构图。
图3光伏组件的电路结构图结论2:光伏组件式需要旁路二极管的。
210970783_基于风洞试验光伏组件体型系数及遮挡效应研究

- 84 -工 程 技 术0 引言随着光伏电站规模的不断扩大,光伏板被风吹毁时有发生,特别是对安装在屋顶上的分布式光伏电站,其安全性尤为重要。
风荷载是反映结构性能和安全的重要指标,合理的风荷载取值对光伏电站的安全和降低工程造价具有重要的意义。
GB 50797—2012《光伏发电站设计规范》[1]或NB/T 10115—2018《光伏支架结构设计规程》[2]给出的体型系数取值主要针对地面的光伏组件,并未考虑屋顶女儿墙对分布式光伏组件遮挡效应的影响,使风荷载取值过于保守。
国内学者对光伏组件风荷载体型系数进行了一定的研究。
宫博等[3-4]通过风洞试验对单片光伏板的风压系数及体型系数进行研究,并采用频域方法计算光伏板的风振位移响应;李伟等[5]利用fluent 计算平台,模拟了各种风向角工况下光伏阵列的风荷载分布规律。
高亮等[6]通过组件倾角、高度、间距等因素对光伏板风荷载体型系数进行研究,推导出风荷载计算公式。
楼文娟[7]通过风洞试验和数值模拟对超大型光伏阵列风荷载进行研究,对各区域的体型系数取值提出建议。
现有文献及规范对光伏组件风荷载特性研究主要聚焦在地面上安装的光伏发电系统,对安装在屋顶上的光伏阵列风荷载体型系数取值仍不明确。
该文以三行十八列的光伏阵列为研究对象,通过有无女儿墙和最不利风向角多种工况,对光伏阵列风荷载体型系数和遮挡效应进行分析。
通过研究太阳能光伏组件单元体型系数随位置的变化规律,为光伏支架和基础设计提供参考。
1 风洞试验介绍1.1 试验模型及工况在浙江大学ZD-1风洞实验室开展光伏组件风洞试验,该风洞是一座单回流闭口立式钢结构和混凝土结构相结合的混合结构单试验段边界层风洞。
试验风场类别为A 类风场,试验风为8 m/s。
每块光伏组件正反两面对应布置5×4的风压测点,双面共计40个测点。
风洞试验模型如图1所示。
风洞试验采集仪的采样频率为312.5 Hz,每个测点采样样本总长为31 250个数据(约为100 s),采样时间间隔约为3.2 ms。
天合组件实验报告(3篇)

第1篇一、实验目的本次实验旨在对天合光能210R至尊580W系列光伏组件的性能进行评估,包括其功率输出、效率、耐久性以及在不同环境条件下的表现。
通过实验数据,验证该系列组件在光伏发电领域的应用潜力和优势。
二、实验材料与设备1. 实验材料:- 天合光能210R至尊580W系列光伏组件- 测试架- 阴影遮光板- 温度计- 湿度计- 数据采集器2. 实验设备:- 光伏组件测试仪- 恒温恒湿箱- 风机- 蓄电池- 负载电阻三、实验方法1. 功率输出测试:- 将光伏组件安装在测试架上,确保其水平并垂直于地面。
- 使用光伏组件测试仪对组件进行功率输出测试,记录在标准光照条件(AM1.5G,1000W/m²)下的功率输出。
- 改变光照强度,记录不同光照条件下的功率输出。
2. 效率测试:- 测试组件在标准光照条件下的效率,包括开路电压、短路电流、最大功率点电压和电流。
- 通过公式计算组件的效率。
3. 耐久性测试:- 将组件置于恒温恒湿箱中,模拟不同温度和湿度条件,观察组件性能变化。
- 使用风机模拟不同风速条件,观察组件性能变化。
4. 电池特性测试:- 将组件与蓄电池连接,测试其在不同负载下的电压和电流输出。
- 记录电池放电曲线,分析电池特性。
四、实验结果与分析1. 功率输出测试:- 在标准光照条件下,组件最大功率输出为580W,符合产品规格。
- 随着光照强度的增加,组件功率输出随之增加,符合光伏组件的基本特性。
2. 效率测试:- 在标准光照条件下,组件效率为22.5%,略高于产品规格。
- 在不同光照条件下,组件效率有所下降,但仍保持在21%以上。
3. 耐久性测试:- 在高温和湿度条件下,组件性能略有下降,但在恢复到标准环境后,性能恢复至正常水平。
- 在模拟风速条件下,组件性能基本稳定,未出现明显下降。
4. 电池特性测试:- 在不同负载下,组件电压和电流输出稳定,电池放电曲线平滑。
- 组件与蓄电池连接后,电池放电性能良好。
工程中阴影遮挡对光伏系统的影响分析

工程中阴影遮挡对光伏系统的影响分析谭红廊坊新奥智能能源有限公司摘要:本文依托上海市崇明岛陈家镇国际生态社区屋顶光伏项目的实际工程案例,利用PV-SYST软件,建立模型,模拟建筑物对光伏系统的遮挡,动态分析两种不同太阳能阵列的阴影遮挡情况。
关键词:建模;阴影遮挡;光伏系统发电1概述1.1影响光伏系统发电的因素在光伏项目建设的前期工作中需要根据当地的气象数据、装机容量、方阵布局、系统拓扑结构、系统效率等要素来评估电站建成后第一年的理论发电量,评估方法可依靠PVSYST模拟软件通过参数设置、损耗参数修正、阴影计算等内容来模拟,当然这个结果一般只作为参考,因一些不确定的影响因素实际的发电量很难进行准确量化,因此和理论仍会存在一定的差异。
阴影遮挡是经常遇到的一个问题,对光伏的发电特性占主导地位。
在光伏系统的设计中,可能出现的阴影可分为随机阴影和系统阴影两种。
随机阴影产生的原因、时间和部位都不确定。
系统阴影是由于周围比较固定的建筑、树木以及建筑本身的女儿墙、冷却塔、楼梯问、水箱等遮挡而造成的。
采用阵列式布置的光伏系统,其前排电池可能在后排电池上产生的阴影也属于系统阴影。
处于阴影范围的电池不能接收直射辐射,但可以接收散射辐射,虽然散射辐射也可以使太阳能电池工作,但两类辐射的强度差异仍然造成输出功率的明显不周。
消除随机阴影的影响主要依靠光伏系统的监控子系统。
对于系统阴影,则应注意回避在一定直射辐射强度之上时诸遮挡物的阴影区。
1.2项目概述在进行光伏电站设计的时候,我们经常会遇到拟安装光伏组件的地方有阴影遮挡的问题,一般情况下,我们所说的阴影是旁边的建筑物造成的。
本文讨论的光伏项目位于上海市崇明岛陈家镇国际生态社区屋顶,该项目总装机容量为200KW,选用发电效率较高的晶硅太阳能电池TSM-300型光伏组件665块。
在建筑物屋顶的采光天窗两侧铺设太阳能光伏组件,属于周围固定建筑物引起的遮挡,为系统阴影。
由于PVSYST光伏系统设计软件具备较完善的阵列局部阴影分析功能,本文通过上海市崇明岛陈家镇国际生态社区屋顶光伏项目的实际工程案例,根据两种不同的光伏阵列铺设方式,运用该软件对建筑物引起的阴影遮挡进行初步的比较分析。
组件阴影遮挡情况说明

组件阴影遮挡情况说明
为了保证系统安装容量及系统的发电量,通过多次实地测量,初步确定组件布置方案。
根据《光伏发电站设计规范(GB 50797-2012)》的规定,要保证全年9:00-15:00时间段光伏组件阵列前后左右互不遮挡。
为了尽可能的减少阴影造成的发电量损失,西面最外侧组件距离墙体的距离约为4米。
通过现场实地观测(观测日期2019年10月31日),具体阴影遮挡情况如下:
通过实地观测,可以看出14:08左右,由于受最南侧松树及墙角的影响,最南侧一排组件,西边第一块组件开始有阴影遮挡;14:15左右,土坡上开始有树尖引起的阴影遮挡;在下午3点左右西侧松树造成的阴影遮挡,影响每排组件的最西边两块组件。
下午3点20左右,西侧的生产厂房开始造成阴影。
为保证下午3点之前不造成阴影遮挡,建议对西侧松树树尖进行修理,降低松树的高度即可。
由于下午3点之后,太阳辐照强度开始快速下降,之后阴影造成的发电量损失影响较小。
具体如下分析:
通过实际发电数据分析,当天下午3点之后的发电量占全天总发电量的10%-
15%左右,而阴影遮挡之后可以造成当前时间段10%-20%的发电量损失,故可以推算出3点之后如有阴影遮挡,大概发电量损失约占全天发电量1%-3%。
光伏组件的热斑效应和试验方法

光伏电池是将太阳光辐射能量直接转换成电能的器件。
单个硅晶体光伏电池能得到的最大电压约为0.6V,最大电流约为30mA/cm2。
因此光伏电池很少单个使用,而是串联或并联起来,以获得所期望的电压或电流。
光伏组件正是由多个光伏电池连接和封装而成的产品,是光伏发电系统中电池方阵的基本单元。
为了达到较高转换效率,光伏组件中的单体电池须具有相似的特性。
在实际使用过程中,可能出现电池裂纹或不匹配、内部连接失效、局部被遮光或弄脏等情况,导致一个或一组电池的特性与整体不谐调。
失谐电池不但对组件输出没有贡献,而且会消耗其他电池产生的能量,导致局部过热。
这种现象称为热斑效应。
当组件被短路时,内部功率消耗最大,热斑效应也最严重。
一、热斑效应原理当然,并不是所有的电池都可以通过调整遮光比例达到最佳阻抗匹配。
完全遮光情况下,不同特性的Y电池I-V曲线如图3所示。
斜率越低,表明电池的并联电阻越大。
考虑(S-1)个电池串的最大输出功率点所限定的“试验界限”,根据I-V曲线与“试验界限”的交点,把电池分为电压限制型(A类)和电流限制型(B类)。
A类电池并联电阻较大,可以通过减少遮光面积,达到最佳阻抗比配;B类电池的并联电阻较小,完全遮光已是Y电池消耗功率最大的状态。
二、热斑耐久试验热斑效应可导致电池局部烧毁形成暗斑、焊点熔化、封装材料老化等永久性损坏,是影响光伏组件输出功率和使用寿命的重要因素,甚至可能导致安全隐患。
因此,IEC 61215:2005《地面用晶体硅光伏组件设计鉴定和定性》专门设置了热斑耐久试验,以考核光伏组件经受热斑加热效应的能力。
热斑耐久试验过程包括最坏情况的确定、5小时热斑试验以及试验后的诊断测量,分为以下4个步骤。
1、选定最差电池由于受到检测时间和成本的限制,热斑耐久试验不能针对组件中的每一个电池进行。
因此,正式试验之前先比较和选择热斑加热效应最显著的电池。
具体方法是,在一定光照条件下,将组件短路,依次遮挡每个电池,被遮光后稳定温度最高者为最差电池片。
IEC61215:2016-2地面光伏组件-测试内容 中文

地面光伏组件——设计鉴定和定型第二部分:测试步骤1.范围和目的此国际标准系列基于IEC 规定了地面用光伏组件设计鉴定和定型的要求,该组件是在IEC 60721-2-1中所定义的一般室外气候条件下长期使用。
这部分IEC 61215适用于全部地面光伏组件材料,例如晶体硅光伏组件和薄膜组件。
本标准不适用于带聚光器的组件,尽管此项标准能可能用于低聚光组件(1-3个太阳光)。
对于低聚光组件,全部测试使用的电流,电压和功率等级均满足设计要求。
本试验程序的目的是在尽可能合理的经费和时间内确定组件的电性能和热性能,表明组件能够在规定的气候条件下长期使用。
通过此试验的组件的实际使用寿命期望值将取决于组件的设计以及它们使用的环境和条件。
2.引用标准下列标准所包含的条文,通过在本标准中全部或部分引用而构成了本标准的条文。
标注日期的标准,仅引用的版本有效。
未标注日期的标准,可使用最新版本标准(包括任何修订)。
IEC 60050,国际电工词汇(网址:)IEC 60068-1 环境测试-第一部分:总述和指导IEC 60068-2-21 环境测试-第2-21部分测试-测试U:引出端强度以及整体支架安装设备IEC 60068-2-78 环境测试-第2-78部分:测试Cab:湿热,稳定状态IEC 60721-2-1 环境状态的分类-第2-1部分:在自然条件下的环境状态-温度和湿度 IEC 60891 光伏设备-温度和辐照度的修正来测量I-V特性的步骤IEC 60904-1 光伏设备-第一部分:光电流-电压特性的测量IEC 60904-2 光伏设备-第二部分:光伏标准设备的要求IEC 60904-3 光伏设备-第三部分:地面光伏设备和标准光谱福照度数据的测量原则 IEC 60904-7 光伏设备-第七部分:光伏设备光谱错配修正的测量IEC 60904-8 光伏设备-第八部分:光伏设备光谱响应率的测量IEC 60904-9 光伏设备-第九部分:太阳光模拟器操作要求IEC 60904-10 光伏设备-第十部分:线性测试的方法IEC 61215-1 地面光伏组件-设计鉴定和定型-第一部分:测试要求IEC TS 61836 太阳光伏系统能量-术语,定义和符号IEC 61853-2 光伏组件测试结果和能量等级-第二部分:光谱响应,入射角,和组件操作测试温度IEC 62790 光伏组件的接线盒-安全要求和测试ISO 868 塑料和橡胶-通过硬度测验器测量压痕硬度(回跳硬度)3.术语和定义本文件的目的,术语和定义由IEC 60050和IEC TS 61836中给出,其他如下。