材料力学刘鸿文第5版第四章 弯曲内力
《材料力学》课程讲解课件第四章弯曲内力

x
∴ 弯曲构件内力:Fs -剪力,M -弯矩。
若研究对象取m - m 截面的右段:
Y 0, Fs F FBY 0.
mC 0,
FBY
FBY (l x) F(a x) M 0.
Fs
F (l a) l
,
M F (l a) x 18 l
1. 弯矩:M 构件受弯时,横截面上
存在垂直于截面的内力偶矩 (弯矩)。
由 Fy 0, 得到:
A
FAy
a
Mc
C FSc
FAy q 2a FSc 0
FSc FAy q 2a qa
(剪力FS 的实际方向与假设方
向相反,为负剪力)
由 MC 0, 得到:
MC FAy 2a 2qa a M1 0
MC FAy 2a 2qa a M1 2qa2
F
M (x) FAY x M A
F(x L) (0 x l)
x
③根据方程画内力图
FL
x
41
§4-4 剪力方程和弯矩方程 剪力图和弯矩图
q
例题4-2
悬臂梁受均布载荷作用。
x
试写出剪力和弯矩方程,并
q
l
x
FS
M x
FS x
画出剪力图和弯矩图。
解:任选一截面x ,写出
剪力和弯矩方程
ql FS x=qx
变形特点——杆轴线由直线变为一条平面的曲线。
P
主要产生弯曲变形的杆--- 梁。
q
M
二、平面弯曲的概念:
RA
NB
3
F1
q
F2
M
纵向对称面
平面弯曲 受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在
材料力学(刘鸿文)第04章01、弯曲内力

3、平面弯曲(对称弯曲):若梁上所有外力都作用在纵向对称面内,梁 变形后轴线形成的曲线也在该平面内的弯曲。
q F
纵向对称面
FA
FB
4、非对称弯曲:若梁不具有纵向对称面,或梁有纵向对称面上但外力 并不作用在纵向对称面内的弯曲。
第4第 章弯曲内力 四 章
弯 曲 内 力 王明禄
2015年3月18日星期三
本节重点—你准备好了吗?
1、剪力与弯矩计算与正负判断;
2、弯矩方程的求解;
第一节 弯曲的概念和实例
1、弯曲:在垂直于杆轴线的平衡力系的作用下,杆的轴线在变形后成 为曲线的变形形式。
2、梁:主要承受垂直于轴线荷载的杆件
第二节 受弯杆的简化
研究对象:等截面的直梁,且外力作用在梁对称面内的平面力系
梁的计算简图:梁轴线代替梁,将荷载和支座加到轴线上。
1.梁的支座简化(平面力系): a)滑动铰支座 b)固定铰支座 c)固定端
FRx
MR
FR
FRx
FRy
FRy
2.作用在梁上的荷载可分为: (a)集中荷载
F1
集中力
M
集中力偶
C
FS
F
y
0 : FS FB F 0 FS F FB FA
M
C
0 : M FB x F l x 0 M FB x F l x FA x
二、平面弯曲梁横截面上的内力: ①剪力—平行于横截面的内力,符号:,正负号规定: 使梁有左上右下错动趋势的剪力为正,反之为负 (左上右下为正:截面以左上为正,截面以右下为正); FS
材料力学04弯曲内力(刘鸿文第5版) [兼容模式]
![材料力学04弯曲内力(刘鸿文第5版) [兼容模式]](https://img.taocdn.com/s3/m/2bd913263169a4517723a396.png)
第章弯曲内力44.1 弯曲的概念和实例414.2 受弯杆件的简化4.3 剪力和弯矩(重点)4.4 剪力方程和弯矩方程剪力图和弯矩图剪力方程弯矩方程剪力弯矩4.5 载荷集度、剪力和弯矩间的关系(重点)454.6 平面曲杆的弯曲内力(了解)4.1 弯曲的概念和实例弯曲的概念一、弯曲的概念1. 工程实例起重机大梁火车轮轴阳台挑梁火轮2. 弯曲的概念FB⑴受力特点:杆件所受外力均垂直于轴线。
⑵变形特点:杆件轴线由直线变为曲线。
梁——以弯曲为主要变形的杆件。
二、平面弯曲的概念课本四、五、六章中所讨论的弯曲限制在如下范围内:1. 杆的横截面至少有一根对称轴。
1杆的横截面至少有一根对称轴——一个纵向对称面对称轴对称轴对称轴对称轴2.杆件所受外力均垂直于轴线,且位于梁的纵向对称面内。
——受力特点3.杆件轴线由直线变为一条纵向对称面内的曲线。
3杆件轴线由直线变为条纵向对称面内的曲线——变形特点一、梁的简化 4.2 受弯杆件的简化对于平面弯曲的直梁,外力为作用在纵对称面内的平面力系故在计算简图中通常用梁的来代表梁、梁的简化力系,故在计算简图中通常用梁的轴线来代表梁。
二、支座的简化1. 固定铰支座A AAA 2. 滚动铰支座F AyFAx3AAAF Ay 3. 固定端支座AM A F AyF Ax三、载荷的简化1FM q1.集中载荷F 2. 分布载荷q e3. 集中力偶M e 四、静定梁的基本形式F RF R静的本式1. 悬臂梁一端固定端支座一端自由AB2一端固定铰支座2.简支梁端固定铰一端滚动铰支座3. 外伸梁简支梁的一端或两端伸出支座外l⑴起重机大梁简化实例:AF⑶阳台挑梁⑵火车轮轴qBA4.3剪力和弯矩一、梁的内力试求图示简支梁m -m 截面mFF 的内力。
mx1∑l AB解:1. 求支反力研究整体,受力如图。
Fa0 0xAx F F ==,00A =−=A B0 BAy M Fa F l ∑,0 0yAy B FF F F =+−=∑,F AyF AxF BF A x 以后可省略不求Ay Fa F =()B F l a F −=llA Fa F =()B F l a F −=l2. 截面法求内力截面左段受力如图lmmS 0 0yA FF F =−=∑,研究m -m 截面左段,受力如图。
材料力学(刘鸿文_第5版)

第十四章 习题
2012年11月5日星期一
常州大学机械学院力学教研室
第五章 习题
第六章 弯曲变形
§6-1、工程中的弯曲变形问题 §6-2、挠曲线的微分方程 §6-3、用积分法求弯曲变形 6.1和连续性条件 6.3(a) Page 196 §6-4、用叠加法求弯曲变形 6.9(a) 6.10(b) Page 200 §6-5、简单超静定梁 Page 208 6.36 §6-6、提高弯曲刚度的一些措施
第十三章 习题
§13-1、概述 §13-2、杆件应变能的计算104 Page §13-3、应变能的普遍表达式 §13-4、互等定理 Page 106 §13-5、卡氏定理 Page 107 §13-6、虚功原理 §13-7、单位载荷法 Page 109 莫尔积分 §13-8、计算莫尔积分的图乘法 Page 109
第一章 绪论
§1-1、材料力学的任务 §1-2、变形固体的基本假设 §1-3、外力及其分类 §1-4、内力、截面法和应力的概念 §1-5、变形与应变 §1-6、杆件变形的基本形式
第一章 绪论习题
Page 11 1.2 Page 11 1.4 1.6
第二章 拉伸、压缩与剪切 第二章 习题
§2-1、轴向拉伸与压缩的概念和实例 §2-2、轴向拉伸与压缩时横截面上的内力和应力 2.2 Page 53 2.1(a)(c) §2-3、直杆轴向拉伸或压缩时斜截面上的应力 Page 54 2.6 §2-4、材料拉伸时的力学性能 §2-5、材料压缩时的力学性能 §2-7、失效、安全因数与强度计算54 2.7 Page 54 2.12 Page §2-8、轴向拉伸或压缩时的变形 58 2.19 Page 61 2.30 Page
附录 I 平面图形的几何性质
《材料力学》第4章弯曲内力 课后答案

0 ; FS−C
= b F, a+b
M
− C
=
ba a+b
F
FS+C
=
−a a+b
F
,
M
+ C
=
ba a+b
F ; FSB
=
−A a+b
F
,MB
=
0
d解
图(d1), ∑ Fy
=
0,F
=
1 2
ql
,
∑
M
A
= 0,M A
=
− 3 ql 2 8
仿题 a 截面法得
FSA
=
1 2
ql
,MA
=
−
3 8
ql
2
;
FS−C
FS (x) = −F
⎜⎛ 0 < x < l ⎟⎞
⎝
2⎠
M (x) = −Fx ⎜⎛0 ≤ x ≤ l ⎟⎞
⎝
2⎠
FS (x) = F
⎜⎛ l < x < l ⎟⎞
⎝2
⎠
45
M (x) =
FA x +
FB
⎜⎛ ⎝
x
−
l 2
⎟⎞ ⎠
,
FB
= 2F
M (x) = Fx − Fl ⎜⎛ l ≤ x ≤ l ⎟⎞
( ) 解
∑MB
=
0 , FA
⋅l
+
ql 2
×
3l 4
− ql 2
=
0
, FA
=
5 ql 8
↑
( ) ∑ Fy
= 0 , FB
刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-弯曲内力(圣才出品)

圣才电子书 十万种考研考证电子书、题库视频学习平台
图 4-3
2.载荷的简化 (1)集中载荷:载荷的作用范围远小于杆件轴向尺寸。 (2)分布载荷:沿轴向连续分布在杆件上的载荷,常用 q 表示单位长度上的载荷,称 为载荷集度,如风力、水力、重力。常用的有均布载荷,线性分布载荷。 (3)集中力偶
3.静定梁的基本形式 为方便梁的求解,通常将梁简化,以便得到计算简图。当梁上支反力数目与静力平衡方 程式的数目相同时,即支反力通过静力平衡方程即可完全确定时,称之为静定梁,以下三种 形式的梁均为静定梁。 (1)简支梁:一端为固定铰支座,一端为可动铰支座,如图 4-4 所示。
图 4-4 (2)外伸梁:一端或两端向外伸出的简支梁,如图 4-5 所示。
4.2 课后习题详解
5 / 49
圣才电子书 十万种考研考证电子书、题库视频学习平台
4.1 试求图 4-8 所示各梁中截面 1-1,2-2,3-3 上的剪力和弯矩,这些截面无限接近 于截面 C 或截面 D。设 F,q,a 均为已知。
图 4-8 解:(a)①1-1 截面:沿该截面断开,对右部分进行受力分析,根据平衡条件:
④若
FS
(x)
=
0 ,则
dM (x) dx
=
FS
(x)
=
0
。此时该截面上弯矩有极值(极大值或极小
值)。此外,弯矩的极值还可能出现在集中力和集中力偶作用处截面。
3.外力与内力图的内在联系
(1)斜率规律
剪力图在任一截面处的斜率值等于该截面外力分布载荷的集度值,同理弯矩图图在任一
截面处的斜率值等于该截面剪力值:
圣才电子书
十万种考研考证电子书、题库视频学习平台
材料力学-刘鸿文-第五版(二)

§4-2 梁的计算简图
梁的支承条件与载荷情况一般都比较复杂,为了便于
分析计算,应进行必要的简化,抽象出计算简图。
1. 构件本身的简化 通常取梁的轴线来代替梁。 2. 载荷简化 作用于梁上的载荷(包括支座反力)可简化为三种类型: 集中力、集中力偶和分布载荷。
3. 支座简化
2013-8-12 3
截面 C 处
2013-8-12
Q max
m , l
| M |max
mb . l
10
例4-3. 悬臂梁受均布载荷,求作 QM 图 解: (1)求支反力 S mA = 0 MA = ql2 / 2. SY = 0 RA = ql.
(2)求内力:
Q( x) qx, qx2 M ( x) , 2 0 x a.
R A O P 极轴,q表示截面m–m的位置。
q
x
B
M (q ) Px P(R Rcosq ) PR(1 cosq ) (0 q )
Q(q ) P Psinq (0 q ) 1
2013-8-12
N (q ) P Pcosq (0 q ) 2
受弯之杆曰梁. 例:大梁、车辆轴、镗刀杆等. P112.
研究步骤:外力 内力 应力. 暂时限于: 1. 梁有一个对称面或横截面有一个对称轴. 2. 所有外力都作用于对称面内.
平面弯曲
Planar bending
所有外力都作用于同一平面内, 梁弯曲后的轴线为平面曲线, 且 该平面曲线所在的平面与外力所在的平面重合.
A
2) 变形谐调条件 compatibility condition 横截面上只有正应力. 依平面假设, 有 ( y )dq - dq y (b) . dq 3) 物理关系 constitutive relation y 依单向受力假设, 有 E E . (c)
材料力学第四章知识点总结(刘鸿文主编)

跨长——梁在两支座间的长度。
材料力学
a A l FAX A FAY
§4-3
剪力和弯矩
[例] 已知:如图,F,a,l。
一、弯曲内力的确定(截面法):
F B 求:距A端 x 处截面上内力。 解:①求外力(支座反力)
F
B FBY
∑ X = 0, ∴ F = 0 ∑ M = 0 , F l − Fa = 0 ∑Y = 0 , F − F + F = 0
¾ 利用特殊点的内力值(截面法)来定值; ¾ 利用剪力、弯矩与分布荷载间积分关系定值。 积分关系:
dFs ( x ) Q = q (x ) dx ∴ ∫ dFs ( x ) = ∫ q ( x ) dx
Q1 x1 Q2 x2
dM ( x ) Q = Fs ( x ) dx ∴∫
M2 M1
dM ( x ) = ∫ Fs ( x ) dx
特点:铰链传力不传力偶矩,与铰 相连的两横截面上,M = 0 , FS 不 一定为零。
A FA C
qa 2
a a
MB
B FB
a
a
FS 0.5qa
O
0.5qa
2 M qa /8 O
x 1.5qa qa2 x 2qa 2 2.5qa 2
0.5qa 2
材料力学
1、刚架
§4-6 平面刚架和曲杆的内力图
用刚性接头连接的杆系结构。 刚性接头的特点: z 约束-限制相连杆端截面间的相对线位移与角位移。 z 受力-既可传力,也可传递力偶矩。 平面刚架:轴线由同一平面折线组成的刚架。 特点:刚架各杆横截面上的内力有:Fs、M、FN 。
M(x)+d M(x)
dM ( x ) = Fs ( x) dx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Internal forces in beams)
§4-4 剪力、弯矩与分布荷载集度间 的关系(Relationships between load,shear force,and bending moment)
§4-5 叠加原理作弯矩图 (Drawing bending-moment diagram by superposition method) §4-6 平面刚架和曲杆的内力图 (Internal diagrams for frame members & curved bars)
M
B
0
E
c b l
F
d
FRAl F1 ( l a ) F2 ( l b) 0
FRA F1 ( l a ) F2 ( l b) l FRB
F1a F2b l
(Internal forces in beams)
记 E 截面处的剪力为 FSE 和弯矩 ME ,且假设 FSE 和弯矩ME 的指向和转 向均为正值.
C A b a c D B
FRA
FRB
F2=F
解: (1)求支座反力
FRA FRB F 60kN
(Internal forces in beams)
(2)计算C 横截面上的剪力FSC和弯矩 MC 看左侧
FSC F1 60kN M C F 1 b 6 .0kN m FSD FRA F 1 60 60 0
(Internal forces in beams)
二、基本概念(Basic concepts)
1.弯曲变形(Deflection) (1) 受力特征
外力(包括力偶)的作用线垂直于杆轴线.
(2) 变形特征 变形前为直线的轴线,变形后成为曲线. 2.梁 (Beam) 以弯曲变形为主的杆件 3.平面弯曲(Plane bending) 作用于梁上的所有外力都在纵向对称面内,弯曲变形后的轴
(Internal forces in beams)
§4-1 基本概念及工程 (Basic concepts and example problems)
一、 工程实例(Example problem)
(Internal forces in beams)
工程实例(Example problem)
(Internal forces in beams)
(Internal forces in beams)
FRA
A E c a
F1
C
F2
D F d
FSF
B MF F d
FRB
B
b
l
计算F点横截面处的剪力FSF 和弯矩MF .
F 0, M 0,
y F
FSF FRB 0 M F FRB d 0
解得:
FSF FRB
Chapter 4 Internal forces in beams
(Internal forces in beams)
第四章 弯曲内力 (Internal forces in beams)
§4-1 基本概念及工程实例 (Basic concepts and example problems)
§4-2 梁的剪力和弯矩(Shear- force and bending- moment in beams) §4-3剪力方程和弯矩方程· 剪力图和弯矩图 (Shear-force& bending-moment equations ; shear-force & bending- moment diagrams)
右侧梁段 逆时针转向的外力偶引起正值的弯矩
顺时针转向的外力偶引起负值的弯矩
(Internal forces in beams)
例题3 轴的计例算简图如图所示,已知 F1 = F2 = F = 60kN, a = 230mm,b = 100 mm 和c = 1000 mm. 求 C 、D 点处横截面 上的剪力和弯矩. F1=F
集中力(concentrated force)
(2)载荷类型
集中力偶(concentrated moment) 分布载荷(distributed load)
(3) 支座的类型
A A
A
可动铰支座
(roller support)
A
FRA
(Internal forces in beams)
固定铰支座 (pin support)
例题5 如图所示的悬臂梁在自由端受集中荷载 F 作用, 试作此梁
的剪力图和弯矩图.
A
F
-
M F FRB d +
(Internal forces in beams)
三、计算规律 (Simple method for calculating shearforce and bending-moment)
1.剪力 (Shear force)
FS
Fi i 1 左(右)
n
左侧 梁段:向上的外力引起正值的剪力 向下的外力引起负值的剪力 右侧 梁段:向下的外力引起正值的剪力 向上的外力引起负值的剪力
线是一条在该纵向对称面内的平面曲线,这种弯曲称为平面弯曲.
(Internal forces in beams)
纵向对称面
F1
F2
梁的轴线
A B
FRB
FRA
梁变形后的轴线与 外力在同一平面内
(Internal forces in beams)
4.梁的力学模型的简化(Representing a real structure by an idealized model) (1) 梁的简化 通常取梁的轴线来代替梁。
FRA A a F1 C F2 D B
E
c
F
d
Fy 0 ,
FRA FS E 0
b l
M E 0,
M E FRA c 0
FRA
A E
FSE
解得 FSE FRA
ME
M E FRA c
c
(Internal forces in beams)
FRA
A
c
FSE
E
外伸梁
(erhanging beam)
悬臂梁
(cantilever beam)
(Internal forces in beams)
起重机大梁为No.25a工字钢,如图所示,梁长L=10m,单位长度
的重量为38.105kg/m,起吊重物的重量为100kN,试求起重机大梁
的计算简图.
F =100kN q =38.105kN/m
(Internal forces in beams)
2.弯矩(Bending moment)
n m
M
Fi ai M k i 1 左(右) k 1 左(右)
不论在截面的左侧或右侧向上的外力均将引起正值的弯矩,
而向下的外力则引起负值的弯矩. 左侧梁段 顺时针转向的外力偶引起正值的弯矩 逆时针转向的外力偶引起负值的弯矩
1.剪力符号 (Sign convention for shear force) 使dx 微段有左端向上而右端向下的相对 错动时,横截面m-m上的剪力为正.或使dx微段 有顺时针转动趋势的剪力为正. 使dx微段有左端向下而右端向上的相对 错动时,横截面m-m上的剪力为负.或使dx微 段有逆时针转动趋势的剪力为负.
A
FRAy
A A
FRAx A
固定端(clamped support or fixed end)
FRy FRx M
(Internal forces in beams)
5.静定梁的基本形式 (Basic types of statically determinate beams)
简支梁
(simply supported beam)
(3)计算D横截面上的剪力FSD 和弯矩 MD 看左侧
M D FRA (c a ) F 1 c Fa 13.8kN m
F1=F
C
FRA
A
b a c
FRB
D
B
F2=F
(Internal forces in beams)
例题4 求图示梁中指定截面上的剪力和弯矩. 解: 10kN· m FRA (1)求支座反力 2
(Internal forces in beams)
§4-2 梁的剪力和弯矩 (Shear- force and bending- moment in beams)
一、内力计算(Calculating internal force)
[举例] 已知 如图,F,a,l. 求距A端x处截面上内力. 解: 求支座反力
-
m
m
(受压)
(Internal forces in beams)
例题2 图示梁的计算简图.已知 F1、F2,且 F2 > F1 ,尺寸a、b、c和
l 亦均为已知.试求梁在 E 、 F 点处横截面处的剪力和弯矩.
解: (1)求梁的支反力 FRA 和 FRB
M
A
0
FRA
A
a
F1
C
F2
D
FRB
B
FRB l F1a F2b 0
FRA=4kN FRB=-4kN
A 1 1m C
FRB
B
(2)求1-1截面的内力
FS 1 FSC左 FRA 4kN
2.5m
M 1 M C左 FRA 1 4kN m
(3)求2-2截面的内力
M
1 C
FS 2 FSC右 FRB ( 4) 4kN