牛顿第二定律高考题型归纳

合集下载

高考物理牛顿第二定律题

高考物理牛顿第二定律题

高考物理牛顿第二定律题牛顿第二定律是经典力学中的一个重要定律,它描述了物体所受合外力与物体质量和加速度之间的关系。

牛顿第二定律为力的定量表达提供了基础,是力学研究的核心。

牛顿第二定律可以用数学公式表示为:F = ma式中,F代表物体所受的合外力,m代表物体的质量,a代表物体的加速度。

下面我们来通过几个高考物理的题目,来深入理解牛顿第二定律。

题目1:一个质量为2kg的物体,在受到5N的合外力作用下,其产生的加速度为多少?解答:根据牛顿第二定律的公式F=ma,我们可以将已知的数据代入公式中计算。

F = 5N,m = 2kg所以,5N = 2kg × a解得,a = 2.5 m/s²所以该物体的加速度为2.5 m/s²。

题目2:一个质量为1kg的物体,在受到一个合外力作用下,产生的加速度为2m/s²。

求施加在物体上的力大小。

解答:同样利用牛顿第二定律公式进行计算。

F = ma已知的数据为m = 1kg,a = 2m/s²所以,F = 1kg × 2m/s²解得,F = 2N所以施加在物体上的力为2N。

除了上述两个基础的题目之外,我们再来看两个稍微复杂一些的例题。

题目3:一个质量为5kg的物体,斜坡上有一个与斜坡面接触的摩擦力,斜坡的角度为30°。

一带有6N的力的物块斜坡上的摩擦力为多少?解答:首先我们需要知道物体在斜坡上的重力分解有两个力,一个是垂直于斜坡的分力F⊥,一个是平行于斜坡的分力F∥。

根据牛顿第二定律,我们可以求出F∥。

F∥ = m × g × sinθ其中,m = 5kg,g ≈ 9.8m/s²,θ = 30°所以,F∥ = 5kg × 9.8m/s² × sin30°解得,F∥ ≈ 24.5N题目4:一个质量为2kg的物体,被放置在水平桌面上。

牛顿第二定律的综合应用(解析版)-高中物理

牛顿第二定律的综合应用(解析版)-高中物理

牛顿第二定律的综合应用1.高考真题考点分布题型考点考查考题统计计算题动力学两类基本问题2022年浙江卷选择题连接体问题2024年全国甲卷计算题传送带模型2024年湖北卷选择题、计算题板块模型2024年高考新课标卷、辽宁卷2.命题规律及备考策略【命题规律】高考对动力学两类基本问题、连接体问题、传送带和板块模型考查的非常频繁,有基础性的选题也有难度稍大的计算题。

【备考策略】1.利用牛顿第二定律处理动力学两类基本问题。

2.利用牛顿第二定律通过整体法和隔离法处理连接体问题。

3.利用牛顿第二定律处理传送带问题。

4.利用牛顿第二定律处理板块模型。

【命题预测】重点关注牛顿第二定律在两类基本问题、连接体、传送带和板块模型中的应用。

一、动力学两类基本问题1.已知物体的受力情况求运动情况;2.已知物体的运动情况求受力情况。

二、连接体问题多个相互关联的物体由细绳、细杆或弹簧等连接或叠放在一起,构成的系统称为连接体。

(1)弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等。

(2)物物叠放连接体:相对静止时有相同的加速度,相对运动时根据受力特点结合运动情景分析。

(3)轻绳(杆)连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等,轻杆平动时,连接体具有相同的平动速度。

三、传送带模型1.模型特点传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向。

2.解题关键(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键。

(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口。

四、板块模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的相互作用下发生相对滑动。

2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1 -x2=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L。

牛顿第二定律十大题型分类汇总(详解版)

牛顿第二定律十大题型分类汇总(详解版)

牛顿第二定律十大题型分类汇总(带详解)一、牛顿第二定律与斜面结合1.如图所示,一足够长的固定在水平面上的斜面,倾角37θ= ,斜面BC 与水平面AB 平滑连接,质量2kg m =的物体静止于水平面上的M 点,M 点与B 点之间的距离9m L =,物体与水平面和斜面间的动摩擦因数均为0.5μ=,现物体受到一水平向右的恒力14N F =作用,运动至B 点时撤去该力,B 点有一小圆弧,使得物体经过B 点时只有速度方向发生改变,速度大小不变,重力加速度210m/s g =,则:(1)物体到达B 点时的速度大小;(2)物体沿斜面向上滑行的最远距离。

(3)物体从开始运动到最后停止运动的总时间。

解得212m/s a =由M 到B 有212B v a L=解得6m/sB v =(2)沿斜面上滑时,根据牛顿第二定律得2sin37cos37mg mg ma μ︒+︒=解得2210m/s a =沿斜面运动的最远距离为(3)从M 点运动到B 点的时间为从B点运动到斜面最高点的时间为沿斜面下滑时的加速度为3sin37cos37mg mg ma μ︒-︒=解得232m/s a =沿斜面下滑的时间为解得下滑到B点时的速度为在水平面上运动的加速度大小为4mg ma μ=解得245m/s a =从B点到静止的时间为物体从开始运动到最后停止运动的总时间为1234t t t t t =+++解得2.一质量m =2kg 小物块从斜面上A 点由静止开始滑下,滑到斜面底端B 点后沿水平面再滑行一段距离停下来。

若物块与斜面、水平面间的动摩擦因数均为μ=0.25。

斜面A、B 两点之间的距离s =18m,斜面倾角θ=37°(sin37°=0.6;cos37°=0.8)斜面与水平面间平滑连接,不计空气阻力,g =10m/s 2。

求:(1)物块在斜面上下滑过程中的加速度大小;(2)物块滑到B 点时的速度大小;(3)物块在水平面上滑行的时间。

牛顿第二定律(7大题型)(解析版)—2024-2025学年高一物理(人教版2019必修第一册)

牛顿第二定律(7大题型)(解析版)—2024-2025学年高一物理(人教版2019必修第一册)

牛顿第二定律(7大题型)知识点1 牛顿第二定律1、内容物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同。

2、表达式①比例式:Fam ∝。

②等式:F kma=,其中k是比例系数,a是物体运动的加速度。

【注】实际物体所受的力往往不止一个,式中F指的是物体所受的合力。

3、物理意义牛顿第二定律不仅阐述了力、质量和加速度三者数量间的关系,还明确了加速度的方向与力的方向一致。

知识点2 力的单位1、牛顿的含义在国际单位制中,力的单位是牛顿,符号为N ,它是根据牛顿第二定律来定义的,使质量为1kg 的物体产生1m/s 的加速度的力为1 N ,即1N=1 kg ·m/s 2。

2、比例系数k 的意义(1)在F kma =中,k 值的大小随F 、m 、a 单位选取的不同而不同。

(2)若F 、m 、a 均使用国际单位制单位,则k =1,牛顿第二定律的表达式为F ma =,式中F 、m 、a 的单位分别为牛顿(N )、千克(kg )、米每二次方秒(m/s 2)。

知识点3 对牛顿第二定律的理解1、基本特性(1)同体性:加速度、合外力和质量是对应于同一个物体(系统)的,所以分析问题时一定要确定好研究对象。

(2)因果性:力是产生加速度的原因,物体的加速度是力这一外因和质量这一内因共同作用的结果。

(3)矢量性:公式F ma =是矢量式,在任意时刻a 的方向都与F 相同,当F 方向变化时,a 的方向也同时变化。

(4)瞬时性:a 与F 同时产生、同时变化、同时消失,为瞬时对应关系。

a 为某时刻的加速度时,F 为该时刻物体所受的合力。

(5每个力产生的加速度的矢量和,分力和加速度在各个方向上的分量关系也遵从牛顿第二定律,即x x F ma =,y y F ma =。

2、合外力、加速度、速度的关系(1)合力与加速度的关系(2)直线运动中加速度与速度的关系加速度与速度同向时,物体加速,反之减速,也可以说合外力与速度同向时,物体加速,反之减速,所以要分析速度如何变,就要看合外力方向与速度方向关系如何。

历年高考物理力学牛顿运动定律题型总结及解题方法

历年高考物理力学牛顿运动定律题型总结及解题方法

历年高考物理力学牛顿运动定律题型总结及解题方法单选题1、现在城市的滑板运动非常流行,在水平地面上一名滑板运动员双脚站在滑板上以一定速度向前滑行,在横杆前起跳并越过杆,从而使人与滑板分别从杆的上方、下方通过,如图所示,假设人和滑板运动过程中受到的各种阻力忽略不计,若运动员顺利地完成了该动作,最终仍落在滑板原来的位置上,则下列说法错误的是()A.运动员起跳时,双脚对滑板作用力的合力竖直向下B.起跳时双脚对滑板作用力的合力向下偏后C.运动员在空中最高点时处于失重状态D.运动员在空中运动时,单位时间内速度的变化相同答案:B解析:AB.运动员竖直起跳,由于本身就有水平初速度,所以运动员既参与了水平方向上的匀速直线运动,又参与了竖直上抛运动。

各分运动具有等时性,水平方向的分运动与滑板的运动情况一样,运动员最终落在滑板的原位置。

所以水平方向受力为零,则起跳时,滑板对运动员的作用力竖直向上,运动员对滑板的作用力应该是竖直向下,故A正确,不符合题意;B错误,符合题意;C.运动员在空中最高点时具有向下的加速度g,处于失重状态,故C正确,不符合题意;D.运动员在空中运动时,加速度恒定,所以单位时间内速度的变化量相等,故D正确,不符合题意。

故选B。

2、如图所示,物体静止于水平面上的O点,这时弹簧恰为原长l0,物体的质量为m,与水平面间的动摩擦因数为μ,现将物体向右拉一段距离后自由释放,使之沿水平面振动,下列结论正确的是()A.物体通过O点时所受的合外力为零B.物体将做阻尼振动C.物体最终只能停止在O点D.物体停止运动后所受的摩擦力为μmg答案:B解析:A.物体通过O点时弹簧的弹力为零,但摩擦力不为零,A错误;B.物体振动时要克服摩擦力做功,机械能减少,振幅减小,做阻尼振动,B正确;CD.物体最终停止的位置可能在O点也可能不在O点。

若停在O点摩擦力为零,若不在O点,摩擦力和弹簧的弹力平衡,停止运动时物体所受的摩擦力不一定为μmg,CD错误。

牛顿第二定律题型总结(精选)

牛顿第二定律题型总结(精选)

牛顿第二定律题型总结一、牛顿第二定律瞬时性问题1.(2010·全国卷Ⅰ)如图4—3—3,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则有( )A.a1=o,a2=gB. a1=g, a2=gC. a1=o, a2=(m+M)g/MD. a1=g, a2=(m+M)g/M2.如图光滑水平面上物块A 和B 以轻弹簧相连接。

在水平拉力F 作用下以加速度a 作直线运动,设A 和B 的质量分别为m A 和m B ,当突然撤去外力F 时,A 和B 的加速度分别为( ) A.0、0C.B A A m m a m +、B A A m m am +- a m m A-二、3、A 、B 推A ,用水平力拉B ,A 、B 间的作用力有多大?4、如图所示,质量为M 的斜面A 置于粗糙水平地面上,动摩擦因数为,物体B 与斜面间无摩擦。

在水平向左的推力F 作用下,A 与B 一起做匀加速直线运动,两者无相对滑动。

已知斜面的倾角为,物体B 的质量为m ,则它们的加速度a 及推力F 的大小为( )A. B. C. D.5、如图所示,质量为的物体上,并用竖直细绳通过光滑定滑轮连接质量为的物体,与物体1相连接的绳与竖直方向成角,则( )N F A 6=N F B 3=μθ)sin ()(,sin θμθ++==g m M F g a θθcos )(,cos g m M F g a +==(,tan θ+==M F g a M F g a (,cot ==μθ2m 1m θABF AF BB θAFA. 车厢的加速度为B. 绳对物体1的拉力为C. 底板对物体2的支持力为D. 物体2所受底板的摩擦力为★6、如图所示,一只质量为m的小猴抓住用绳吊在天花板上的一根质量为M的竖直杆。

牛顿第二定律典型题型归纳

牛顿第二定律典型题型归纳

牛顿第二定律典型题型归纳二. 学习目标:1、掌握牛顿第二定律解题的基本思路和方法。

2、重点掌握牛顿第二定律习题类型中典型题目的分析方法如瞬时问题、临界问题及传送带问题。

考点地位:牛顿第二定律的应用问题是经典物理学的核心知识,是高考的重点和难点,突出了与实际物理情景的结合,出题形式多以大型计算题的形式出现,从近几年的高考形式上来看,2007年江苏单科卷第15题、上海卷第21题、上海卷第19B、2006年全国理综Ⅰ卷、Ⅱ卷的第24题、2005年全国理综Ⅰ卷的第14题、第25题均以计算题目的形式出现,2007年全国理综Ⅰ卷第18题以选择题的形式出现。

三. 重难点解析:1. 动力学两类基本问题应用牛顿运动定律解决的问题主要可分为两类:(1)已知受力情况求运动情况。

(2)已知运动情况求受力情况。

分析解决这两类问题的关键是抓住受力情况和运动情况之间联系的桥梁——加速度。

基本思路流程图:基本公式流程图为:2. 动力学问题的处理方法(1)正确的受力分析。

对物体进行受力分析,是求解力学问题的关键,也是学好力学的基础。

(2)受力分析的依据。

①力的产生条件是否存在,是受力分析的重要依据之一。

②力的作用效果与物体的运动状态之间有相互制约的关系,结合物体的运动状态分析受力情况是不可忽视的。

③由牛顿第三定律(力的相互性)出发,分析物体的受力情况,可以化难为易。

3. 解题思路及步骤(1)由物体的受力情况求解物体的运动情况的一般方法和步骤。

①确定研究对象,对研究对象进行受力分析,并画出物体的受力图。

②根据力的合成与分解的方法,求出物体所受合外力(包括大小和方向)③根据牛顿第二定律列方程,求出物体的加速度。

④结合给定的物体运动的初始条件,选择运动学公式,求出所需的运动参量。

(2)由物体的运动情况求解物体的受力情况。

解决这类问题的基本思路是解决第一类问题的逆过程,具体步骤跟上面所讲的相似,但需特别注意:①由运动学规律求加速度,要特别注意加速度的方向,从而确定合力的方向,不能将速度的方向与加速度的方向混淆。

牛顿第二定律高考题型归纳

牛顿第二定律高考题型归纳

牛顿第二定律〔1〕已知受力情况求运动情况根据牛顿第二定律,已知物体的受力情况,可以求出物体运动的加速度;再根据物体的初始条件(初位置和初速度),应用运动学公式,求出物体的运动情况,即求出物体在任意时刻的速度、位置,也就是求出了物体的运动情况.可用程序图表示如下:例1.风洞实验室中可产生水平向左、大小可调节的风力.现将一套有一小球的细直杆放入风洞实验室.小球孔径略大于细杆直径,小球与杆间的滑动摩擦因数μ=,如下列图所示.保持小球所受风力F=不变,使杆与水平方向间夹角为37°并固定,则小球从静止开始在细杆上滑下距离所需时间为多少?(g取g=10 m/s2,sin 37°=,cos 37°=0.8)解析:设杆对小球的支持力为FN,摩擦力为Ff,对这些力进行正交分解,如下图.在x轴上,由牛顿第二定律,有:mgsin θ+Fcos θ-Ff=ma 在y轴上,由平衡条件,有:FN+Fsin θ-mgcos θ=0 又Ff=μFN解上述三式得:a=7.5 m/s2 又由运动学公式s=at2,由以上各式解得小球从静止出发在细杆上滑下距离s所需时间为t=0.8 s 答案:0.8 s●题型训练●1.如下图,质量m=4.0 kg的物体与地面间的动摩擦因数为μ=0.50.物体在与地面成θ=37°的恒力F=54.5 N作用下,由静止开始运动,t1=0.20 s撤去F,则再经过多长时间物体停下来?(g=10 m/s2,sin 37°=,cos 37°=0.8)解析:物体受到恒力F作用时受力如右图所示,设物体此时加速度为a1,对这些力进行正交分解,根据牛顿运动定律有:N′+Fsin θ-mg=0① Fcos θ-f′=ma1②又因为f′=μN′③①②③联立解得:a1=10 m/s2由v=at,得v=a1t1=2.0 m/s撤去F后物体的受力如右图所示,设物体此时加速度为a2,物体停下来经过时间为t2,根据牛顿运动定律有:f=ma2④ N-mg=0⑤又因为f=μN⑥④⑤⑥联立解得:a2=5.0 m/s2由0=v-at,得t2==0.4 s.答案:0.4 s〔2〕已知运动情况求受力情况根据物体的运动情况,应用运动学公式求出加速度,再根据牛顿第二定律求出物体所受的合外力,从而求出未知的力,或与力相关的某些物理量.如:动摩擦因数、劲度系数等.可用程序图表示如下:例2.如下图,电梯与水平面夹角为30°,电梯从初速度为零开始加速启动,当速度到达1 m/s 时,一个质量为50 kg的人踏上第一级(不计这一级的宽度),然后跟电梯一起加速向上运动,到达电梯终点时已经过4 s,电梯的终点离地面高度为10 m.求这个过程中人对梯面压力和人与梯面间的静摩擦力.(g=10m/s2)解析:以人为研究对象,人运动的初速度为v0=1 m/s,位移为s=h/sin 30°=20 m,时间为t=4 s. 根据运动学公式:s=v0t+ at2 代入数据解得:a=2 m/s2 对人进行受力分析,人受重力mg、竖直向上的支持力FN、水平向右的静摩擦力Fμ(摩擦力方向一定与接触面平行),为了便于研究,取水平向右为x轴正方向,竖直向上为y轴正方向,建立直角坐标系(如左下列图).此时只需分解加速度,其中ax=acos 30°,ay=asin 30° (如右下列图)根据牛顿第二定律有X方向:Fμ=max=macos 30°①Y方向:FN-mg=may=masin 30°②由①式解得:Fμ=87 N 由②式解得:FN=550 N根据牛顿第三定律可知,人对梯面压力等于550 N,方向竖直向下.而人与梯面间的静摩擦力等于87 N,方向水平向右.答案:人对梯面压力等于550 N,方向竖直向下;人与梯面间的静摩擦力等于87 N,方向水平向右传送带在自动输送各种粮食起很大作用,如下图.而该模型可分为以下三类:(1)水平传送带当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力到达最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度到达相同时,滑动摩擦力要发生突变(摩擦力为零或为静摩擦力).(2)倾斜传送带当传送带倾斜运动时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ的关系,从而正确判断物体的速度和传送带速度相等时物体运动的性质.(3)组合传送带组合传送带是水平传送带和倾斜传送带连接在一起传送物体.例3.如下图,传送带与地面的倾角θ=37°,从A到B的长度为16 m,传送带以v0=10 m/s 的速度逆时针转动.在传送带上端无初速的放一个质量为m=0.5 kg的物体,它与传送带之间的动摩擦因数μ=,求物体从A运动到B所需的时间是多少?(sin37°=,cos37°=,g =10 m/s2)解析:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图(a)所示;当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图(b)所示.综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变”.开始阶段由牛二定律:mgsin θ+μmgcos θ=ma1所以:a1=gsin θ+μgcos θ=10 m/s2物体加速至与传送带速度相等时需要的时间t1=v/a1=1 s发生的位移:s= a1t12=5 m<16 m物体加速到10 m/s 时仍未到达B点.第二阶段,有:mgsin θ-μmgcos θ=ma2所以:a2=2 m/s2设第二阶段物体滑动到B 的时间为t2 则:LAB+s=vt2+ a2t22解得:t2=1 s,t′2=-11 s(舍去)故物体经历的总时间t=t1+t 2 =2 s.答案:2 s点评:从上述例题可以总结出,皮带传送物体所受摩擦力可能发生突变,不管是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻.●题型训练●2.如下图为一平直传送带,A、B两处间的距离为L,传送带的运动速度恒为v.有一工件轻轻从A处放上传送带,已知工件与传送带间的动摩擦因数为μ和当地的重力加速度为g,且认为传送带的形状及速率不受影响.求传送带将该工件由A处送到B处可能的时间间隔Δt及相应的条件.(即题中给出量之间应满足的关系).解析:该工件放上传送带,受到水平向右的摩擦力f=μmg;由牛顿第二定律,可得: a=f/m=μg;该工件加速到v所需时间:t=v/a=v/μg;此过程中,工件运动的位移:x= at2=v2/2μg①假设v2/2μg≥L,则工件一直匀加速直到B,可得: at2=L,得Δt=②假设v2/2μg<L,则工件先匀加速至速度v后做匀速运动直到B,故Δt=t+=+ .答案:①假设v2/2μg≥L,则Δt=;②假设v2/2μg<L,则Δt=+ .3.整体法与隔离法1.当研究问题中涉及多个物体组成的系统时,通常把研究对象从系统中“隔离”出来,单独进行受力及运动情况的分析.这叫隔离法.2.系统中各物体加速度相同时,我们可以把系统中的物体看做一个整体.然后分析整体受力,由F=ma求出整体加速度,再作进一步分析.这种方法叫整体法.3.解决连接体问题时,经常要把整体法与隔离法结合起来应用.在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体〔当成一个质点〕,分析受到的外力和运动情况,应用牛顿第二定律求出加速度〔或其他未知量〕;如果需知道物体之间的相互作用力,就需要把物体从系统中隔离出来将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程,隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿第二定律1.通过牛顿第二定律将力学与运动学结合(1)已知受力情况求运动情况根据牛顿第二定律,已知物体的受力情况,可以求出物体运动的加速度;再根据物体的初始条件(初位置和初速度),应用运动学公式,求出物体的运动情况,即求出物体在任意时刻的速度、位置,也就是求出了物体的运动情况.可用程序图表示如下:例1.风洞实验室中可产生水平向左、大小可调节的风力.现将一套有一小球的细直杆放入风洞实验室.小球孔径略大于细杆直径,小球与杆间的滑动摩擦因数μ=0.5,如下图所示.保持小球所受风力F=0.5mg不变,使杆与水平方向间夹角为37°并固定,则小球从静止开始在细杆上滑下距离2.4m所需时间为多少?(g取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)解析:设杆对小球的支持力为FN,摩擦力为Ff,对这些力进行正交分解,如图所示.在x轴上,由牛顿第二定律,有:mgsin θ+Fcos θ-Ff=ma 在y轴上,由平衡条件,有:FN+Fsin θ-mgcos θ=0 又Ff=μFN解上述三式得:a=7.5 m/s2 又由运动学公式s=at2,由以上各式解得小球从静止出发在细杆上滑下距离s所需时间为t=0.8 s 答案:0.8 s●题型训练●1.如图所示,质量m=4.0 kg的物体与地面间的动摩擦因数为μ=0.50.物体在与地面成θ=37°的恒力F=54.5 N作用下,由静止开始运动,t1=0.20 s撤去F,则再经过多长时间物体停下来?(g=10m/s2,sin 37°=0.6,cos 37°=0.8)解析:物体受到恒力F作用时受力如右图所示,设物体此时加速度为a1,对这些力进行正交分解,根据牛顿运动定律有:N′+Fsin θ-mg=0① Fcos θ-f′=ma1②又因为f′=μN′③①②③联立解得:a1=10 m/s2由v=at,得v=a1t1=2.0 m/s撤去F后物体的受力如右图所示,设物体此时加速度为a2,物体停下来经过时间为t2,根据牛顿运动定律有:f=ma2④ N-mg=0⑤又因为f=μN⑥④⑤⑥联立解得:a2=5.0 m/s2由0=v-at,得t2==0.4 s.答案:0.4 s(2)已知运动情况求受力情况根据物体的运动情况,应用运动学公式求出加速度,再根据牛顿第二定律求出物体所受的合外力,从而求出未知的力,或与力相关的某些物理量.如:动摩擦因数、劲度系数等.可用程序图表示如下:例2.如图所示,电梯与水平面夹角为30°,电梯从初速度为零开始加速启动,当速度达到1 m/s时,一个质量为50 kg的人踏上第一级(不计这一级的宽度),然后跟电梯一起加速向上运动,到达电梯终点时已经过4 s,电梯的终点离地面高度为10 m.求这个过程中人对梯面压力和人与梯面间的静摩擦力.(g=10m/s2)解析:以人为研究对象,人运动的初速度为v0=1 m/s,位移为s=h/sin 30°=20 m,时间为t=4 s. 根据运动学公式:s=v0t+ at2 代入数据解得:a=2 m/s2 对人进行受力分析,人受重力mg、竖直向上的支持力FN、水平向右的静摩擦力Fμ(摩擦力方向一定与接触面平行),为了便于研究,取水平向右为x轴正方向,竖直向上为y轴正方向,建立直角坐标系(如左下图).此时只需分解加速度,其中ax=acos 30°,ay=asin 30° (如右下图)根据牛顿第二定律有X方向:Fμ=max=macos 30°①Y方向:FN-mg=may=masin 30°②由①式解得:Fμ=87 N 由②式解得:FN=550 N根据牛顿第三定律可知,人对梯面压力等于550 N,方向竖直向下.而人与梯面间的静摩擦力等于87 N,方向水平向右.答案:人对梯面压力等于550 N,方向竖直向下;人与梯面间的静摩擦力等于87 N,方向水平向右2.牛顿运动定律在传送带问题中的应用传送带在自动输送各种粮食起很大作用,如图所示.而该模型可分为以下三类:(1)水平传送带当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力到达最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度达到相同时,滑动摩擦力要发生突变(摩擦力为零或为静摩擦力).(2)倾斜传送带当传送带倾斜运动时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ的关系,从而正确判断物体的速度和传送带速度相等时物体运动的性质.(3)组合传送带组合传送带是水平传送带和倾斜传送带连接在一起传送物体.例3.如图所示,传送带与地面的倾角θ=37°,从A到B的长度为16 m,传送带以v0=10 m/s的速度逆时针转动.在传送带上端无初速的放一个质量为m=0.5 kg的物体,它与传送带之间的动摩擦因数μ=0.5,求物体从A运动到B所需的时间是多少?(sin37°=0.6,cos37°=0.8,g=10 m/s2)解析:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图(a)所示;当物体加速至与传送带速度相等时,由于μ<tan θ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图(b)所示.综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变”.开始阶段由牛二定律:mgsin θ+μmgcos θ=ma1所以:a1=gsin θ+μgcos θ=10 m/s2物体加速至与传送带速度相等时需要的时间t1=v/a1=1 s发生的位移:s= a1t12=5 m<16 m物体加速到10 m/s 时仍未到达B点.第二阶段,有:mgsin θ-μmgcos θ=ma2所以:a2=2 m/s2设第二阶段物体滑动到B 的时间为t2 则:LAB+s=vt2+ a2t22解得:t2=1 s,t′2=-11 s(舍去)故物体经历的总时间t=t1+t 2 =2 s.答案:2 s点评:从上述例题可以总结出,皮带传送物体所受摩擦力可能发生突变,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻.●题型训练●2.如图所示为一平直传送带,A、B两处间的距离为L,传送带的运动速度恒为v.有一工件轻轻从A处放上传送带,已知工件与传送带间的动摩擦因数为μ和当地的重力加速度为g,且认为传送带的形状及速率不受影响.求传送带将该工件由A处送到B处可能的时间间隔Δt及相应的条件.(即题中给出量之间应满足的关系).解析:该工件放上传送带,受到水平向右的摩擦力f=μmg;由牛顿第二定律,可得: a=f/m=μg;该工件加速到v所需时间:t=v/a=v/μg;此过程中,工件运动的位移:x= at2=v2/2μg①若v2/2μg≥L,则工件一直匀加速直到B,可得: at2=L,得Δt=②若v2/2μg<L,则工件先匀加速至速度v后做匀速运动直到B,故Δt=t+=+ .答案:①若v2/2μg≥L,则Δt=;②若v2/2μg<L,则Δt=+ .3.整体法与隔离法1.当研究问题中涉及多个物体组成的系统时,通常把研究对象从系统中“隔离”出来,单独进行受力及运动情况的分析.这叫隔离法.2.系统中各物体加速度相同时,我们可以把系统中的物体看做一个整体.然后分析整体受力,由F=ma求出整体加速度,再作进一步分析.这种方法叫整体法.3.解决连接体问题时,经常要把整体法与隔离法结合起来应用.在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体(当成一个质点),分析受到的外力和运动情况,应用牛顿第二定律求出加速度(或其他未知量);如果需知道物体之间的相互作用力,就需要把物体从系统中隔离出来将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程,隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。

例4.如图所示:小车沿倾角为θ的光滑斜面滑下,在小车的水平台面上有一质量为M的木块和小车保持相对静止,求:(1)小车下滑时木块所受的摩擦力。

(2)小车下滑时木块所受的弹力。

审题:这里由于木块与小车在运动过程中相对静止,它们具有相同的加速度,所以先采用整体分析法,求出木块和小车这个系统的整体加速度,a=gsinθ,这样M的加速度就求出。

由于木块所受的弹力和摩擦力对小车和木块这个系统来说是内力,所以必须将木块从系统中隔离出来分析。

先画出木块的受力图和加速度的方向。

为了解题方便,本题应将加速度分解。

则 f=max =mgsinθcosθmg-N=mayN=mg-mgsinθsinθN =mg(1-sin2θ)假如按习惯把重力、弹力、摩擦力分解,问题就复杂得多。

mgsinθ+fcosθ-Nsinθ=ma mgcosθ-Ncosθ-fsinθ=0例5.水平桌面上放着质量为M的滑块,用细绳通过定滑轮与质量为m的物体相连,滑块向右加速运动。

已知滑块与桌面间的动摩擦因数为μ.试求滑块运动的加速度和细绳中的张力。

Mm例6.A、B、C三个物体质量分别为m1、m2和m3,带有滑轮的物体放在光滑的水平面上,滑轮和所有接触处的摩擦及绳的质量不计,为使三个物体无相对运动,则水平推力F 为多少?因三物体加速度相同,本题可用整体法。

解:研究整体F=(m1+m2+m3)aT= m1 a 为求T研究m2 T= m2g故a= m2 g/ m1 F=(m1+m2+m3)aF =(m1+m2+m3) m2 g/ m1例7.倾角为30°的斜面体置于粗糙的水平地面上,已知斜面体的质量为M=10Kg,一质量为m=1.0Kg的木块正沿斜面体的斜面由静止开始加速下滑,木块滑行路程s=1.0m时,其速度v=1.4m/s,而斜面体保持静止。

求:⑴求地面对斜面体摩擦力的大小及方向。

⑵地面对斜面体支持力的大小。

相关文档
最新文档