大学结构化学资料
结构化学知识点归纳

2. 光谱项: 2S+1 L ,光谱支项: 2S+1 LJ 。
L:
0
1
2
3
4
5
符号:
S
P
D
F
G
H
3. 谱项能级的高低:Hund 规则:
(1)原子在同一组态时,S 值越大其能量越低;
(2)S 值相同时,L 值越大其能量越低;
(3)S,L 都相同时,电子少于半充满,J 值小能量低;电子多于半充满时,J
值大能量低。
− =2 d2ψ = Eψ 2m dx2
其解为:ψ n (x) =
2 l
sin( nπ l
x),
En
=
n2h2 8ml 2
解的特点:(1)粒子可以存在多种运动状态;(2)能量是量子化的;(3)存 在零点能;(4)没有经典运动轨道,只有概率分布;(5)存在节点,节点越多, 能量越高。以上这些特点是所以量子力学体系都有的特点。
∫ ∫ 自厄算符:满足
ψ
* 2
(
Aˆψ
1
)dτ
=
ψ 2 ( Aˆψ1)*dτ 的算符。
自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正 交。
3. 假设 3:若某一物理量 A 的算符 Aˆ 作用于某一状态函数ψ ,等于某一常数 a 乘
以ψ ,即: Aˆψ = aψ ,那么对ψ 所描述的这个微观体系的状态,物理量 A 具有确
(2)外层电子对内层无屏蔽作用,σ = 0 ;
(3)同一组电子σ = 0.35 (1s 组内电子间的σ = 0.30 );
(4)对于 s,p 电子,相邻内一组的电子对它的屏蔽常数是 0.85;对于 d,f 电
子,相邻内一组的电子对它的屏蔽常数是 1.00;
《结构化学》课件

contents
目录
• 结构化学简介 • 原子结构与性质 • 分子的电子结构与性质 • 晶体结构与性质 • 结构化学实验结构化学的定义
总结词
结构化学是一门研究物质结构与 性质之间关系的科学。
详细描述
结构化学主要研究原子的排列方 式、电子分布和分子间的相互作 用,以揭示物质的基本性质和行 为。
晶体的电导率、热导率等性质取决于其内 部结构,不同晶体在这些方面表现出不同 的特性。
晶体的力学性质
晶体材料的应用
晶体的硬度、韧性等力学性质与其内部原 子排列密切相关,这些性质决定了晶体在 不同工程领域的应用价值。
晶体材料广泛应用于电子、光学、激光、 半导体等领域,如单晶硅、宝石等。了解 晶体的性质是实现这些应用的关键。
分子的选择性
分子的选择性是指分子在化学反应中对反应物的选择性和对产物的选择性。选择性强的分 子可以在特定条件下优先与某些反应物发生反应,产生特定的产物。
04
晶体结构与性质
晶体结构的基础知识
晶体定义与分类
晶体是由原子、分子或离子在空 间按一定规律重复排列形成的固 体物质。根据晶体内部原子、分 子或离子的排列方式,晶体可分 为七大晶系和14种空间点阵。
电子显微镜技术
• 总结词:分辨率和应用 • 电子显微镜技术是一种利用电子显微镜来观察样品的技术。相比光学显微镜,
电子显微镜具有更高的分辨率和更大的放大倍数,因此可以观察更细微的结构 和组分。 • 电子显微镜技术的分辨率一般在0.1~0.2nm左右,远高于光学显微镜的分辨 率(约200nm)。因此,电子显微镜可以观察到更小的晶体结构、病毒、蛋 白质等细微结构。 • 电子显微镜技术的应用范围很广,例如在生物学领域中,可以用于观察细胞、 病毒、蛋白质等生物样品的结构和形态;在环境科学领域中,可以用于观察污 染物的分布和形态;在材料科学领域中,可以用于观察金属、陶瓷、高分子等 材料的表面和断口形貌等。
结构化学复习资料 第一部分 知识点(1)

结构化学复习资料该复习资料大概分为2个部分吧,第一部分着重于每一章比较重要的知识点(第四章开始),并稍加补充和拓展;第二部分主要是一些习题。
刚开始学结构化学的时候感觉学起来云里雾里的,不过后来多做题目,找到了一些规律,这对理解结构化学的内容有一定的好处,也比较好上手吧。
还有一个重要的点就是同学们可以多参考下课外书,毕竟个人感觉光靠结构化学基础这本书可能会遇到许多问题,或者说许多时候看不懂的东西没有加以解释,结果很容易就会一个不懂接着下一个不懂的点这样子。
所以课外书显得挺重要的。
推荐一下一些参考资料吧☺1.徐光宪先生写的《物质结构》和麦松威先生写的《高等无机结构化学》,这两本书可以说是结构化学的进阶版,讲的很详细,许多课本上的问题都可以在这些书上找到答案。
2.陈慧兰编写的《高等无机化学》,这本书里对于配合物结构和性质部分讲的挺详细的,比如姜泰勒效应,晶体场是怎么裂分的等等,有兴趣的同学可以看一下。
3.结构化学基础第四版的习题答案。
这个大家都懂得☺。
里面提供了几乎所有课后习题的答案,这个对大家都很有帮助。
另外,每一章前面都附带了该章的内容提要,这在复习的时候可以当作大纲来使用,效果也是挺好的。
4.课件。
老师给的课件可以帮助大家从书里大段大段的文字里找出重点的内容。
另外提供了南开大学孙宏伟教授的结构化学课件以及一些习题和考试题,孙教授主页上还有视频课程可以看,大家有空的时候也可以看看视频复习一下。
5.数据库。
很多时候不是光看书就能解决的问题可以通过查找数据库得到答案,特别是知网上有很多关于结构化学的内容,有很多老师在上面发表了对于一些习题的简单解决方法,这对于解题来讲很有帮助。
数据库在这里也包括了百度文库,豆丁网等。
这些共享性的资料库可以说是一个习题库,找找题目练练手也是挺好的,虽然题目答案可能有误需要小心辨别。
大概就说这么多,下面进入正题。
可能在输入过程中会有错误,大家复习的时候如果发现有冲突还是按照老师的课件和课本为主。
结构化学基础-资料

经典理论无论如何也得不出这种 有极大值的曲线。
实验曲线 黑体辐射能量分布曲线 波长
Planck能量量子化假设
• 1900年,Planck(普朗克)假定,黑体中原子或分子辐射 能量时作简谐振动,只能发射或吸收频率为,能量为h 的整数倍的电磁能,即振动频率为的振子,发射的能量 只能是0h,1h,2h,……,nh(n为整数)。
▲宏观物体可处于任意的能量状态,体系的能量可以为任意的、连续变化的数值;微 观粒子只能处于某些确定的能量状态,能量的改变量不能取任意的、连续的数值, 只能是分立的,即量子化的。
▲测不准关系对宏观物体没有实际意义(h可视为0);微观粒子遵循测不准关系,h 不能看做零。所以可用测不准关系作为宏观物体与微观粒子的判别标准。
1.2量子力学基本假设
• 量子力学:微观体系遵循的规律。主要特点是能量量子化和运动的波性。 是自然界的基本规律之一。主要贡献者有:Schrödinger,Heisenberg, Born & Dirac
• 量子力学由以下5个假设组成,据此可推导出一些重要结论,用以解释 和预测许多实验事实。半个多世纪的实践证明,这些基本假设是正确的。
★光子具有一定的动量:p=mc=h/c=h/
(c=)
★光的强度取决于单位体积内光子的数目(光子密度)。
产生光电效应时的能量守恒:h=w+Ek=h0+mv2/2
(脱出功:电子逸出金属所需的最低能量,w=h0)
大学化学《结构化学-晶体结构》课件

3、各种晶体生长中会自发形成确定的多面体外形。 晶体在生长过程中自发形成晶面,晶面相交成
为晶棱,晶棱聚成顶点,使晶体具有某种多面体外 形的特点。
熔融的玻璃体冷却时,随着温度降低,粘度变 大,流动性变小,逐渐固化成表面光滑的无定形物, 工匠因此可将玻璃体制成各种形状的物品,它与晶 体有棱、有角、有晶面的情况完全不同。 4、晶体有确定的熔点而非晶态没有。
1.平移—点阵:
平移是晶体结构中最基本的对称操作, 可用T来表示
Tmnp=ma+nb+pc
m,n,p为任意整数 即一个平移矢量Tmnp作用在晶体三维点 阵上,使点阵点在a方向平移m单位,b方向 平移n单位,c方向平移p单位后,点阵结构 仍能复原。
⑵ 晶体的对称操作和对称元素受到点阵的制约: 其中旋转轴、螺旋轴和反轴的轴次只能为1、2、3、 4、6等几种;螺旋轴和滑移面中的滑移量也只能符 合点阵结构中平移量的几种数值。
晶体结构中可能存在的对称元素有:对称中心 ();镜面(m);轴次为1、2、3、4、6的旋转轴(1,2, 3,4,6)、螺旋轴(21,31,32,41,42,43,61,62,63,64,65)、反轴
学习要点
⑴晶体结构周期性与点阵。 ⑵ 7 个 晶 系 和 14 种 Bravias 空 间 格 子 。 ⑶晶胞、晶面间距。 ⑷ 晶体(X射线)衍射方向―Laue方程和Bragg方程。 ⑸ 晶体衍射强度与立方晶系的系统消光。
学时安排 学时----- 6学时
第八章.晶体的点阵结构和晶体的性质
晶体
远古时期,人类从宝石开始认识晶体。红 宝石、蓝宝石、祖母绿等晶体以其晶莹剔透 的外观,棱角分明的形状和艳丽的色彩,震 憾人们的感官。名贵的宝石镶嵌在帝王的王 冠上,成为权力与财富的象征,而现代人类 合成出来晶体,如超导晶体YBaCuO、光学 晶体BaB2O4、LiNbO3、磁学晶体NdFeB等 高科技产品,则推动着人类的现代化进程。
结构化学知识点归纳

结构化学知识点归纳结构化学是研究分子及其化学性质的一门学科,旨在理解和预测化学反应、反应机理和分子结构与性质之间的关系。
下面是对结构化学常见的知识点进行的归纳。
1.分子结构与键-原子和分子的电子排布决定了它们的分子结构。
共价键形成时,原子通过共用电子对来相互结合,并形成分子的骨架。
-单、双、三键分别由1、2、3个电子对共享而成。
-极性键是由两个不同电负性的原子之间形成的键,其中一个原子更具电负性,吸引电子密度,形成部分正电荷;而另一个原子带有部分负电荷。
-非极性键是由两个电负性接近的原子相互作用形成的键。
2.分子构象-分子构象是分子在空间中可采取的不同形状和结构。
分子可以通过旋转化学键和自由旋转的化学键来改变其构象。
-分子内部的官能团之间的键角、键长和孤对电子的位置是决定分子构象的重要因素。
3.同分异构体-同分异构体是化学物质的两个或多个形式,它们有相同的分子式但具有不同的结构和化学性质。
-构造异构体是同分异构体的一种类型,它们在分子结构中的连接方式不同。
-空间异构体是同分异构体的另一种类型,它们的分子结构在空间中三维排列不同。
4.分子间力- Van der Waals力是分子间相互作用的一种类型。
它包括范德华力、氢键和离子-离子相互作用。
-范德华力是分子间由于电子的瞬时分布而产生的吸引力。
-氢键是分子间弱的相互作用力,它包括一个原子的氢原子与另一个原子上的具有独立电子对的原子之间的相互作用。
-离子-离子相互作用是由带正电荷的离子与带负电荷的离子之间的相互作用引起的。
5.分子轨道理论-分子轨道理论描述了分子中电子的行为。
它是通过将原子轨道线性组合来形成分子轨道。
-通过具有不同形状和能量的分子轨道,可以解释分子的化学性质,例如化学键的形成和分子的反应性。
-前线分子轨道是分子中电子占据的能量最低的、决定反应性的分子轨道。
以上是结构化学的一些常见知识点的归纳。
结构化学的学习可以更好地理解化学反应和物质的性质,进而应用于有机合成、药物研发和材料科学等领域。
结构化学知识点汇总

结构化学知识点汇总关键信息项:1、原子结构原子轨道电子排布原子光谱2、分子结构化学键类型分子几何构型分子的极性3、晶体结构晶体类型晶格结构晶体的性质11 原子结构111 原子轨道原子轨道是描述原子中电子运动状态的数学函数。
主要包括s 轨道、p 轨道、d 轨道和 f 轨道。
s 轨道呈球形对称,p 轨道呈哑铃形,d 轨道和 f 轨道形状更为复杂。
112 电子排布遵循泡利不相容原理、能量最低原理和洪特规则。
电子按照一定的顺序填充在不同的原子轨道上,形成原子的电子构型。
113 原子光谱原子在不同能级间跃迁时吸收或发射的光子所形成的光谱。
包括发射光谱和吸收光谱,可用于分析原子的结构和成分。
12 分子结构121 化学键类型共价键:通过共用电子对形成,分为σ键和π键。
离子键:由正负离子之间的静电引力形成。
金属键:存在于金属晶体中,由自由电子和金属离子之间的相互作用形成。
氢键:一种特殊的分子间作用力,比一般的范德华力强。
122 分子几何构型通过价层电子对互斥理论(VSEPR)和杂化轨道理论来解释和预测。
常见的分子构型有直线型、平面三角形、四面体型、三角双锥型和八面体型等。
123 分子的极性取决于分子中正负电荷中心是否重合。
极性分子具有偶极矩,非极性分子则没有。
13 晶体结构131 晶体类型离子晶体:由离子键结合而成,具有较高的熔点和硬度。
原子晶体:通过共价键形成,硬度大、熔点高。
分子晶体:分子间以范德华力或氢键结合,熔点和硬度较低。
金属晶体:由金属键维系,具有良好的导电性和导热性。
132 晶格结构晶体中原子、离子或分子的排列方式。
常见的晶格有简单立方、体心立方、面心立方等。
133 晶体的性质各向异性:晶体在不同方向上的物理性质不同。
自范性:能够自发地呈现出多面体外形。
固定的熔点:在一定压力下,晶体具有固定的熔点。
21 量子力学基础211 薛定谔方程是描述微观粒子运动状态的基本方程,通过求解该方程可以得到粒子的能量和波函数。
湖南大学结构化学讲义第一章

结构化学
1993 年,M. F. Crommie 等人用扫描隧道显微镜技术,把蒸发 到Cu(111)表面上的48 个Fe 原子排列成了半径为7.13nm 的 圆环形“量子栅栏(Quantum Corral)”。在量子栅栏内,受到 Fe 原子散射的电子波与入射的电子波发生干涉 而形成同心圆
36
结驻构波化学,直观地显示了电子的波动性。
结构化学 黑体辐射----经典的理论解
L. Rayleigh(瑞利)7 1911年Nobel物理奖
Rayleigh-Jeans方程
1900年6月,Rayleigh和Jeans从经典的电磁理论出发 推导出黑体辐射的数学表达式:
dEV
ቤተ መጻሕፍቲ ባይዱ
(
)
d
8kT
1
4
d
近似地按简谐振动处理,可连续改变振动状态,发射
理 或吸收电磁波。 论 平衡时,空腔内形成驻波,驻波的个数与频率的平方 要 成正比。 点 驻波的振幅和能量可以连续地变化,每个驻波具有相
5
(2)黑体辐射实
high
Frequency,
low
黑体辐射实验的结论是:随 着温度升高,辐射总能量急 剧增加,最大强度蓝移。
黑体在热辐射达到平衡时,
结辐构射化能学量Er 随频率ν的变化曲线
6
(3) 基于经典物理理论的解
不少物理学家,如Wien(1864~1928,德)、 Rayleigh(1842~1919,英)和Jeans(1877~ 1946,英)试图用经典热力学和统计力学理论来解 释这种现象,从理论上推导出符合实验曲线的函数 表达式,但都不能得到满意的结果。
25
结构化学
光是一种电磁波
1856年,Maxwell建立电磁场理论,预言了电 磁波的存在。 理论计算出电磁波以3×108m/s的速度在真空 中传播,与光速度相同,所以人们认为光也是 电磁波。 1888年,Hertz探测到电磁波。 光作为电磁波的一部分,在理论上和实验上就 完全确定了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Zewail还研究了一系列从简单到复杂 的化学和生物体系中各种类型的反应,包 括单分子反应和双分子反应,其中有异构 化,解离,电子转移,质子转移,分子内部的 弛豫过程,还有许多生物过程的反应。他 在实验观测的基础上,也从理论上对这些 过程进行了计算,并给出了很好的解释,从
而大大推进了人类对化学反应微观过程 在深度和广度上的认识和控制能力。
hˆi i
(i)
[
1 2
i2
Vi
(i)]i
(i)
i i
(i)
单电子方程
由于n-1个电子对i电子形成球形势场
z
Vi (i) ri
ze (z i )e
有效核电荷 Z为原子的核电荷数
i 屏蔽常数
[
1 2
i2
z
i
ri
]i
(i)
i i
(i)
i (ri ,i ,i ) Rnili (ri )Ylimi (i ,i )
Zewail教授现在的研究领
域包括用超快激光脉冲去研究 化学反应的中间过程, 从分子 层次上去探索基元反应,通过 超快光谱去观察反应的过渡态, 来揭示化学反应的本质。
实验中,他把一束脉宽为若干飞 秒(10-15s)的激光分成两束,一束用于 激发反应, 然后用另一束在反应开始 后的不同时刻去检测, 或者通过其他 仪器探测反应中间体。通过这一方 法, 真正实现对化学反应的“实时” 检测。同时从理论上去计算分子在 整个过程中的变化, 进而得到化学反 应的全过程。
是n个电子坐标的函数
rij (xi x j )2 ( yi y j )2 (zi z j )2
三 中心场近似和原子轨道概念
第i个电子的势场: 原子核形成的正电场
其余n-1个电子施加给电子i的势 场 前者中心对称,后者不一定
Be原子中的电子和核
1 中心场近似
(1) 不考虑电子间的瞬间相 互作用,认为每个电子都在原 子核和其它电子形成的有效平 均势场中运动。
库恩发展了电子密度泛函
理论,波普尔发展了量子化学 的计算方法。量子化学当前在 化学和分子物理的各个分支领 域被广泛使用,使人们更好地 了解物质的内部结构。库恩和 波普尔的贡献对于整个化学至 关重要。
J. Pople 英国量子化学家
W.Kohn 奥地利量子化学家
计算得到的氨基酸的电荷分布
兹韦勒 Ahmed H.Zewail(1946-) 美国理论化学家
2me
4 0r
基态波函数以及基态能量
1s
3
z e zr / a04 a0En1 2z2 n2
R
二 原子单位制(a.u)
定义如下:
1a.u.(长度)=
4 0h2
mee2
a0
0.5291771010 m
1a.u.(质量)=
me 9.109534 10 31 Kg
1a.u.(电荷)=
e 1.60218921019C
2 2 2 2
[ 2me ( x2 y2 z2 ) 4 0 E (x, y, z)
e2
] (x, y, z)
x2 y2 z2
2 2me
1 [r2
r
(r 2
) r
1
r2 sin
(sin
)
1
r2 sin2
2
2
]
(r,
,
)
e2 (r,,) 4 0r
E
r, ,
原子单位制下类氢离子定态薛定谔方程
——单电子近似
(2)研究第i个电子时, 把其余n-1个电子对i电子 的平均作用近似看成球对 称作用,与核的静电场形 成球对称场。
——中心势场
(hˆi ) E
i
hˆi
1 2
i2
Vi (i)
单电子哈密顿算符
V i(i)
有效中心势场
运用变数分离
(1,2,3..., i,..., n) 1(1) 2(2)...i (i)... n (n)
第三节 多电子原子与原子轨道
一 多电子原子的薛定谔方程与单电子近似
ˆ 2
2me
n
i2
i1
n i1
Ze2
4 0ri
1 2
n i1
n ji
e2
4 0rij
第一项是n个电子动能之和 第二项是n个电子与核的吸引能 第三项是n个电子之间的排斥能
类氢离子定态薛定谔方程
ˆ E
ˆ 2 2 Ze2
库仑 (1736-1806)
1a.u.(速度)=
e2
4 0
2.1876906106 ms1
1a.u.(能量)=
mee4
(4 0 )2 2
4.359811018 J
27.2116eV
焦耳 (1818-1889)
1a.u.(角动量)=
1.05458871034 J s
原子单位制下 类氢离子定态薛定谔方程
n
i 1
[(
12i2
z)1 ri 2
n ji
1 ] E rij
平均
Uij (ij)
1 rij
| j
|2
d
j
考虑电子i与所有j电子云之间的作用
三 哈特里自洽场法
1928年哈特里 (D.R.Hartree)提出的严 格计算原子中单电子波 函数和轨道能的方法。
化学不再是纯实验科学 -1998年诺贝尔化学奖评介-
1998年诺贝尔化学奖授予 美国科学家科恩(Walter Kohn) 和英国科学家波普 尔( John A. Pople),以表 彰他们在量子化学领域作 出的开创性贡献。
j
l 0,1,2,...
的s,p,d,...电子对同一电 子的屏蔽作用各不相同。
多电子原子体系的轨道能i由 主量子数n和角量子数l共同确定。
对单电子原子来说, ns和np是简并的, 但对多电子原子来 说这种简并解除了。
z
Vi (i) ri
半经验方法,来自实验, 是一个经验参数。
(1) 内层电子对外层电子屏蔽作用 0.85-1.0 (2) 同层电子之间0.2-0.45 (3)外层对内层的屏蔽作用忽略为0
i
1 2
(z
i )2
ni2
Ψ(1,2…n)=ψ1(1)ψ2(2)…ψn(n)
E 1 2 ... n i
i
(3)n-1个电子对i电子的平均相互作 用相当于个负电荷。
独立运动 单电子波函数 i
原子轨道: i
轨道近似
描述原子中单电子
运动的空间波函数
i除与量子数n有关外, i ji
还与屏蔽常数i有关
( 1 2 z ) E 2r
n电子原子的哈密顿算符 (原子单位制下)
ˆ 1 2
n
n
i2
i1
i1
z ri
1 2
n i1
n ji
1 rij
i
n 1
[(
12i2
z) ri
1 2
n ji
1] rij
n
i 1
[(
12i2
z)1 ri 2
n ji
1 ] E rij
(1,2,3...,n)