材料力学性能 第四章1
材料力学 第四章 扭转

60 外力偶每秒所做的功即为输入的功率
P 1000= Me 2 n
60
明德行远 交通天下
材料力学
P─kW
M e 9549
P n
n─r/min
M e ─N m
或
P─PS(马力)
Me
7024
P
n
n─r/min M e ─N m
明德行远 交通天下
材料力学
二、扭矩及扭矩图
D
2 d
2
2
2
d
32
(D4
d
4)
D4 (1 4 ) 0.1D4 (1 4 )
32
d
( Dd )
O
D
明德行远 交通天下
材料力学
④ 应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻,
结构轻便,应用广泛。
明德行远 交通天下
材料力学
⑤ 确定最大剪应力:
由
Ip—极惯性矩,纯几何量,无物理意义。
Ip A 2dA
单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,只是Ip值不同。
明德行远 交通天下
材料力学
对实心圆截面:
D
I p A 2dA
2 2 2 d
0
D4 0.1D4
32
d
O
D
对于空心圆截面:
d
I p A 2dA
A
B
M1 =9.55 103
P1 n
9.55
103
500 300
N
m=15.9kN
m
M 2 =M3 =9.55103
第四章第一讲材料科学与工程基础(顾宜

第四章第一讲材料科学与工程基础(顾宜材料的性能materials property性能决定用途。
本章对材料的力学性能、热性能、电学、磁学、光学性能以及耐腐蚀性,复合材料及纳米材料的性能进行阐述。
4-1 固体材料的力学性能Mechanical Properties of Solid Materials结构件:力学性能为主非结构件:力学性能为辅,但必不可少mechanical property of materials stress and strain Elastic deformation Modulus Viscoelasticity permanent deformation Strength Fracture4-1-1 材料的力学状态mechanical states of matrials 1.金属的力学状态A 晶态结构,B 较高的弹性模量和强度,C 受力开始为弹性形变,接着一段塑性形变,然后断裂,总变形能很大, D 具有较高的熔点。
某些金属合金 A 呈非晶态合金, B 具有很高的硬度和强度,C 延伸率很低而并不脆。
D 温度升高到玻璃化转变温度以上,粘度明显降低,发生晶化而失去非晶态结构。
2. 无机非金属的力学状态A 玻璃相熔点低,热稳定性差,强度低。
B 气相(气孔)的存在导致陶瓷的弹性模量和机械强度降低。
C 陶瓷材料也存在玻璃化转变温度Tg。
D 绝大多数无机材料在弹性变形后立即发生脆性断裂,总弹性应变能很小。
陶瓷材料的力学特征高模量高强度高硬度低延伸率3. 聚合物的力学状态(1) 非晶态聚合物的三种力学状态①玻璃态②高弹态③粘流态(2) 结晶聚合物的力学状态A 结晶聚合物常存在一定的非晶部分,也有玻璃化转变。
B 在T g 以上模量下降不大Tm、TfC 在T m 以上模量迅速下降D 聚合物分子量很大,T mT f ,则在T m 与T f 之间将出现高弹态。
E 分子量较低,T m T f , 则熔融之后即转变成粘流态,玻璃化温度(Tg)是非晶态塑料使用的上限温度是橡胶使用的下限温度熔点(Tm)是结晶聚合物使用的上限温度4-1-2 应力和应变stress-strain If a load is static or changes relatively slowly with a time and is applied uniformly over a cross section or surface of a member, the mechanical behavior may be ascertained by a simple stress-strain test. These are mostly commonly conducted for materials at room temperature.4-1-2 应力和应变(stress and strain)应力:单位面积上的内力,其值与外加的力相等。
材料的力学性能第4章 材料的断裂

RAL 4.1 断裂分类与宏观断口特征
4.1.2 断口的宏观特征
光滑圆柱拉伸试样的宏观韧性断口呈杯锥形,由纤维区、放射区 和剪切唇三个区域组成,这就是断口特征的三要素。
77-10
RAL 4.1 断裂分类与宏观断口特征
4.1.2 断口的宏观特征
韧性断裂的宏观断口同时具有上述三个区域,而脆性断口纤维区 很小,几乎没有剪切唇。
根据裂纹扩展路径进行的一种分类。 穿晶断裂裂纹穿过晶内,沿晶断裂裂纹沿晶界扩展。
77-4
RAL 4.1 断裂分类与宏观断口特征
4.1.1 断裂的分类 ✓ 穿晶断裂与沿晶断裂
从宏观上看,穿晶断裂可以是韧性断裂(如室温下的穿晶断裂),也 可以是脆性断裂(低温下的穿晶断裂),而沿晶断裂则多数是脆性断裂。
2 )C0
2
c - 扩展的临界应力 ;
c - 碳化物的表面能 ;
E - 弹性模量;
- 泊松系数;
C0 - 碳化物厚度
77-32
RAL
4.3 脆性断裂
4.3.2 脆性断裂的微观特征 (1)解理断裂
解理断裂 准解理 沿晶断裂
解理断裂是沿特定界面发生的脆性穿晶断裂,其微观特征应该是 极平坦的镜面。实际的解理断裂断口是由许多大致相当于晶粒大小的解 理面集合而成的,这种大致以晶粒大小为单位的解理面称为解理刻面。 在解理刻面内部只从一个解理面发生解理破坏实际上是很少的。在多数 情况下,裂纹要跨越若干相互平行的而且位于不同高度的解理面,从而 在同一刻面内部出现解理台阶和河流花样。
脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明 显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形。一般规定 光滑拉伸试样的断面收缩率小于5%者为脆性断裂,该材料即称为脆性材料; 反之,大于5%者则为韧性材料。
材料力学性能第四章—金属的断裂韧度

K Ⅰ 、 K Ⅱ 、K Ⅲ
表4-1 几种裂纹的KI表达式
K I Y a
a:1/2裂纹长度 Y——裂纹形状系数(无量纲量)
裂尖应力分量除了决定其 KI 3 x cos (1 sin sin ) 位置外,还与KI有关。 2 2 2 2 r
对于某确定的点,其应力 y K I cos (1 sin sin 3 ) 2 2 2 2 r 分量由KI决定,KI↑,则 z ( x y )(平面应变) 应力场各应力分量也↑。
对应的力学性能指标——断裂韧度
断裂强度 1922,Griffith,首先在强度与裂纹尺度建立关系
格雷菲斯断裂强度(从吸收能量的角度考虑)
弹性能降低足以满足裂纹表面能的增加和塑性变形能从
而导致材料脆性断裂。
断裂韧度(从阻止裂纹扩展的角度考虑) 得到相应的K判据。
用应力应变分析方法,考虑裂纹尖端附近的应力场强度,
超高强度钢, D6AC,1400MPa
断裂力学
低应力脆断与断裂力学
机件设计,σ<σs/n,不考虑裂纹 出现低应力脆断 → 宏观裂纹存在→应力集中 断裂——裂纹扩展引起,研究裂纹体的扩展
主要内容
线弹性条件下的金属断裂韧度☆ 金属断裂韧度的测试 影响断裂韧度的因素
断裂K判据应用案例☆
弹塑性条件下金属断裂韧度的基本概念
2
x y
2
(
x y
2
3 ( 1 2 )
裂纹尖端附近任一点P(r,θ)的主应力:
1 2
材料力学性能 课后解答

第一章1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。
⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。
2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b (抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率)4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。
答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。
5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。
试分析这两种故障的本质及改变措施。
答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。
材料力学性能课后习题答案

材料力学性能课后答案(整理版)1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。
外在因素:温度、应变速率和应力状态。
2、试述韧性断裂与脆性断裂的区别。
材料力学性能_第四章

4.2 裂纹体的应力分析
线弹性断裂力学研究对象是带有裂纹的线弹性体。严格 讲,只有玻璃和陶瓷这样的脆性材料才算理想的弹性体。 为使线弹性断裂力学能够用于金属,必须符合金属材料 裂纹尖端的塑性区尺寸与裂纹长度相比是一很小的数值条 件。 在此条件下,裂纹尖端塑性区尺寸很小,可近似看成理 想弹性体。 在线弹性断裂力学中有以Griffith-Orowan为基础的能量 理论和Irwin为应力强度因子理论。
小,消耗的变形 功也最小,所以
平面应力
裂纹就容易沿x方
向扩展。
4.5 裂纹尖端的塑性区
为了说明塑性区对裂纹在x方向扩展的影响。
当 =0(在裂纹面上),其塑性区宽度为:
r0 (r ) 0
1 KI 2 ( ) 2 s
K1 y r ,0 2r
4.5 裂纹尖端的塑性区
由各应力分量公式也可直接求出在裂纹线上的
切应力平行于裂纹 面,而且与裂纹线 垂直,裂纹沿裂纹 面平行滑开扩展。
III型(撕开型)断裂
切应力平行作用于 裂纹面,而且与裂 纹线平行,裂纹沿 裂纹面撕开扩展。
4.2 裂纹体的应力分析
4.2.2 I型裂纹尖端的应力场
裂纹扩展是从其尖端开始向前进行的,所以应该分析裂纹 尖端的应力、应变状态,建立裂纹扩展的力学条件。
4.2 裂纹体的应力分析
4.2.1 裂纹体的基本断裂类型
在断裂力学分析中,为了研究上的方便,通常 把复杂的断裂形式看成是三种基本裂纹体断裂的组 合。 I 型(张开型)断裂 (最常见 )
拉应力垂直于裂纹面扩展面,裂纹沿作用力方向 张开,沿裂纹面扩展。
4.2 裂纹体的应力分析
II 型(滑开型)断裂
根据应力强度因子和断裂韧性的相对大小,可以建 立裂纹失稳扩展脆断的断裂K判据,平面应变断裂最 危险,通常以KIC为标准建立,即: 应用:用以估算裂纹体的最大承载能力、允许的裂 纹尺寸,以及材料的选择、工艺优化等。
第四章材料力学性能

K C / H a
H E
0.4
0.129 c a
3 2
第四章 金属的断裂韧度 §3影响断裂韧性KIC的因素 一、内因(材料因素) 1)晶粒尺寸 晶粒愈细,晶界总面积愈大, 裂纹顶端附近从产生一定尺寸 的塑性区到裂纹扩展所消耗 的 能量也愈大,因此KIC 也愈高。 2)合金化 固溶使得KIC 降低; 弥散分布的第二相数量越多, 其间距越小, KIC 越低; 第二相沿晶界网状分布,晶界 损伤, KIC 降低;
KⅠ越大,则应力场各应力分量 也越大。 Ⅰ型裂纹应力场强度因子的一般 表达式为:
KⅠ Y a
§1线弹性条件下的金属断裂韧度 对于Ⅱ、Ⅲ型裂纹
KⅡ Y a
KⅢ Y a
Y 裂纹形状系数, 一般Y =l-2
当σ和a单独或共同增大时,KI 和裂纹尖端的各应力分量随之增 大,当KI增大到临界值时,也就是 说裂纹尖端足够大的范围内应力 达到了材料的断裂强度,裂纹便 失稳扩展而导致断裂。
1 2 3 2 5 2
W
2 7
W
9 2
§2断裂韧性KⅠC的测试 H、E、a、c分别是材料的维氏硬 度、弹性模量、压痕对角线与裂 纹 的长度; 在正方形压痕的四角,沿辐射方 Ф为约束因子( Ф ≈3)。 通过压痕法求一系列的c,a值, 向出现 裂纹。 按上式的通式 若选用荷载适当,在压痕对角线 0.4 V K / H a H E u c a C 方向的抛面接近半圆形。一般要 求c≥2.5a。 以lna和lnc为变量进行拟合,求 根据压痕断裂力学理论,处于平 得u、V值; 衡状态的压痕裂纹尖端的残余应 应用所得u、V值于待测的同类材 力强度因子在数值上等于材料的 料上,再测a、c值,并利用已知 断裂韧性。 的H、E,可求得KIC 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
断裂力学的基本原理;
线弹性下断裂韧度的意义、测试原理和影响因素。
前
言
6、裂纹类型(摘自P80附表)
工 艺 裂 纹 及 使 用 裂 纹
第四章
金属的断裂韧度
§4.1 线弹性条件下的金属断裂韧度
§4.2 断裂韧度KⅠc的测试
§4.3 影响断裂韧度KⅠc的因素
§4.4 断裂K判据应用案例 §4.5 弹塑性条件下金属断裂韧度的基本概念
等的方法。 二、外力功(Work of the External Force) 固体在外力作用下变形,引起力作用点沿力作用方向位移, 外力因此而做功,则成为外力功。
三、变形能(Strain Energy)
在弹性范围内,弹性体在外力作用下发生变形而在体内积蓄 的能量,称为弹性变形能,简称变形能。
拉伸的弹性应变能(补充)
三、裂纹扩展能量释放率GⅠ及断裂韧度GⅠc
对于具有穿透裂纹的无限大板(平面应变):
§4.2
断裂韧度KIC的测试
一、试样的形状、尺寸及制备
§4.2
断裂韧度KIC的测试
一、试样的形状、尺寸及制备
• 由于这些尺寸比塑性区宽度R0大一个数量级,所以可以 保证裂纹尖端是平面应变和小范围屈服状态。 • 试样材料、加工和热处理方法也要和实际工件尽量相同, 试样加工后需要开缺口和预制裂纹。
二、应力场强度因子KⅠ及断裂韧度KⅠc
(一)裂纹尖端应力场(线弹性理论): (1)设有一承受均匀拉应力σ的无限大板(厚薄均可),
含有长为2的I型穿透裂纹。
其尖端附近(r,θ)处应力、应变和位移分量(r«):
二、应力场强度因子KⅠ及断裂韧度KⅠcຫໍສະໝຸດ 在裂纹延长线上, θ=0,则:
在x轴上裂纹尖端的切应力分量为零,拉应力分量最大, 裂纹最易沿x轴方向扩展。 r→0时,应力分量趋近于无穷大,表明裂纹尖端处是奇异点。
§4.1
线弹性条件下的金属断裂韧度
1、线弹性断裂力学: 脆性断裂过程中,
裂纹体各部分的应力和应变处于线弹性阶段,
只有裂纹尖端极小区域处于塑性变形阶段。
2、研究方法:
(1)应力应变分析法: 研究裂纹尖端附近的应力应变场;
提出应力场强度因子及对应的断裂韧度和K判据;
(2)能量分析法: 研究裂纹扩展时系统能量的变化; 提出能量释放率及对应的断裂韧度和G判据。
二、应力场强度因子KⅠ及断裂韧度KⅠc
(二)应力场强度因子KⅠ:
裂纹尖端任意一点的应力、应变和位移分量: 取决于该点的坐标(r,θ)、材料的弹性模数E
以及参量KⅠ。
K
(无限大板I型穿透裂纹)
应力场强度因子KⅠ间接反映了裂纹尖端区域应力场的强度。
二、应力场强度因子KⅠ及断裂韧度KⅠc
二、应力场强度因子KⅠ及断裂韧度KⅠc
1、裂纹尖端塑性区: 裂纹尖端附近的σ≥σs→塑性变形→存在裂纹尖端塑性区。
2、塑性区的边界方程
3、在x轴上,θ=0,塑性区的宽度r0为:
4、修正后塑性区的宽度R0为:
二、应力场强度因子KⅠ及断裂韧度KⅠc
5、等效裂纹的塑性区修正值ry:
6、KⅠ的修正 (σ/σs≥0.6~0.7): 线弹性断裂力学计算得到σy的分布曲线为ADB; 屈服并应力松弛后σy的分布曲线为CDEF; 若将裂纹顶点由O虚移至O´点, 则在虚拟的裂纹顶点O´以外的弹性应力分布曲线为GEH。 采用等效裂纹长度(+ry)代替实际裂纹长度,即
二、安全校核
三、失效分析
断口分析: 该轴为疲劳断裂,裂纹源在圆角处,形成深度达185mm的疲劳扩展区, 相当于一个αc=185mm的表面环状裂纹. 金相分析: 疲劳裂纹源处的硫化物夹杂级别较高,该处最先形成疲劳裂纹源. 受力分析: 作用到裂纹面上的垂直拉应力为σ=145MPa。 表面环状裂纹为浅长表面半椭圆裂纹, αc=185mm; 拉应力为σ=145MPa
从F-V曲线确定FQ的方法:
§4.2
断裂韧度KIC的测试
§4.2
断裂韧度KIC的测试
三、试样结果的处理
§4.2
断裂韧度KIC的测试
§4.3 影响断裂韧度KIC的因素
一、KIC与常规力学性能指标之间的关系 (一) KIC与强度、塑性间的关系
无论是解理断裂还是韧性断裂, KIC都是强度和塑性的综合性能。
×
四、评价材料脆性
五、材料开发
在材料中设置裂纹扩展过程中的附加能量耗损机制, 或设置裂纹扩展的势垒等,提高断裂韧度。
§4.4
断裂K判据应用案例
§4.5
弹塑性条件下金属断裂韧度的基本概念
高强度钢的塑性区尺寸很小,相对屈服范围也很小, 一般属于小范围屈服,可以用线弹性断裂力学解决问题。 中、低强度钢塑性区较大,相对屈服范围较大, 一般属大范围屈服,甚至整体屈服。
根据弹性理论,修正后释放弹性能:
P2L U E1 2 EA
u
2
补充
驱使裂纹扩展的动力是弹性能的释放率。 把裂纹扩展单位面积时,系统释放的势能的数值, 称为裂纹扩展能量释放率,简称能量释放率或能量率,用G表示。
三、裂纹扩展能量释放率GⅠ及断裂韧度GⅠc
(一)裂纹扩展能量释放率GⅠ: 1、平面应力GⅠ: GⅠ= σ2π/E 2、平面应变GⅠ: GⅠ=(1-ν2)σ2π/E (二)断裂韧度GⅠc和断裂G判据: 1、断裂韧度GⅠc: GⅠ→GⅠc →裂纹失稳扩展而断裂。 表示材料阻止裂纹失稳扩展时单位面积所消耗的能量。 2、裂纹失稳扩展断裂G判据 GⅠ≥ GⅠc
材料力学性能
材料与化工学院
前 言
韧度(韧性)定义: 是材料断裂前吸收塑性变形功和断裂功的能力。 包括静力韧度、冲击韧度、断裂韧度。 (1)静力韧度( ) = (Sk2-σ0.22)/2D (2)冲击韧度或冲击值αKU(αKV): αKU(αKV)=AKU(AKV)/FN 冲击功: GH1-GH2=AK (3)理论断裂强度(理想晶体脆性断裂): σm=(Eγs/a0)1/2 (4)断裂强度的裂纹理论(格里菲斯裂纹理论): (实际断裂强度) σc≈(Eγs/a)1/2
§4.1
线弹性条件下的断裂韧性
一、裂纹扩展的基本形式 二、应力场强度因子KⅠ及断裂韧度KⅠc 三、裂纹扩展能量释放率GⅠ及断裂韧度GⅠc
一、裂纹扩展的基本形式
(根据外加应力的类型和裂纹扩展面的取向关系)
1.张开型(Ⅰ型): 2.滑开型(Ⅱ型): 3.撕开型(Ⅲ型):
拉应力垂直于裂纹面; 切应力平行于裂纹面, 切应力平行于裂纹面, 裂纹沿作用力方向张开, 与裂纹前沿线垂直; 与裂纹线平行; 沿裂纹面张开扩展。 裂纹沿裂纹面平行滑开扩展。 裂纹沿裂纹面撕开扩展。
补充
假定一很宽的单位厚度薄板,板受单向拉伸, 在载荷从零增加至P后将薄板两端固定, 这时外力就不做功了, 两端固定的薄板受载可视为一隔离系统。
2E 如在此板的中心割开一个垂直于应力σ, 长度为2α的贯穿裂纹。 则原来弹性拉紧的平板, 就产生直径为2α的弹性松弛区, 并释放弹性能,被松弛区的体积为πα2。
§4.3 影响断裂韧度KIC的因素
(二) KIC与冲击吸收功AKV之间的关系
由于裂纹和缺口不同,以及加载速率不同,所以KIC和AKV的温度变 化曲线不一样,由KIC确定的韧脆转变温度比AKV的高。
§4.3 影响断裂韧度KIC的因素
二、影响KIC的因素 (一)材料成分、组织对KIC的影响 1. 化学成分的影响 2. 基体相结构和晶粒大小的影响
对拉杆进行逐步加载(认为无动能变化) 利用能量守恒原理: U(弹性应变能)=W(外力所做的功)
1 W P L U E 2
UE
P
L
PL EA
P2L 2 EA
单位体积内的应变能----比能u(单位:J/m3)
P
P
1 P L U 1 2 u V AL 2
ΔL
2 E 2 u 2E 2
前 言
缺口的第一个效应: 缺口造成应力应变集中。 缺口的第二个效应: 应力改为两向或三向拉伸。
缺口的第三个效应: 缺口使塑性材料得到“强化”。
前 言
1、传统的力学强度理论(1920s前): 材料连续、均匀和各向同性的; 断裂是瞬时发生的。 断裂:σ>σs 脆性、韧性断裂
2、现代的力学强度理论(1920s后): 材料存在裂纹(裂纹体); σ<σs时就断裂 ;
§4.2
断裂韧度KIC的测试
二、测试方法
§4.2
断裂韧度KIC的测试
由于材料性能及试样尺寸不同,
F-V曲线有三种类型:
1. 材料较脆、试样尺寸足够大
时,F-V曲线为III型
2. 材料韧性较好或试样尺寸较 小时,F-V曲线为I型 3. 材料韧性或试样尺寸居中时, F-V曲线为II型
§4.2
断裂韧度KIC的测试
3. 杂质和第二相的影响
4. 显微组织的影响 (二)影响KIC的外界因素 1. 温度 2. 应变速率
§4.4
第一是设计:
断裂K判据应用案例
零、断裂韧度在工程中的应用: 包括结构设计和材料选择. 根据材料的断裂韧度,计算结构的许用应力, 针对要求的承载量,设计结构的形状和尺寸; 根据结构的承载要求、可能出现的裂纹类型,
计算最大应力强度因子,依据材料的断裂韧度进行选材。
第二是校核: 根据结构要求的承载能力、材料的断裂韧度, 计算材料的临界裂纹尺寸,
与实测的裂纹尺寸相比较,
校核结构的安全性,判断材料的脆断倾向。 第三是材料开发: 可以根据对断裂韧度的影响因素, 有针对性地设计材料的组织结构,开发新材料。
一、材料选择
2、平面应力断裂韧度Kc
σ↑(或,和) ↑→KⅠ↑ σ↑→σc (或) ↑→ c 裂纹失稳扩展→断裂 →KⅠ=Kc ***Kc>KⅠc
二、应力场强度因子KⅠ及断裂韧度KⅠc