图像压缩方法综述
图片压缩方法

图片压缩方法图片压缩是在数字图像处理领域中常见的一种技术,通过对图像的像素信息进行处理,可以减小图像的文件大小,并保持图像的视觉质量。
图片压缩可以有效地减少存储空间的占用和传输带宽的消耗。
在本文中,将介绍几种常见的图片压缩方法。
第一种常见的图片压缩方法是无损压缩。
无损压缩是指在压缩过程中不丢失图像的任何信息,通过减少冗余数据和编码优化来实现图片大小的减少。
无损压缩方法有很多,其中一种常见的是GIF格式的压缩。
GIF(Graphics Interchange Format)格式是一种使用LZW (Lempel-Ziv-Welch)算法进行压缩的图像格式。
GIF格式可以压缩图像的颜色表和图像数据,从而减小文件的大小。
除了GIF格式,PNG (Portable Network Graphics)格式也是一种常见的无损压缩格式。
PNG格式使用DEFLATE算法进行压缩,可以有效地减小文件大小。
第二种常见的图片压缩方法是有损压缩。
有损压缩是通过牺牲部分图像信息来减小文件的大小,从而实现图片压缩的目的。
有损压缩方法可以更进一步地减小文件大小,但也会导致图像的质量损失。
JPEG(Joint Photographic Experts Group)格式是一种常见的有损压缩格式,广泛应用于照片和图像的压缩。
JPEG格式通过对图像的颜色信息和空间频率进行分析和量化,可以有效地减小文件大小。
另外,JPEG格式还可以通过调整压缩比例来控制图像的质量和文件大小。
除了无损压缩和有损压缩,还有一些其他的图片压缩方法。
例如,基于向量的压缩方法可以将图像转换为矢量图形,通过描述图像的几何形状和颜色信息来实现压缩。
此外,还有一些基于特定领域知识的图片压缩方法,例如医学图像压缩和卫星图像压缩等。
这些方法都在特定的应用领域中得到了广泛的应用。
总之,图片压缩是一种常见的数字图像处理技术,可以通过无损压缩和有损压缩等方法来减小图像的文件大小。
图像压缩方法综述

* 2006-06-09收到,2006-10-10改回**安晓东,女,1967年生,北京理工大学博士研究生,研究方向:计算机应用。
文章编号:1003-5850(2006)12-0024-03图 像 压 缩 方 法 综 述A Summarization of Image Compression Methodology安晓东1,2 陈 静3(1北京理工大学 北京 100081) (2山西省人事考试中心 太原 030006) (3中北大学 太原 030051)【摘 要】图像压缩是图像处理的重要组成部分,随着科学技术的不断进步,压缩方法也在不断涌现。
论述了各个常用图像压缩方法的算法及应用情况,着重研究了预测编码和分形压缩方法。
有机结合所介绍的压缩算法能解决很多图像处理问题,介绍的图像压缩方法也可供研究人员参考。
【关键词】图像压缩,预测编码,分形压缩中图分类号:T P 391.41文献标识码:AABSTRACT Image co mpr ession is t he impor tant part of im age pr ocessing.Wit h the dev elo pm ent of science and technolog y,mor e and mo re compr essing m et hods have come for th .T his paper discusses many com mon imag e compr ession alg or ithms and it's a pplica-tio n,fo cuses o n the pr edictive enco ding and fr act al co mpressio n methods.It can so lv e lots of image pr o cessing pro blems by these methods,w hich may g iv e a hand to other resear cher s.KEYWORDS imag e co mpression ,pr edictiv e co ding ,fr actal compressio n 众所周知,在开发多媒体应用系统时,遇到的最大障碍是对多媒体信息巨大数据量所进行的采集、存储、处理和传输。
图像压缩文献综述

《数字图像处理和模式识别》期末大作业题目:图像压缩文献综述班级:数字媒体学院计算机技术姓名:徐德荣学号:6141603020图像压缩文献综述1 图像压缩编码概述图像信息的压缩编码,是根据图像信号固有的统计特性和人类的视觉特性进行的。
图像信号固有的统计特性表明,其相邻像素之间、相邻行之间或者相邻帧之间,都存在较强的相关特性。
利用某种编码方法在一定程度上消除这些相关特性,便可实现图像信息的数据压缩。
这个过程也就是尽量去除与图像质量无关的冗余信息,属于信息保持(保持有效信息)的压缩编码。
另一种考虑是,图像最终是由人眼或经过观测仪器来观看或判决的。
根据视觉的生理学、心理学特性,可以允许图像经过压缩编码后所得的复原图像有一定的图像失真,只要这种失真是一般观众难以察觉的。
这种压缩编码属于信息非保持编码,因为它使图像信息有一定程度的丢失。
由此可见,图像压缩编码的研究重点是:怎样利用图像固有的统计特性,以及视觉的生理学、心理学特性,或者记录设备和显示设备等的特性,经过压缩编码从原始图像信息中提取有效信息,尽量去除那些无关的冗余信息,并且在保证质量(能从这些数据中恢复出与原图像差不多的图像)的前提下,用最低的数码率或最少的存储容量,实现各类图像的数字存储、数字记录或数字传输。
2 图像编码研究现状图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天己经有五十多年的历史。
五十年代和六十年代的图像压缩技术由于受到电路技术等的制约,仅仅停留在预测编码、亚采样以及内插复原等技术的研究,还很不成熟。
1969年在美国召开的第一届“图像编码会议”标志着图像编码作为一门独立的学科诞生了。
到了70年代和80年代,图像压缩技术的主要成果体现在变换编码技术上;矢量量化编码技术也有较大发展,有关于图像编码技术的科技成果和科技论文与日俱增,图像编码技术开始走向繁荣。
自80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,人们开始突破传统的信源编码理论,例如不再假设图像是平稳的随机场。
数字图像处理中的图像压缩算法

数字图像处理中的图像压缩算法随着科技和计算机技术的不断发展,数字图像处理成为了一个非常重要的领域。
数字图像处理技术广泛应用于各个领域,如图像储存、通信、医疗、工业等等。
在大量的图像处理中,图像压缩算法是非常关键的一环。
本文将介绍一些数字图像处理中的图像压缩算法。
一、无损压缩算法1. RLE 算法RLE(Run Length Encoding)算法是常见的图像无损压缩算法之一,它的主要思想是将连续的像素值用一个计数器表示。
比如将连续的“aaaa”压缩成“a4”。
RLE 算法相对比较简单,适用于连续的重复像素值较多的图像,如文字图片等。
2. Huffman 编码算法Huffman 编码算法是一种将可变长编码应用于数据压缩的算法,主要用于图像无损压缩中。
它的主要思想是将频率较高的字符用较短的编码,频率较低的字符用较长的编码。
将编码表储存在压缩文件中,解压时按照编码表进行解码。
Huffman 编码算法是一种效率较高的无损压缩算法。
二、有损压缩算法1. JPEG 压缩算法JPEG(Joint Photographic Experts Group)压缩算法是一种在有损压缩中广泛应用的算法。
该算法主要是针对连续色块和变化缓慢的图像进行处理。
JPEG 压缩算法的主要思想是采用离散余弦变换(DCT)将图像分割成小块,然后对每个小块进行频率分析,去除一些高频信息,再进行量化,最后采用 Huffman 编码进行压缩。
2. MPEG 压缩算法MPEG(Moving Picture Experts Group)压缩算法是一种针对视频压缩的算法,它主要是对视频序列中不同帧之间的冗余信息进行压缩。
该算法采用了空间域和时间域的压缩技术,包括分块变换编码和运动补偿等方法。
在分块变换编码中,采用离散余弦变换或小波变换来对视频序列进行压缩,再通过运动估计和补偿等方法,去除冗余信息。
三、总结数字图像处理中的图像压缩算法有很多种,其中无损压缩算法和有损压缩算法各有特点。
图像处理中的图像压缩与恢复方法

图像处理中的图像压缩与恢复方法图像压缩是在图像处理领域中非常重要的一项技术。
在计算机视觉、数字通信以及存储等领域中,图像压缩可以大幅减少图像数据的大小,从而提高数据传输速度和存储效率。
同时,图像恢复则是在压缩后的图像还原以及修复中起到重要作用的技术。
在本文中,我们将介绍一些常见的图像压缩与恢复方法。
一. 图像压缩方法1. 无损压缩方法无损压缩方法是一种能够通过压缩图像数据,但不会导致图像失真的技术。
其中,最常见的无损压缩方法为预测编码和霍夫曼编码。
预测编码基于图像中像素之间的冗余性,通过预测后续像素的值,然后用预测值与实际值之间的差值进行编码。
其中,最著名的预测编码算法包括差分编码和游程编码。
霍夫曼编码是一种变长编码方式,利用出现频率较高的像素值分配较短的编码,而较低频率的像素值分配较长的编码。
通过统计每个像素值出现的频率,并根据频率构建霍夫曼树,可以实现对图像数据进行无损压缩。
2. 有损压缩方法有损压缩方法是一种能够通过压缩图像数据,但会导致图像失真的技术。
其中,最常见的有损压缩方法为离散余弦变换(DCT)和小波变换。
DCT是一种将图像从空间域转换到频域的方法,它能够将图像中的冗余信息集中在低频分量中,而将高频细节信息消除或减少。
通过对DCT系数进行量化和编码,可以实现对图像数据进行有损压缩。
小波变换是一种将图像分解成多个不同分辨率的频带的方法,通过对每个不同分辨率的频带进行量化和编码,可以实现对图像数据的有损压缩。
与DCT相比,小波变换可以更好地保留图像的局部细节。
二. 图像恢复方法1. 重建滤波器方法重建滤波器方法是在压缩图像恢复时常用的一种技术。
它是通过在图像的压缩域对被量化或编码的数据进行逆操作,将压缩后的图像数据恢复到原始图像。
常用的重建滤波器方法包括最近邻插值、双线性插值和双立方插值。
最近邻插值是一种简单的插值方法,它通过选择离目标位置最近的像素值来进行插值。
虽然该方法计算速度较快,但会导致图像失真。
图像处理中的数字图像压缩

图像处理中的数字图像压缩数字图像压缩在图像处理中扮演着重要的角色。
数字图像压缩可以将图像数据压缩成更小的文件大小,更方便存储和传输。
数字图像压缩分为有损和无损两种不同的技术,本文将详细讨论这两种数字图像压缩方法。
一、无损压缩无损压缩是数字图像压缩中最常用的技术之一。
无损压缩的优点是可以保持图片原始数据不被丢失。
这种方法适用于那些需要保持原始画质的图片,例如医学成像或者编程图像等。
无损压缩的主要压缩方法有两种:一种是基于预测的压缩,包括差异编码和改进变长编码。
另一种是基于统计的压缩,其中包括算术编码和霍夫曼编码。
差异编码是一种通过计算相邻像素之间的差异来达到压缩目的的方法。
它依赖于下一像素的值可以预测当前像素值的特性。
改进的变长编码是一种使用预定代码值来表示图像中频繁出现的值的压缩技术。
它使用变长的代码,使得频繁出现的值使用较短的代码,而不常用的值则使用较长的代码。
算术编码是一种基于统计的方法,可以将每个像素映射到一个不同的值范围中,并且将像素序列编码成一个单一的数值。
霍夫曼编码也是一种基于统计的压缩方法。
它通过短代码表示出现频率高的像素值,而使用长代码表示出现频率较低的像素值。
二、有损压缩有损压缩是另一种数字图像压缩技术。
有损压缩方法有一些潜在的缺点,因为它们主要取决于压缩率和压缩的精度。
在应用有损压缩技术之前,必须确定压缩强度,以确保压缩后的图像满足预期的需求。
有损压缩方法可以采用不同的算法来实现。
这些算法包括JPEG、MPEG和MP3等不同的格式。
JPEG是最常用的有损压缩算法,它在压缩时可以通过调整每个像素所占用的位数来减小图像的大小。
MPEG是用于压缩视频信号的一种压缩技术。
它可以将视频信号分成多个I帧、P帧和B帧。
I帧代表一个完整的图像,而P帧和B帧则包含更少的信息。
在以后的编码中,视频编码器使用压缩技术将视频序列压缩成较小的大小。
MP3是一种广泛使用的音频压缩技术,它使用了同样的技术,包括频域转换、量化和哈夫曼编码。
计算机图像处理中的图像压缩与图像恢复算法

计算机图像处理中的图像压缩与图像恢复算法图像压缩和图像恢复算法是计算机图像处理领域中非常重要的技术,它们可以对图像进行有效的压缩和恢复,实现图像数据在存储、传输和显示过程中的高效利用。
本文将介绍图像压缩与图像恢复算法的基本原理和常用方法。
一、图像压缩算法图像压缩算法是通过去除冗余信息和减少图像数据量来实现图像压缩的。
常见的图像压缩算法主要包括无损压缩和有损压缩两种。
1. 无损压缩算法无损压缩算法是指在图像压缩的过程中不丢失原始图像的任何信息,使得压缩后的图像与原始图像完全一致。
常用的无损压缩算法有:(1)Huffman 编码算法:通过构建霍夫曼树将出现频率较高的像素值赋予较短的编码长度,提高编码效率;(2)LZW 压缩算法:通过构建字典表来进行压缩,将图像中重复的像素值用较短的编码表示,进一步减少数据量。
2. 有损压缩算法有损压缩算法是在压缩的过程中有意丢失一定的图像信息,从而实现更高的压缩比。
常用的有损压缩算法有:(1)JPEG 压缩算法:通过离散余弦变换(DCT)将图像转化为频域表示,再利用量化和熵编码等技术对图像数据进行压缩;(2)Fractal 压缩算法:将图像分解为一系列局部细节,并利用自相似性进行压缩。
二、图像恢复算法图像恢复算法是指在图像受到损坏或失真后,通过一系列算法恢复出原始图像的过程。
常见的图像恢复算法主要包括插值算法和去噪算法。
1. 插值算法插值算法是一种用于根据已知图像信息来估计未知像素值的方法。
常见的插值算法有:(1)最近邻插值算法:根据离目标像素最近的已知像素值进行估计;(2)双线性插值算法:利用目标像素周围的已知像素值进行加权平均估计;(3)双三次插值算法:在双线性插值的基础上,通过考虑更多的邻域像素值进行估计。
2. 去噪算法去噪算法可以有效地去除图像中的噪声,恢复出原始图像的清晰度。
常见的去噪算法有:(1)中值滤波算法:利用像素周围邻域像素的中值来估计目标像素值,对于椒盐噪声和脉冲噪声有较好的去除效果;(2)小波去噪算法:利用小波变换将图像分解为不同的频率分量,通过阈值处理来剔除噪声。
图像压缩算法范文

图像压缩算法范文
1.概述
图像压缩是一种数字处理技术,用于减少图像文件的大小,同时保留
其本身的内容和质量。
它通常用于将高分辨率的彩色图像转换成较小文件
以使其在网络上传输或存储更加方便和高效,同时可以减少存储空间开销。
2.图像压缩算法
2.1无损压缩算法
无损压缩算法是一种无损地压缩图像的算法,它可以在压缩前后保持
原始图像的质量。
无损压缩算法主要有 JPEG2000,JPEG-LS 和 Lossless JPEG等,它们都是基于数据变换(如DCT,DWT)和熵编码(如Huffman
编码,Arithmetic编码)的算法。
JPEG2000是最流行的无损压缩算法之一,它采用像素块编码,并通
过DCT和WVT数据变换,实现较好的无损压缩效果,使得图像文件大小可
以大大减小,但是压缩所需要的时间较长,耗费资源。
JPEG-LS是一种非常有效的无损压缩算法,它采用了图像划分,非线
性差分滤波和补偿等技术,使得图像文件大小得到显著的减小,同时可以
保持其原有质量,并且压缩所耗费的时间较短,是一种性价比比较高的图
像压缩算法。
Lossless JPEG 则采取了更多的适应性编码技术,将原图像的熵编码
进行改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像压缩方法综述陈清早(电信科学技术研究院PT1400158)摘要:图像压缩编码技术就是对要处理的图像数据按一定的规则进行变换和组合,从而达到以尽可能少的数据流(代码)来表示尽可能多的数据信息。
由于图像数据量的庞大,在存储、传输、处理时非常困难,因此图像数据的压缩就显得非常重要。
图像压缩分为无损图像压缩和有损图像压缩或者分为变换编码、统计编码。
在这里,我们简单的介绍几种几种图像压缩编码的方法,如:DCT编码、DWT编码、哈夫曼(Huffman)编码和算术编码。
关键字:图像压缩;DCT压缩编码;DWT压缩编码;哈夫曼编码;算术编码1引言在随着计算机与数字通信技术的迅速发展,特别是网络和多媒体技术的兴起,大数据量的图像信息会给存储器的存储容量、通信信道的带宽以及计算机的处理速度增加极大的压力。
为了解决这个问题,必须进行压缩处理。
图像数据之所以能被压缩,就是因为数据中存在着冗余。
图像数据的冗余主要表现为:图像中相邻像素间的相关性引起的空间冗余;图像序列中不同帧之间存在相关性引起的时间冗余;不同彩色平面或频谱带的相关性引起的频谱冗余。
数据压缩的目的就是通过去除这些数据冗余来减少表示数据所需的比特数。
信息时代带来了“信息爆炸”,使数据量大增,无论传输或存储都需要对数据进行有效的压缩。
因此图像数据的压缩就显得非常重要。
在此,我们主要介绍变换编码的DCT编码和DWT编码和统计编码的哈夫曼(Huffman)编码和算术编码。
2变换编码变换编码是将空域中描述的图像数据经过某种正交变换转换到另一个变换域(频率域)中进行描述,变换后的结果是一批变换系数,然后对这些变换系数进行编码处理,从而达到压缩图像数据的目的。
主要的变换编码有DCT编码和DWT编码1.1DCT编码DCT编码属于正交变换编码方式,用于去除图像数据的空间冗余。
变换编码就是将图像光强矩阵(时域信号)变换到系数空间(频域信号)上进行处理的方法。
在空间上具有强相关的信号,反映在频域上是在某些特定的区域内能量常常被集中在一起,或者是系数矩阵的分布具有某些规律。
我们可以利用这些规律在频域上减少量化比特数,达到压缩的目的。
也就是说,图像变换本身并不能压缩数据,但变换后图像大部分能量集中到了少数几个变换系数上,再采用适当的量化和熵编码便可以有效地压缩图像。
量化是对经过DCT变换后的频率系数进行量化,其目的是减小非“0”系数的幅度以及增加“0”值系数的数目,它是图像质量下降的最主要原因。
图像经DCT变换以后,DCT系数之间的相关性就会变小。
而且大部分能量集中在少数的系数上,因此,DCT变换在图像压缩中非常有用,是有损图像压缩国际标准JPEG的核心。
从原理上讲可以对整幅图像进行DCT变换,但由于图像各部位上细节的丰富程度不同,这种整体处理的方式效果不好。
为此,发送者首先将输入图像分解为8*8或16*16块,然后再对每个图像块进行二维DCT变换,接着再对DCT系数进行量化、编码和传输;接收者通过对量化的DCT系数进行解码,并对每个图像块进行的二维DCT反变换。
最后将操作完成后所有的块拼接起来构成一幅单一的图像。
对于一般的图像而言,大多数DCT系数值都接近于0,所以去掉这些系数不会对重建图像的质量产生较大影响。
因此,利用DCT进行图像压缩确实可以节约大量的存储空间。
由于图像可看成二维数据矩阵,所以在图像编码中多采用二维正交变换方式,然而其正交变换的计算量太大,所以在实用中变换编码并不是对整幅图像进行变换和编码,而是将图像分成若干个n×n的子图像分别处理。
这是因为小块图像的变换计算比较容易,而且距离较远的像素之间的相关性比距离较近的像素之间的相关性要小。
实践证明4×4、8×8、16×16适合图像压缩,这是因为:如果子图像尺寸取得太小,虽然计算速度快,实现简单,但压缩能力有限;如果子图像尺寸取得太大,虽然去相关效果好,因为DCT等正弦类变换均渐近最佳化,同时也渐近饱和,由于图像本身的相关性很小,反而使得压缩效果不明显,并且增加了计算的复杂度。
1.2DWT编码小波变换是Fourier变换的改进。
它被认为是继Fourier分析之后的又一有效的时频分析方法。
小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier 变换不能解决的许多困难问题。
在数字信号处理、石油勘探、地震预报、医学断层诊断、编码理论、量子物理及概率论领域中都得到了广泛的应用。
所以,具有深远的研究意义。
在数字图像处理中,需要将连续的小波及其小波变换离散化。
一般计算机实现中使用二进制离散处理,将经过这种离散化的小波及其相应的小波变换成为离散小波变换(Discrete Wavelet Transform),简称DWT。
实际上,离散小波变换是对连续小波变换的尺度、位移按照2的幂次进行离散化得到的,所以也称之为二进制小波变换。
虽然经典的傅里叶变换可以反映出信号的整体内涵,但表现形式往往不够直观,并且噪声会使得信号频谱复杂化。
在信号处理领域一直都是使用一族带通滤波器将信号分解为不同频率分量,即将信号f(x)送到带通滤波器族Hi(x)中。
小波分解的意义就在于能够在不同尺度上对信号进行分解,而且对不同尺度的选择可以根据不同的目标来确定。
对于许多信号,低频成分相当重要,它常常蕴含着信号的特征,而高频成分则给出信号的细节或差别。
人的话音如果去掉高频成分,听起来与以前可能不同,但仍能知道所说的内容;如果去掉足够的低频成分,则听到的是一些没有意义的声音。
在小波分析中经常用到近似与细节。
近似表示信号的高尺度,即低频信息;细节表示信号的高尺度,即高频信息。
因此,原始信号通过两个相互滤波器产生两个信号。
通过不断的分解过程,将近似信号连续分解,就可以将信号分解成许多低分辨率成分。
理论上分解可以无限制的进行下去,但事实上,分解可以进行到细节(高频)只包含单个样本为止。
因此,在实际应用中,一般依据信号的特征或者合适的标准来选择适当的分解层数。
小波分解可以使人们在任意尺度观察信号,只需所采用的小波函数的尺度合适。
小波分解将信号分解为近似分量和细节分量,它们在应用中分别有不同的特点。
比如,对含有噪声的信号,噪声分量的主要能量集中在小波分解的细节分量中,对细节分量做进一步处理,比如阈值处理,可以过滤噪声。
2统计编码统计编码也称为熵编码,它是一类根据信息熵原理进行的信息保持型变字长编码。
编码时对出现概率高的事件(被编码的符号)用短码表示,对出现概率低的事件用长码表示。
在目前图像编码国际标准中,常见的熵编码方法有哈夫曼(Huffman)编码和算术编码。
2.1哈夫曼(Huffman)编码霍夫曼编码(Huffman Coding)是一种编码方式,是一种用于无损数据压缩的熵编码(权编码)算法。
1952年,David A.Huffman在麻省理工攻读博士时所发明的,并发表于《一种构建极小多余编码的方法》(A Method for the Construction of Minimum-Redundancy Codes)一文。
在计算机数据处理中,霍夫曼编码使用变长编码表对源符号(如文件中的一个字母)进行编码,即从下到上的编码方法。
同其他码词长度可变的编码一样,可区别的不同码词的生成是基于不同符号出现的不同概率。
其中变长编码表是通过一种评估来源符号出现机率的方法得到的,出现机率高的字母使用较短的编码,反之出现机率低的则使用较长的编码,这便使编码之后的字符串的平均长度、期望值降低,从而达到无损压缩数据的目的。
哈夫曼编码是哈夫曼树的一个应用。
哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。
所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。
树的带权路径长度记为WPL= (W1*L1+W2*L2+W3*L3+...+Wn*Ln),N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。
可以证明哈夫曼树的WPL是最小的。
哈夫曼编码应用广泛,如JPEG中就应用了哈夫曼编码。
霍夫曼编码的算法步骤如下:初始化,根据符号概率的大小按由大到小顺序对符号进行排序。
把概率最小的两个符号组成一个新符号(节点),即新符号的概率等于这两个符号概率之和。
重复第2步,直到形成一个符号为止(树),其概率最后等于1。
从编码树的根开始回溯到原始的符号,并将每一下分枝赋值为1,上分枝赋值为0。
2.2算术编码是图像压缩的主要算法之一。
是一种无损数据压缩方法,也是一种熵编码的方法。
和其它熵编码方法不同的地方在于,其他的熵编码方法通常是把输入的消息分割为符号,然后对每个符号进行编码,而算术编码是直接把整个输入的消息编码为一个数,一个满足(0.0≤n<1.0)的小数n。
在给定符号集和符号概率的情况下,算术编码可以给出接近最优的编码结果。
使用算术编码的压缩算法通常先要对输入符号的概率进行估计,然后再编码。
这个估计越准,编码结果就越接近最优的结果。
算术编码用到两个基本的参数:符号的概率和它的编码间隔。
信源符号的概率决定压缩编码的效率,也决定编码过程中信源符号的间隔,而这些间隔包含在0到1之间。
编码过程中的间隔决定了符号压缩后的输出。
给定事件序列的算术编码步骤如下:(1)编码器在开始时将“当前间隔”[L,H)设置为[0,1)。
(2)对每一事件,编码器按步骤(a)和(b)进行处理(a)编码器将“当前间隔”分为子间隔,每一个事件一个。
(b)一个子间隔的大小与下一个将出现的事件的概率成比例,编码器选择子间隔对应于下一个确切发生的事件相对应,并使它成为新的“当前间隔”。
(3)最后输出的“当前间隔”的下边界就是该给定事件序列的算术编码。
设Low和High分别表示“当前间隔”的下边界和上边界,CodeRange为编码间隔的长度,LowRange(symbol)和HighRange(symbol)分别代表为了事件symbol分配的初始间隔下边界和上边界。
3总结随着计算机与数字通信技术的迅速发展,特别的是网络和多媒体技术的兴起,图像压缩技术已经为开拓全新的应用领域打下了坚实的基础。
图像压缩技术的压缩方法在更深更广层次的应用成为我们研究的热点。
图像压缩领域的突破对于我们的信息生活和通信事业的发展具有深远的影响。
参考文献(References)[1]RafaelC.Gonzalez,RichardE.Woods,阮秋琦,阮宇智等译.数字图像处理[M].北京:电子工业出版社,2003.[2]夏得深,傅得胜.现代图像处理技术与应用.南京:东南大学出版社,2001,84-85[3]朱秀昌,刘峰,胡栋.数字图像处理与图像通信.北京:北京邮电大学出版社,2002,199-204[4]张海燕,王东木,等.图像压缩技术[J].系统仿真学报,2002,14(7):831-835.[5]T Sikora,B Makai.Shape-adaptive DCT for generic coding of video[J].IEEE Trans.Circuits Syst.Video Technol.,1995,5(1):59–62. [6]P Kauff,K Schuur.Shape-adaptive DCT with block-based DC separ-ation and Delta DC correction[J].IEEE Trans.Circuits Syst.Video Technol.,1998,8(3):237–242.[7]O Egger,P Fleury,T Ebrahimi.Shape-adaptive wavelet transform forzerotree coding[C].Proc.Eur.Workshop Image Analysis and Coding for TV,HDTV and Multimedia Application,Rennes,France,1996:201–208.[8]S Li,W Li.Shape adaptive discrete wavelet transform for coding ar-birarily shaped texture[C].Proc.SPIE VCIP’97,1997,3024:1046–1056.[9]S Li,W Li,et al.Shape adaptive wavelet coding[C].Proc.IEEE Int.Symp.Circuits and Systems ISCAS’98,1998,5:281–284. [10]S Li,W Li.Shape-adaptive discrete wavelet transform for arbitrarilyshaped visual object coding[J].IEEE Trans.Circuits Syst.Video Tec h-nol.,2000,10(5):725–743.[11]M Gilge,T Engelhardt,R Mehlan.Coding of arbitrarily shaped imagesegments based on a generalized orthogonal transform[J].Signal Pr o-cessing:Image Commun.,1989,1(10):153–180.[12]D Taubman.High performance scalable image compression with E-BCOT[J].IEEE Transactions on Image Processing,2000,9(7):1158–1170.[13]M Gilge,T Engelhardt,R Mehlan.Coding of arbitrarily shaped image[14]segments based on a generalized orthogonal transform[J].Signal Pro-cessing:Image Commun.,1989,1(10):153–180.[15]J M Shaprio.Embedded image coding using zerotree of wavelet coeffi-cients[J].IEEE Trans.on Signal Processing,1993,41(12):3445-3462.。