正多边形和圆练习题及答案
2023年中考数学一轮专题练习 ——正多边形和圆(含解析)

2023年中考数学一轮专题练习 ——正多边形和圆一、单选题(本大题共8小题)1. (上海市2022年)有一个正n 边形旋转90后与自身重合,则n 为( ) A .6B .9C .12D .15 2. (湖南省邵阳市2022年)如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A.32 B .C D .523. (四川省雅安市2022年)如图,已知⊙O 的周长等于6π,则该圆内接正六边形ABCDEF 的边心距OG 为( )A .3B .32CD .34. (四川省南充市2022年)如图,在正五边形ABCDE 中,以AB 为边向内作正ABF ,则下列结论错误的是( )A .AE AF =B .EAF CBF ∠=∠C .F EAF ∠=∠D .CE ∠=∠ 5. (四川省内江市2022年)如图,正六边形ABCDEF 内接于⊙O ,半径为6,则这个正六边形的边心距OM 和BC 的长分别为( )A .4,3πB .πC .43πD .32π6. (四川省成都市2022年)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )AB .C .3D .7. (广西玉林市2022年)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A 处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A .4B .C .2D .08. (河南省2022年)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为( )A .)1-B .(1,-C .()1-D .( 二、填空题(本大题共5小题)9. (辽宁省营口市2022年)如图,在正六边形ABCDEF 中,连接,AC CF ,则ACF ∠= 度.10. (江苏省宿迁市2022年)如图,在正六边形ABCDEF 中,AB =6,点M 在边AF 上,且AM =2.若经过点M 的直线l 将正六边形面积平分,则直线l 被正六边形所截的线段长是 .11. (吉林省长春市2022年)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC 和等边三角形DEF 组合而成,它们重叠部分的图形为正六边形.若27AB =厘米,则这个正六边形的周长为 厘米.12. (吉林省2022年)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角()0360αα︒<<︒后能够与它本身重合,则角α可以为 度.(写出一个即可)13. (黑龙江省绥化市2022年)如图,正六边形ABCDEF 和正五边形AHIJK 内接于O ,且有公共顶点A ,则BOH ∠的度数为 度.三、解答题(本大题共1小题)14. (浙江省金华市2022年)如图1,正五边形ABCDE 内接于⊙O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接,,AM MN NA .(1)求ABC ∠的度数.(2)AMN 是正三角形吗?请说明理由.(3)从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值.参考答案1. 【答案】C【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90是30的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C.2. 【答案】C【分析】作直径AD,连接CD,如图,利用等边三角形的性质得到∠B=60°,关键圆周角定理得到∠ACD=90°,∠D=∠B=60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD,连接CD,如图,∵△ABC 为等边三角形,∴∠B =60°,∵AD 为直径,∴∠ACD =90°,∵∠D =∠B =60°,则∠DAC =30°,∴CD =12AD , ∵AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,∴AD∴OA =OB =12AD 故选:C .3. 【答案】C【分析】 利用圆的周长先求出圆的半径,正六边形的边长等于圆的半径,正六边形一条边与圆心构成等边三角形,根据边心距即为等边三角形的高用勾股定理求出OG .【详解】∵圆O 的周长为6π,设圆的半径为R ,∴26R ππ=∴R =3连接OC 和OD ,则OC=OD=3∵六边形ABCDEF 是正六边形,∴∠COD =360606︒=︒, ∴△OCD 是等边三角形,OG 垂直平分CD , ∴OC =OD =CD ,1322CG CD ==∴OG =故选 C4. 【答案】C【分析】利用正多边形各边长度相等,各角度数相等,即可逐项判断.【详解】解:∵多边形ABCDE 是正五边形,∴该多边形内角和为:5218540(0)-⨯︒=︒,AB AE =, ∴5401085C E EAB ABC ︒∠=∠=∠=∠==︒,故D 选项正确; ∵ABF 是正三角形,∴60FAB FBA F ∠=∠=∠=︒,AB AF FB ==,∴1086048EAF EAB FAB ∠=∠-∠=︒-︒=︒,1086048CBF ABC FBA ∠=∠-∠=︒-︒=︒, ∴EAF CBF ∠=∠,故B 选项正确;∵AB AE =,AB AF FB ==,∴AE AF =,故A 选项正确;∵60F ∠=︒,48EAF ∠=︒,∴F EAF ∠≠∠,故C 选项错误,故选:C .5. 【答案】D【分析】连接OC 、OB ,证出BOC ∆是等边三角形,根据勾股定理求出OM ,再由弧长公式求出弧BC 的长即可.【详解】解:连接OC 、OB ,六边形ABCDEF 为正六边形,360606BOC ︒∴∠==︒, OB OC =,BOC ∴∆为等边三角形,6BC OB ∴==,OM BC ⊥,132BM BC ∴==,OM ∴==BC 的长为6062180ππ⨯==. 故选:D .6. 【答案】C【分析】连接OB ,OC ,由⊙O 的周长等于6π,可得⊙O 的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:连接OB ,OC ,∵⊙O 的周长等于6π,∴⊙O 的半径为:3,∵∠BOC 61=⨯360°=60°, ∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB =3,∴它的内接正六边形ABCDEF 的边长为3,故选:C .7. 【答案】B【分析】由题意可分别求出经过2022秒后,红黑两枚跳棋的位置,然后根据正多边形的性质及含30度直角三角形的性质可进行求解.解:∵2022÷3=674,2022÷1=2022,∴67461122,20226337÷=⋅⋅⋅⋅⋅÷=,∴经过2022秒后,红跳棋落在点A 处,黑跳棋落在点E 处,连接AE ,过点F 作FG ⊥AE 于点G ,如图所示:在正六边形ABCDEF 中,2,120AF EF AFE ==∠=︒, ∴1,302AG AE FAE FEA =∠=∠=︒, ∴112FG AF ==,∴AG =∴AE =故选B .8. 【答案】B【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴,∴AP =1, AO =2,∠OPA =90°,∴OP =∴A(1第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1,∵将△OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,9. 【答案】30【分析】连接BE ,交CF 与点O ,连接OA ,先求出360606AOF ︒∠==︒,再根据等腰三角形等边对等角的性质,三角形外角的性质求解即可.【详解】连接BE ,交CF 与点O ,连接OA ,在正六边形ABCDEF 中,360606AOF ︒∴∠==︒, OA OC =OAC OCA ∴∠=∠2AOF OAC ACF ACF ∠=∠+∠=∠30ACF =∴∠︒,故答案为:30.10. 【答案】【分析】如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P ,由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH = 可得直线MH 平分正六边形的面积,O 为正六边形的中心,再利用直角三角形的性质可得答案.【详解】解:如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P , 由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH =∴直线MH 平分正六边形的面积,O 为正六边形的中心,由正六边形的性质可得:AOF 为等边三角形,60,AFO 而6,AB =6,3,ABAF OF OA AP FP 226333,OP2,AM 则1,MP22OM13327,MH OM247.故答案为:11. 【答案】54【分析】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,再证明△FMN、△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形即可求解.【详解】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,如图,∵六边形MNGHPO是正六边形,∴∠GNM=∠NMO=120°,∴∠FNM=∠FNM=60°,∴△FMN是等边三角形,同理可证明△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形,∴MO=BM,NG=AN,OP=PD,GH=HE,∴NG+MN+MO=AN+MN+BM=AB,GH+PH+OP=HE+PH+PD=DE,∵等边△ABC≌等边△DEF,∴AB=DE,∵AB=27cm,∴DE=27cm,∴正六边形MNGHPO的周长为:NG+MN+MO+GH+PH+OP=AB+DE=54cm,故答案为:54.12. 【答案】60或120或180或240或300(写出一个即可)【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得.【详解】 解:这个图案对应着如图所示的一个正六边形,它的中心角3601606︒∠==︒, 0360α︒<<︒,∴角α可以为60︒或120︒或180︒或240︒或300︒,故答案为:60或120或180或240或300(写出一个即可).13. 【答案】12【分析】连接AO ,求出正六边形和正五边形的中心角即可作答.【详解】连接AO ,如图,∵多边形ABCDEF 是正六边形,∴∠AOB =360°÷6=60°,∵多边形AHIJK 是正五边形,∴∠AOH =360°÷5=72°,∴∠BOH =∠AOH -∠AOB =72°-60°=12°,故答案为:12.14. 【答案】(1)108︒(2)是正三角形,理由见解析(3)15n =【分析】(1)根据正五边形的性质以及圆的性质可得BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论.(1)解:∵正五边形ABCDE .∴BC CD DE AE AB ====, ∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒; (2)解:AMN 是正三角形,理由如下:连接,ON FN ,由作图知:FN FO =,∵ON OF =,∴ON OF FN ==,∴OFN △是正三角形,∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒,同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠,∴AMN 是正三角形;(3)∵AMN 是正三角形,∴2120A N A N M O =∠=︒∠.∵2AD AE =,∴272144AOD ∠=⨯︒=︒,∵DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==.。
部编数学九年级上册24.3正多边形和圆(7大题型)2023考点题型精讲(解析版)含答案

24.3 正多边形和圆正多边形的概念 各边相等,各角也相等的多边形是正多边形.正多边形的有关概念 (1)一个正多边形的外接圆的圆心叫做这个正多边形的中心. (2)正多边形外接圆的半径叫做正多边形的半径. (3)正多边形每一边所对的圆心角叫做正多边形的中心角. (4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.题型1:正多边形的相关概念1.下列关于正多边形的叙述,正确的是( )A.正九边形既是轴对称图形又是中心对称图形B.存在一个正多边形,它的外角和为720°C.任何正多边形都有一个外接圆D.不存在每个外角都是对应每个内角两倍的正多边形【答案】C【解析】【解答】解:正九边形是轴对称图形,不是中心对称图形,故选项A不正确;任何多边形的外角和都为360°,故选项B不正确;【变式1-1】已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是( )A.45° B.60° C.75° D.90°【答案】A.【解析】如图,连接OB、OC,则∠BOC=90°,根据圆周角定理,得:∠BPC=∠BOC=45°.故选A.【点评】本题主要考查了正方形的性质和圆周角定理的应用.【变式1-2】如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于( )A.30° B.45° C.55° D.60°【答案】连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°.故选B.正多边形的有关计算 (1)正n边形每一个内角的度数是; (2)正n边形每个中心角的度数是; (3)正n边形每个外角的度数是.注意:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形题型2:正多边形与圆有关的计算-角度2.如图,正五边形ABCDE内接于⊙O,连接AC,则∠BAC的度数是( )A.45°B.38°C.36°D.30°【答案】C【解析】【解答】解:连接OC、OB,如下图:根据正多边形的性质可得:∠BOC=360°5=72°根据圆周角定理可得:∠BAC=12∠BOC=36°故答案为:C【分析】连接OC、OB,根据正多边形的性质可得∠BOC=360°5=72°,再根据圆周角定理求解即可。
中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。
2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。
②正多边形的半径:外接圆的半径叫做正多边形的半径。
③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。
④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。
练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。
人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案

人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案1.若正多边形的一个外角为72︒,则这个正多边形的中心角的度数是( )A.18︒B.36︒C.72︒D.108︒2.如图,正六边形ABCDEF内接于圆O,点M在AF上( )A.60︒B.45︒ C.30︒ D.15︒3.若⊙O的内接正n边形的边长与⊙O的半径相等,则n的值为( )A.4B.5C.6D.74.如图,正五边形ABCDE内接于O,点P为DE上一点(点P与点D,点E不重合),连接PC,PD,⊥DG PC垂足为G,则∠PDG等于( )A.72°B.54°C.36°D.64°5.如图,正六边形ABCDEF内接于,正六边形的周长是12,则的半径是( )A.3B.2C.22D.236.如图是半径为4的O的内接正六边形ABCDEF,则圆心O到边AB的距离是( )O OA.23B.3C.2D.37.如图,正六边形ABCDEF 内接于O ,O 的半径为6,则这个正六边形的边心距OM 和弧BC 的长分别为( )A.32 πB.332 πC.332 2π3D.33 π8.如图,正三角形ABC 和正六边形ADBECF 都内接于,O 连接,OC 则∠+∠=ACO ABE ( )A.90︒B.100︒C.110︒D.120︒9.如图,正五边形ABCDE 内接于O ,P 为DE 上的一点(点P 不与点D 重合),则∠=CPD ________°.10.如图,正六边形ABCDEF内接于O,若O的周长等于6π,则正六边形的边长为______.11.早在1800多年前,魏晋时期的数学家刘徽首创“割圆术”,用圆内接正多边形的面积去无限逼近圆面积,如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为_________________.12.如图,圆内接正六边形ABCDEF的半径为2,则该正六边形的面积是_________________.13.有一个亭子,它的地基是半径为8m的正六边形,求地基的面积.(结果保留根号)14.如图,O的周长等于8πcm,正六边形ABCDEF内接于O.(1)求圆心O 到AF 的距离.(2)求正六边形ABCDEF 的面积.参考答案及解析1.答案:C 解析:正多边形的一个外角为72︒∴正多边形的边数为360725︒÷︒=∴这个正多边形的中心角的度数是360572︒÷=︒故选:C.2.答案:C解析:连接OC ,OD多边形ABCDEF 是正六边形60∴∠=︒COD1302∴∠=∠=︒CMD COD故选:C.3.答案:C解析:内接正n 边形的边长与⊙O 的半径相等∴正n 边形的中心角为60︒360606︒÷︒=∴n 的值为6故选:C.4.答案:B解析:正五边形ABCDE 内接于O∠CPD 与所对的弧相同1362∴∠=∠=︒CPD COD故选:B.5.答案:B解析:如图,连结OA ,OBABCDEF 为正六边形1360606∴∠=︒⨯︒=AOB∴AOB △是等边三角形正六边形的周长是1211226∴=⨯=AB2∴===AO BO AB故选B.6.答案:A解析:如图,做⊥OM AB 于点M360725COD ︒∴∠==︒COD ∠180903654PDG ∠=︒-︒-︒=∴︒正六边形ABCDEF 外接半径为4的O4∴==OA OB 360606︒∠==︒AOB 1302∴∠=∠=∠=︒AOM BOM AOB122∴===AM BM OA2223∴=-=OM OA AM ∴圆心O 到边AB 的距离为23故选:A.7.答案:D解析:连接OB 、OC六边形ABCDEF 为正六边形360606︒∴∠==︒BOC 。
正多边形和圆(解析版)九年级数学-下册

27.4正多边形和圆姓名:_______班级_______学号:________题型1直角三角形周长、面积与内切圆半径的关系1.(2023上·江苏苏州·九年级校联考阶段练习)三角形两边的长分别是8和6,第三边的长是方程212200x x -+=的一个实数根,则三角形的内切圆半径是()A .1B .2C .3D .4【答案】B【分析】本题主要考查了三角形内切圆,勾股定理的逆定理,解一元二次方程,先利用因式分解法求出方程的两根,根据构成三角形的条件确定这个三角形的三边长为6、8、10,由此利用勾股定理的逆定理证明该三角形是直角三角形,根据等面积法得到求出OD 的长即可得到答案.【详解】解:212200x x -+=,()()2100x x --=,10x ∴=或2,当2x =时,268+=,不能组成三角形,不符合题意;10x ∴=,当第三边为10时,2226810+= ,此三角形是直角三角形,如图所示,在Rt ABC △中,点O 是Rt ABC △的内接圆,分别与,,AB BC AC 相切于D 、E 、F ,,,OD OE OF OD AB OE ∴==⊥ABC ABO ACO BCO S S S S ∴=++ 111222AB BC AB OD BC ∴⋅=⋅+1683452OD OE OF ∴⨯⨯=++2OD ∴=,∴圆O 的半径为2,【答案】()5,1()8093,1【分析】作PD OA ⊥交OA 于D ,PF OB ⊥交OB PB ,由A 、B 的坐标得出4OA =,3OB =,由勾股定理可得点A的坐标为()3,0,0,4,点B的坐标为()OA=,∴=,43OB2222∴=+=+=,AB OA OB435点P是Rt OAB内切圆的圆心,PD OA⊥⊥,PF OB【答案】3cm【分析】此题主要考查了直角三角形内切圆的性质及半径的求法.根据已知得出1()2CD CF AC BC AB ==+-是解题关键.设易证得四边形OFCD 是正方形;那么根据切线长定理可得:在Rt ABC △,90C ∠=︒,9cm BC =根据勾股定理2215(cm)AB AC BC =+=四边形OECF 中,OD OF =,ODC ∠∴四边形OFCD 是正方形,题型2圆外切四边形模型5.(2022上·河北邯郸·九年级校考期中)如图,O 是四边形ABCD 的内切圆.若70AOB ∠=︒,则COD ∠=()A .110︒B .125︒C .140︒D .145︒【答案】A 【分析】根据内切圆得到四条角平分线,结合四边形内角和定理求解即可得到答案;【详解】解:∵O 是四边形ABCD 的内切圆,∴OAB OAD ∠=∠,ODA ODC ∠=∠,OCD OCB ∠=∠,OBC OBA ∠=∠,∵360OAB OAD ODA ODC OCD OCB OBC OBA ∠+∠+∠+∠+∠+∠+∠+∠=︒,∴180OAB OBA ODC OCD OAD ODA OCB OBC ∠+∠+∠+∠=∠+∠+∠+∠=︒,∵70AOB ∠=︒,180OAB OBA AOB ∠+∠+∠=︒,180ODC OCD DOC ∠+∠+∠=︒,∴18070110COD ∠=︒-︒=︒,故选:A ;【点睛】本题考查圆内切四边形及四边形的内角和定理,解题的关键是得到180OAB OBA ODC OCD ∠+∠+∠+∠=︒.6.(2021·九年级课时练习)下面图形中,一定有内切圆的是()A .矩形B .等腰梯形C .菱形D .平行四边形【答案】C【分析】根据内切圆的定义以及特殊四边形的性质进行分析,从而可得答案.【详解】角平分线上的点到角的两边距离相等,角平分线的交点是内切圆的圆心,菱形的对角线平分对角,所以菱形的两条对角线的交点到菱形的各边的距离相等,以交点为圆心,交点到菱形的边为半径的圆就是菱形的内切圆,选项中只有菱形,对角线平分对角.故选C【点睛】本题考查了内切圆的定义,菱形的性质,掌握内切圆的定义是解题的关键.7.(2019上·浙江温州·九年级校考期末)如图,正方形EBFI ,正方形MFCG 和正方形HLGD 都在正方形ABCD 内,且=BF HD .O 分别与AE ,EI ,HL ,AH 相切,点M 恰好落在【答案】1682-【分析】连接AC ,由题意可知【详解】解:如图所示,连接∵正方形EBFI ,正方形MFCG ∴45ACD MCD DAC ∠=∠=∠=∵O 分别与AE ,EI ,HL ,∴四边形AQOP 是正方形,∴AC 过点O ,M ,四边形ABCD 为正方形,题型3三角形内心有关应用9.(2023上·四川绵阳·九年级校联考阶段练习)下列语句中正确的是()A.平分弦的直径垂直于弦B.三点确定一个圆A .12B .【答案】B 【分析】过内心向正三角形的一边作垂线,【详解】解:过O 点作OD ∵O 是正ABC 的内切圆,A.100︒B.【答案】D【分析】此题主要考查了三角形内心的性质以及三角形内角和定理.利用内心的性质得出1【答案】52-/2-+【分析】在AB 的下方作等腰直角三角形过点K 作KT DB ⊥交DB ∵点P 是ACB △的内心,∠∴12PAB CAB ∠=∠,PBA ∠=∴(12PAB PBA CAB ∠+∠=∠∴18045135APB ∠=︒-︒=︒,∴点P 在以K 为圆心,KA 为半径的圆上运动,∵2AB =,AK BK =,AKB ∠设这个三角形内切圆的半径为r ,则11145222S ar br cr =++=,即()1452r a b c ++=,∵三角形的三边a ,b ,c 分别为7,6,∴()1763452r ++=,则:DAC DBC ∠=∠,∵I 是ABC 内心,∴,ABD DBC CAI ∠=∠∠=∴DAC DBA ∠=∠,∴DAC CAI DBA ∠+∠=∠+则:222CH AC AH =-=即:(222141315x -=--解得:425x =,∴22CH AC AH =-=设AD x =,则2BD =-由勾股定理得:2CD AC =222243(2)x x ∴-=--.解得: 2.75x =.【答案】4【分析】首先利用勾股定理求出斜边切线长定理求出内切圆半径,进而求出周长.【详解】如图,连接OD 、在Rt ABC △中,AC AB =设内切圆半径为r ,AB 、BC ∴OD AB ⊥,OE BC ⊥,∵AB BC ⊥,OD OE =,∴四边形ODBE 为正方形,∴OD OE BD BE r ====,由切线长定理得,8AF AD r ==-,6CE CF r ==-,MD MP =,NE NP =,∴8610AC AF CF r r =+=-+-=,解得2r =,则的周长为BM BN MN++BM BN MP NP=+++BM BN MD NE=+++BD BE=+2BD=2r=4=.故答案为:4.【点睛】本题考查了三角形的内切圆,切线的性质定理,切线长定理,解题关键是判断四边形ODBE 为正方形,再依据切线长定理把三角形的周长化为两条切线长,再转化为半径进行求解.题型5三角形内切圆与外接圆综合18.(2023上·河北邢台·九年级校联考期中)已知O 是ABC 的内心,70BAC ∠=︒,P 为平面上一点,点O 恰好又是BCP 的外心,则BPC ∠的度数为()A .50︒B .55︒C .62.5︒D .65︒【答案】C 【分析】本题考查了三角形的内心和三角形外心的性质,三角形内角和定理,利用三角形内心的性质得OB OC 、分别是ABC ACB ∠∠、的角平分线,进而求出BOC ∠的大小,再利用三角形外心的性质得出BPC ∠等于BOC ∠的一半,即可得出答案,牢记以上知识点得出各角之间的关系是解题的关键.∵O是ABC的内心,,∴12OBC ABC ∠=∠,∴12 OBC OCB∠+∠=∠【答案】65︒/65度【分析】本题考查三角形的内心和外心、角平分线的定义、三角形的内角和定理、圆周角定理,连接OB、OC,根据三角形的内心是三角形的内角平分线的交点,结合三角形的内角和定理求得BOC∠,再根据圆周角定理得到∵80BAC ∠=︒,∴180ABC ACB ∠+∠=︒-∵O 是ABC 的内心,∴12OBC ABC ∠=∠,OCB ∠【答案】58【分析】作AD BC ⊥于点D ,作PF 且AD 垂直平分BC ,及BD CD ==得BQ 、PF 和DQ ,由PCF ≌ R R t 答案.则90ADB ADC ∠=∠=︒,∵5AB AC ==,∴AD 平分BAC ∠,且AD 垂直平分∵6BC =,∴1=32BD CD BC ==,【答案】40︒/40度【分析】本题考查三角形内切圆、切线长定理,根据内切圆的定义和切线长定理,可以计算出COB ∠的度数和OGE ∠【详解】解:连接,OD OE【答案】5【分析】连接OA 、OB 、OC 、33BE BD OE ===,进而得出【详解】解:如图,连接OA 、OB ∵ABC 的内切圆半径3r =,30ABO CBO ∴∠=∠=︒,33BE BD OE ∴===,8BC = ,A.72°【答案】A【分析】根据正n边形的中心角的度数为【答案】2【分析】本题考查圆内接正多边形的性质、形的中心角36060AOB︒∠==︒,进而证明由题意,360 AOB∠=∴AOB为等边三角形,【答案】72︒/72度【分析】本题考查的是正多边形和圆;根据正五边形的性质可得解.【详解】∵五边形ABCDE1【答案】72︒/72【分析】本题考查圆周角定理,正多边形与圆,求出正五边形的中心角的度数,掌握圆周角定理是正确解答的前提.求出正五边形的中心角的度数,再根据圆周角定理进行计算即可.【详解】解:如图,连接∵五边形ABCDE 是O 的内接正五边形,∴3605AOB BOC ︒∠=∠=∴7272144AOC ∠=︒+︒=∴1722AFC AOC ∠=∠=A.4B【答案】B【分析】本题考查了正多边形和圆,正六边形的性质,垂径定理,勾股定理,等边三角形的性质,熟练掌握正六边形的性质,证明三角形是等边三角形,运用垂径定理求出60BOC ∠=︒,OB OC =∴BOC 是等边三角形,∴6OB BC ==,OM BC ⊥,1A .2B .确定,所以CMP S △的值不确定【答案】A【分析】本题考查了正多边形与圆,三角形的面积,根据正六边形的性质,得出1S S =则2MN OM =,∵12COD S CD OM = ,PCM S ∴COD PCM S S = ,∵16COD ABCDEF S S = 正六边形,34.(2023上·浙江温州记ACE △的周长为1C ,正六边形为【答案】32【分析】本题主要考查了正六边形的性质,含长为a ,利用含30︒角的直角三角形的性质求出【详解】解:设正六边形的边长为∵六边形ABCDEF 是∴DC DE a ==,CDE ∠∴60,EDH DEH ∠=︒∠∴12DH a =,(1)在方格纸中画出以AC为对角线的正方形小正方形的顶点上;∠为顶角的等腰三角形(2)在方格纸中画出以GFE格点上,连接AG,并直接写出线段【答案】(1)见详解;∠为顶角的等腰三角形(2)解:以GFE22AG=+=.5334【点睛】本题考查作图−应用与设计、勾股定理、等腰直角三角形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想思考问题,属于中考常考题型.36.(2022·陕西·陕西师大附中校考模拟预测)如图,已知的内接正方形ABCD法,作出O【答案】见解析【分析】作AC的垂直平分线交⊙【详解】解:如图,正方形ABCD的直径,∵BD垂直平分AC,AC为O的直径,∴BD为O∴BD⊥AC,OB=OD,OA=OC,的内接正方形.∴四边形ABCD是O【点睛】本题考查了作图−复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆的基本性质,正方形的判定.37.(2020下·山东青岛·九年级统考学业考试)请用圆规和直尺作图,不写作法,但要保留作图痕迹.已知:⊙O,点A在圆上.求作:以A为一顶点作圆内接正方形ABCD.【答案】见解析【分析】作直径AC,过点O作BD⊥AC交⊙O于B,D,连接AB,BC,CD,AD即可.【详解】如图,四边形ABCD即为所求作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.38.(2022上·江西景德镇·九年级统考期末)已知正六边形ABCDEF,请仅用无刻度直尺,按要求画图:(1)在图1中,画出CD的中点G;(2)在图2中,点G为CD中点以G为顶点画出一个菱形.【答案】(1)见解析(2)见解析【分析】(1)如图1,分别连接AD、CF交于点H,分别延长线段BC、线段ED于点I,连接HI与线段CD交于点G,点G即为所求;(2)如图2,延长线段IH与线段AF交于点J,连接BG、GE、EJ、JB,四边形BGEJ即为所求.【详解】(1)如图1,分别连接AD、CF交于点H,分别延长线段BC、线段ED于点I,连接HI与线段CD交于点G,点G即为所求;(2)如图2,延长线段IH与线段AF交于点J,连接BG、GE、EJ、JB,四边形BGEJ即为所求.【点睛】本题考查了无刻度直尺作图的问题,掌握正六边形的性质、中线的性质、菱形的性质是解题的关键.39.(2023上·江苏盐城【答案】(1)3;(2)21316AN≤≤;(3)9373222r-≤≤【分析】(1)由折叠的性质即可得出结果;(2)当MNA'的外接圆与线段DC相交,且点N与D重合时,此时AN外接圆与线段DC相切时,此时AN最小,利用勾股定理构建方程求解即可;由折叠的性质得:A D AD'=,当MNA ' 的外接圆与线段DC 相交,且点N 与D 重合时,此时AN 最大,即3AN =,当MNA ' 的外接圆与线段DC 相切时,设半径为r ,则3,OF r AO r =-=,则1924AF AM ==,∴()222934r r ⎛⎫-+= ⎪⎝⎭,当N 与D 重合时r 最大,3,6,6A F r MF r MA ''∴=-=-=,Rt FA M ' 中,()()222366r r -+-=,1r =9372+(舍),29372r -=,故答案为:93732r -≤≤.。
24.3正多边形和圆-人教版九年级数学上册练习

人教版九年级数学上册24.3正多边形和圆一.选择题(共6小题)1.如图,正六边形ABCDEF 内接于。
0, 连接BD.则ZCDB 的度数是()3.下列判断中正确的是()A.矩形的对角线互相垂直B.正八边形的每个内角都是145°C.三角形三边垂直平分线的交点到三角形三边的距离相等D. 一组对边平行,一组对角相等的四边形是平行四边形 4.正六边形的周长为6,则它的外接圆半径为()5.若一个正六边形的半径为2,则它的边心距等于()6.有一边长为2去的正三角形,则它的外接圆的而积为(二.填空题(共6小题)7. 如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么匕1=60° C. 45° D. 30°2.若一个圆内接正多边形的中心角是36’ ,则这个多边形是(A.正五边形B.正八边形C.正十边形D. 正十八边形A. 1B. 2C. 3D.A. 2B. 1c. VsD.2^3C. 4nD. 12n8.如图,将边长相等的正六边形和正五边形拼接在一起,则ZABC的度数为9.我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为.10.如果一个正〃边形的每个内角为108° ,那么这个正〃边形的边数为.11.正六边形的中心角为:当它的半径为1时,边心距为.12.已知。
过正方形ABCD顶点A、B,且与CO相切,若正方形边长为2,则圆的半径13.有一正六边形ABCDEF的内切圆半径为R,求R与这个正六边形ABCDEF的外接圆半径之比.14.如图,已知正六边形ABCDEF内接于。
,且边长为4.(1)求该正六边形的半径、边心距和中心角;(2)求该正六边形的外接圆的周长和面积.15.如图所示,在正五边形ABCDE中,A/是CD的中点,连接AC, BE, AM.求证:(1)AC=BE;(2)AMLCD.人教版九年级数学上册24.3正多边形和圆参考答案一. 选择题(共6小题)1.如图,正六边形ABCDEF 内接于。
人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案

人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点 正多边形与圆1.定义:正多边形的 圆的圆心叫做这个正多边形的中心 圆的半径叫做正多边形的半径 正多边形每一边所对的 角叫做正多边形的中心角 到正多边形的一边的距离 叫做正多边形的边心距。
2.公式:正多边形的有关概念:边长(a ) 中心(O ) 中心角(∠AOB ) 半径(R )) 边心距(r ) 如图所示①.边心距222a r R ⎛⎫=- ⎪⎝⎭中心角360n ︒=关键点:三角形的内切圆与外接圆 关系定义圆心 实质半径图示外接圆经过三角形各顶点的圆外心三角形各边垂直平分线的交点交点到三角形三个顶点的距离相等内切圆与三角形各边都相切的圆内心三角形各内角平分线的交点交点到三角形各边的距离相等名校提高练习:一选择题:本题共10小题每小题3分共30分。
在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·四川省泸州市·月考试卷)已知圆内接正三角形的面积为√ 3则该圆的内接正六边形的边心距是( )A. 2B. 1C. √ 3D. √ 322.同一个圆的内接正三角形正方形正六边形的边心距分别为r3r4r6则r3:r4:r6等于( )A. 1:√2:√3B. √3:√2:1C. 1:2:3D. 3:2:13.如图若干个全等的正五边形排成环状图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 10B. 9C. 8D. 74.(2024·贵州省黔东南苗族侗族自治州·月考试卷)正六边形ABCDEF内接于⊙O正六边形的周长是12则⊙O的半径是( )A. √ 3B. 2C. 2√ 2D. 2√ 35.(2024·山东省·单元测试)《几何原本》中记载了用尺规作某种六边形的方法其步骤是:①在⊙O上任取一点A连接AO并延长交⊙O于点B②以点B为圆心BO为半径作圆弧分别交⊙O于C D两点③连接CO DO并延长分别交⊙O于点E F④顺次连接BC CF FA AE ED DB得到六边形AFCBDE.再连接AD EF AD EF交于点G.则下列结论不正确的是( )A. GF=GDB. ∠FGA=60°C. EFAE=√ 2 D. AF⊥AD6.(2024·江苏省·同步练习)以半径为2的圆的内接正三角形正方形正六边形的边心距为三边作三角形则该三角形的面积是( )A. √ 22B. √ 32C. √ 2D. √ 37.(2024·江苏省·同步练习)如图正十二边形A1A2…A12连接A3A7A7A10则∠A3A7A10的度数为( )A. 60°B. 65°C. 70°D. 75°8.(2024·江苏省·同步练习)如图若干个全等的正五边形排成环状.图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 6B. 7C. 8D. 99.(2024·北京市市辖区·期末考试)如图正方形ABCD的边长为6且顶点A B C D都在⊙O上则⊙O 的半径为().A. 3B. 6C. 3√ 2D. 6√ 210.(2024·广东省广州市·月考试卷)如图已知⊙O的周长等于4πcm则圆内接正六边形的边长为()cm.A. √ 3B. 2C. 2√ 3D. 4二填空题:本题共6小题每小题3分共18分。
人教版九年级数学上册24.3正多边形和圆(含答案)

24.3 正多边形和圆知识点1 .相等,也相等的多边形叫做正多边形 .2 .把一个圆分成几等份,连接各点所得到的多边形是 ,它的中央角等于3 .一个正多边形的外接圆的 叫做这个正多边形的中央,外接圆的叫做正多边形的半径,正多边形每一边所对的 叫做正多边形的中央角,中央到正 多边形的一边的 叫做正多边形的边心距. 4 .正n 边形的半径为 R,边心距为r,边长为a, (1)中央角的度数为:. (2)每个内角的度数为:. (3)每个外角的度数为: . (4)周长为: ,面积为: .5 .正n 边形都是轴对称图形,当边数为偶数时,它的对称轴有 条,并且还是中央对 称图形;当边数为奇数时,它只是.(填“轴对称图形〞或“中央对称图形〞) 一、选择题1 .以下说法正确的选项是 A.各边相等的多边形是正多边形 B.各角相等的多边形是正多边形 C.各边相等的圆内接多边形是正多边形 D.各角相等的圆内接多边形是正多边形 6,那么其外接圆半径与内切圆半径的大小分别为()2. (2021以津)正六边形的边心距与边长之比为3.(2021山东滨州 )假设正方形的边长为A. 6, 3亚B. 3行,3C. 6, 3D. 6• 3匹4 .如下图,正六边形ABCDEF内接于.O, 那么/ADB的度数是( ).A. 60°B. 45C. 30D. 22. 55 .半径相等的圆的内接正三角形,正方形,正六边形的边长的比为〔〕A.1: .2 : 3B. 3: 2:1C.3:2:1D.1:2:36 .圆内接正五边形ABCDE中,对角线AC和BD相交于点P,那么/APB的度数是〔〕.A. 36°B, 60° C. 72° D, 108°7 . 〔2021?自贡〕如图,点O是正六边形的对称中央,如果用一副三角板的角,借助点0〔使该角的顶点落在点O处〕,把这个正六边形的面积n等分,那么n的所有可能取值的个数是〔〕A.4B.5C.6D. 78 .如图,△ PQ幅..的内接正三角形,四边形ABC皿OO的内接正方形,BC// QR那么/A0Q的度数是〔〕A.60 °B.65 °C.72 °D.75、填空题9 .一个正n边形的边长为a,面积为S,那么它的边心距为.10 .正多边形的一个中央角为36度,那么这个正多边形的一个内角等于度.11 .假设正六边形的面积是24j3cm2,那么这个正六边形的边长是.12 .正六边形的边心距为B那么它的周长是.13 .点M、N分别是正八边形相邻的边AB、BC上的点,且AM=BN,点O是正八边形的中央,那么/ MON=.14 .边长为a的正三角形的边心距、半径〔外接圆的半径〕和高之比为15 .要用圆形铁片截出边长为4cm的正方形铁片,那么选用的圆形铁片的直径最小要_________ cm.16 .假设正多边形的边心距与边长的比为1:2,那么这个正多边形的边数是17 .一个正三角形和一个正六边形的周长相等,那么它们的面积比为18 .〔2021超州〕如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,那么正八边形的面积为_______ cm2.三、解做题19 .比拟正五边形与正六边形,可以发现它们的相同点与不同点正五边形正六边形例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等^它们的一个不同点:正五边形不是中央对称图形,正六边形是中央对称图形.请你再写出它们的两个相同点和不同点.相同点:〔1〕_________________________________________________________________ (2). 不同点:〔1〕_________________________________________________________________________(2) ___________________________________________________________________21 .如图,O O 的半径为 短,..的内接一个正多边形,边心距为 1,求它的中央角、边长、面积.22 ..O 和.O 上的一点 A.(1)作.O 的内接正方形 ABCDF 口内接正六边形 AEFCGH(2)在(1)题的作图中,如果点 E 在弧AD 上,求证:DE 是..内接正十二边形的一边.20.,如图,正六边形 距「6、面积S 6.ABCDEF 的边长为6cm,求这个正六边形的外接圆半径R 、边心第21题第22题23 .如图1、图2、图3、…、图n, M N分别是.0的内接正三角形ABC正方形ABCD正五边形ABCDE…、正n边形ABCDE•的边AR BC上的点,且BM=CN连结OM ON.圉1 图2 囹斗3图式(1)求图1中/ MON勺度数;(2)图2中/ MON勺度数是 ,图3中/ MON勺度数是(3)试探究/ MON的度数与正n边形边数n的关系(直接写出答案).知识点 1 .各边各角2 .正多边形正多边形每一边所对的圆心角3 .圆心半径圆心角 距离 5.n 轴对称图形 一、选择题 1.C 2.B 3.B 4.C 5.B 6.C 7.B解:根据圆内接正多边形的性质可知, 只要把此正六边形再化为正多边形即可,以30的倍数就可以解决问题. 360+30=12; 360+60=6; 360+90=4; 360+120=3; 360+180=2.因此n 的所有可能的值共五种情况, 应选B. 8.D 二、填空题9. 2S 10.144 11.4cm 12.12 13.45° 14.1:2:3 15.4 v2 16.na18.40 三、解做题19.相同点:〔1〕每个内角都相等〔或每个外角都相等或对角线都相等〕;〔2〕都是轴对称图形〔或都有外接圆和内切圆〕^不同点:〔1〕正五边形的每个内角是 108° ,正六边形的每个内角是120°〔2〕正五边形的对称轴是 5条,正六边形的对称轴是 6条.参考答案4.360(2)(『2)|18°n360 nar⑷皿⑸方即让周角除四 17.2:3解:连接OA,OB.过点O作OG AB于G.** AOB =60 , OA OB* AOB是等边三角形OA OB 6 即R=6O OA OB ,OG AB1 1AG -AB -63 2 2在Rt AOG 中,r6 OG JOA 2~AG 2相~3T3 点S6 1- 6 6 3 /3 54 . 3R 6 cm,「6 3 .. 3cm , S6 54 .3 cm 2.21.解:连结OB•・在•△AOC^, AC=J OA2 OC2^/T7=1AC=OC / AOCh OAC=45• .OA=OB OCL AB• .AB=2AC=2 /AOB=2 OAC=2< 45° =90°,这个内接正多边形是正方形「•面积为22=4••・中央角为90.,边长为2,面积为4.22. (1)作法:①作直径AC;②作直径BDL AC;③依次连结A、B、C D四点,四边形ABCD^为.0的内接正方形;于E、H、F、G;④分别以A、C为圆心,以OA长为半径作弧,交.0⑤顺次连结A、E、F、C G H各点.六边形AEFCG即为.0的内接正六边形(2)证实:连结OE DE.•. /AOD= 360- = 90° , /AOE= 360-= 60° ,・ ./DOB Z AOD- /AO2 90° -60 ° =30・•・DE为.0的内接正十二边形的一边 .23. (1)方法一:连结OB OC.・•・正4ABC内接于.O,・・./OBM =OCN= 30° , ZBOC=120 .X / BM=CN OB=OC・.△OB阵AOCN( SAS . ・./ BOM= /CON.・./ MON=BOC=120 .方法二:连结OA OB. ・•・正^ABC内接于.O, .•.AB=AC /OAM =OBN=30 , ZAOB=120 .又「BM= CN.•.AM=BN.X/OA=OB,・.△AO阵△BON SAS . ・./AOM = BON.・./MON =AOB=120 .(2)90 ° 72 °(3) / MON=360-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正多边形和圆练习)
分钟训练一、课前预习(5) ( 1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比没 D. 扩大了两倍 C.扩大了四倍扩大了一倍A. B. 有变化)
2.正三角形的高、外接圆半径、边心距之比为(
C.4∶2∶1 B.4∶3∶2 A.3∶2∶1
3
4∶D.6∶. __________条对称轴3.正五边形共有__________条对称轴,正六边形共有__________.
45°的正多边形的边数是4.中心角是那么相切于点D,AD=4,△ABC的内切圆与边AB5.已知△ABC的周长为20,BC=__________.
)
(10分钟训练二、课中强化2时,此时该正n边形有_________条对1.若正n边形的一个外角是一个内角的3.
称轴) 同圆的内接正三角形与内接正方形的边长的比是( 2.4366 D. C.
A. B. 34323.周长相等的正三角形、正四边形、正六边形的面积S、S、S之间的大小关系634是( )
A.S>S>S
B.S>S>S
C.S>S>S 436436643
D.S>S>S 3464.已知⊙O和⊙O上的一点A(如图24-3-1).
(1)作⊙O的内接正方形ABCD和内接正六边形AEFCGH;
(2)在(1)题的作图中,如果点E在弧AD上,求证:DE是⊙O内接正十二边形的
一边.
图
24-3-1
)
分钟训练三、课后巩固(30) 11.正六边形的两条平行边之间的距离为,则它的边长为(
33323 D. C. A. B.
43361已知正多边形的边心距与边长的比为2. ) ,则此正多边形为( 2正十D. C.正六边形 A.正三角形 B.正方形
二边形__________ cm. ,则这个正六边形的周长为已知正六边形的半径为3 cm3.于角等一个内这个正多边形的么中正4.多边形的一个心角为36度,那.
___________度2,在⊙O中为内接正三角形的一边,如图24-3-2,两相交圆的公共弦AB为5.31在⊙O中为内接正六边形的一边,求这两圆的面积之比.
2
图24-3-2
6.某正多边形的每个内角比其外角大100°,求这个正多边形的边数.
的三个圆形纸片两两外切,现用一个大cm2 ,在桌面上有半径为24-3-3如图7.圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?
图24-3-3
8.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).
图24-3-4
9.用等分圆周的方法画出下列图案:
图24-3-5
10.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.
图24-3-6
(1)求图24-3-6(1)中∠MON的度数;
(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数;_________是
). (直接写出答案MON的度数与正n边形边数n的关系(3)试探究∠
参考答案)
(5分钟训练一、课前预习
边形的边长圆的半径扩大一倍,则相应的圆内接正n1思路解析:由题意知. 边形的边长与半径之比没有变化n也扩大一倍,所以相应的圆内接正D
答案:3,外接圆半径思路解析:如图,设正三角形的边长为a,则高aAD=2. 233OD=a,所以AD∶OA∶OD=3a,边心距∶2∶1.答案:OA=A 363.答案:5 6
360?360?,所以45°=n4.思路解析:因为正边形的中心角为,所以n=8.
nn8
答案::6 由切线长定理及三角形周长可得5.思路解析:.答案) 二、课中强化(10分钟训练?)?180(360?n?2边形的外角为1.思路解析:因为正n,一个内角为,nn?2)180?n?3602(?5
n=5.答案:=所以由题意得·,解这个方程得n3n2. 思路解析:画图分析,分别求出正三角形、正方形的边长,知应选A.答案:A
3.思路解析:周长相等的正多边形的面积是边数越多面积越大.答案:B
4. 思路分析:求作⊙O的内接正六边形和正方形,依据定理应将⊙O的圆周六等分、四等分,而正六边形的边长等于半径;互相垂直的两条直径由垂径定理知把圆四等分.要证明DE是⊙O内接正十二边形的一边,由定理知,只需证明DE
所对圆心角等于360°÷12=30°.
AC; ⊥(1)作法:①作直径AC;②作直径BD, 四点B、C、D③依次连结A、;
的内接正方形四边形ABCD即为⊙OG; 、、H、F于④分别以A、C为圆心,OA 长为半径作弧,交⊙OE. 各点、G、H⑤顺次连结A、E、F、C. 的内接正六边形
六边形AEFCGH即为⊙ODE. 、(2)证明:连结OE?360?360==60°,=90°,∠AOE∵∠AOD=64. -∠AOE=30°∴∠DOE=∠AOD. DE为
⊙O的内接正十二边形的一边∴)
三、课后巩固(30分钟训练则1,所以边心距为0.5,1. 思路解析:正六边形的两条平行边之间的距离为3D 边长为答案:.3B 答案:2.思路解析:将问题转化为直角三角形,由直角边的比知应选B.18 答案:3.144.
答案:4.思路分析:欲求两圆的面积之比,根据圆的面积计算公式,只需求出两圆的半5.
与R的平方比即可径R63,O的半径为R设正三角形外接圆⊙O的半径为R,正六边形外接圆⊙解:63123=∶3.∴⊙O的面积∶⊙,∴=R∶RO的面AB,R=AB 由题意得R323613633.
积=1∶??360180??(n2),依题,外角为n6.解:设此正多边形的边数为,则各内角为nn?360??2(n?)1809.
=-100°.意得解得=n nn7.思路分析:设三个圆的圆心为O、O、O,连结OO、OO、OO,可得边131223213长为4 cm的正△OOO,设大圆的圆心为O,则点O是正△OOO的中心,331122求出这个正△OOO外接圆的半径,再加上⊙O的半径即为所求.
1231解:设三个圆的圆心为O、O、O,连结OO、OO、OO,可得边长为133221321.34所以大圆的半,O,则正△OOOcm外接圆的半径为O4 cm的正△O331122
36?3434径为(cm). +2= 33
8.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).
图24-3-4
答案:略.
9.用等分圆周的方法画出下列图案:
图24-3-5
作法:(1)分别以圆的4等分点为圆心,以圆的半径为半径,画4个圆;
(2)分别以圆的6等分点为圆心,以圆的半径画弧.
10.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.
图24-3-6
的度数;MON中∠24-3-6(1)求图(1).
(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数是_________;
(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).
答案:(1)方法一:连结OB、OC.
∵正△ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.
又∵BM=CN,OB=OC,∴△OBM≌△OCN.∴∠BOM=∠CON.
∴∠MON=∠BOC=120°.
方法二:连结OA、OB.∵正△ABC内接于⊙O,
∴AB=AC,∠OAM=∠OBN=30°,∠AOB=120°.又∵BM=CN,∴AM=BN. ∵OA=OB,∴△AOM≌△BON.∴∠AOM=∠BON.∴∠MON=∠AOB=120°. 360 . (3)∠MON= (2)90°72°n。