烧结矿质量及其对高炉冶炼主要操作指标的影响
高炉配吃落地烧结矿的实际操作

高炉配吃落地烧结矿的实际操作摘要:我国钢铁工业得到了前所未有的发展,而钢材是现代建筑工程最主要的结构材料和工程材料,其质量直接关系到工程的结构质量和安全。
烧结矿是高炉炼铁的主要原料之一,其质量直接影响到钢铁的质量。
烧结原料、烧结性能不同,烧结矿中矿物的组成和结构也不同,而烧结矿的组成和结构是影响其质量的最主要因素。
因此,研究烧结矿的组成和结构对其质量的影响具有非常重要的现实意义。
关键词:高炉;配吃落地烧结矿;实际操作1 前言邯钢西区1号高炉炉容3200m3,设有32个风口,4个出铁场,于2008年4月18日点火开炉。
主要工艺如下:(1)设置独立的矿槽和焦槽,并列式布置;烧结矿分级入炉,采用焦丁回收入炉技术;(2)采用PW型并罐无钟炉顶;(3)冷却系统采用软水密闭循环,实现全软水冷却;(4)采用INBA渣处理装置;(5)采用改进型高温内燃式热风炉;(6)TRT炉顶余压回收装置。
邯钢西区1号高炉是邯钢首个开炉的大型高炉,投产初期各项经济技术指标与国内同类型高炉有很大的差距。
09年10月后,1号高炉去除中心焦,采用平台+漏斗布料模式。
历经近一年时间,摸索出适应自身炉况的操作制度,炉缸工作状态逐渐改善,各方面技术指标不断进步。
尤其在进入2012年以后,通过实施加强入炉原燃料管理、优化高炉操作制度、稳定高炉操作炉型、强化炉前生产管理、降低高炉休慢风率、四班统一稳定操作等有效措施,实现了高炉长期稳定生产,燃料比长期保持在500kg/t以下。
2 高炉配吃落地烧结矿的原料烧结矿作为高炉炼铁的主要原料,直接影响着高炉冶炼过程的经济技术指标,除要求其具有较高的品位外,还需对其中脉石成分进行分析。
现在广泛为各实验室采用的方法为以碳酸钠熔融法进行SiO2-CaO-MgO-Al2O3的系统分析,由于贵金属铂坩埚的使用,不仅提高了分析成本,同时对日常管理提出了更高的要求,完成上述系统分析约需2小时左右。
近年来发展起来的X荧光分析技术,初步实现了烧结矿试样分析的仪器化,但因该方法所用设备昂贵,对标样的依赖性强等因素,不仅使分析成本大大提高,同时试样成分的差异性造成的制备条件限制,使其广泛应用受到一定的局限。
高炉炼铁原料

高炉炼铁原料1.铁矿石和燃料高炉炼铁必备的三种原料中,焦炭作为燃料和还原剂,是主要能源;熔剂,如石灰石,主要用来助熔、造渣;铁矿石则是冶炼的对象。
这些原料是高炉冶炼的物质基础,其质量对冶炼过程及冶炼效果影响极大。
铁矿石铁矿石分类及特性高炉冶炼用的铁矿石有天然富矿和人造富矿两大类,含铁量在50%以上的天然富矿经适当破碎、筛分处理后可直接用于高炉冶炼。
贫铁矿一般不能直接入炉,需要破碎、富矿并重新造块,制成人造富矿(烧结矿或球团矿)再入高炉。
人造富矿含铁量一般在55%~65%之间。
由于人造富矿事先经过焙烧或者烧结高温处理,因此又称为熟料,其冶炼性能远比天然富矿优越,是现代高炉冶炼的主要原料。
天然块矿统称成为生料。
我国富矿储量很少,多数是含Fe30%左右的贫矿,需要经过富矿才能使用。
A.矿石和脉石能从中经济合理的提炼出金属来的矿物成为矿石。
如铁元素广泛地、程度不同地分布在地壳的岩石和土壤中,有的比较集中,形成天然的富铁矿,可以直接利用来炼铁;有的比较分散,形成贫铁矿,用于冶炼及困难又不经济。
随着选矿和冶炼技术的发展,矿石的来源和范围不断扩大。
含铁较低的贫矿经过富选也可用于炼铁。
矿石中除了用来提炼金属的有用矿物外,还含有一些工业上没有提炼价值的矿物或岩石,称为脉石。
对冶炼不利的脉石矿物,应在选矿和其他处理过程中尽量去除。
但矿石中脉石的结构和分布直接影响矿石的选冶性能。
如果含铁矿物结晶颗粒比较粗大,则在选矿过程中易于实现有用矿物的单体分离;反之,如果含铁矿物呈颗粒结晶嵌布在脉石中,则要进一步细磨矿石才能分离出有用单体。
B.天然矿石的分类及特性天然铁矿石按其主要矿物分为磁铁矿、赤铁矿、褐铁矿和菱铁矿等几种,主要矿物组成及特征见下表。
常见铁矿石的组成及特征磁铁矿,主要含铁矿物为Fe3O4,具有磁性。
其化学组成可视为Fe2O3* FeO,其中FeO 30%,Fe2O3 69%,Tfe 72.4%, O27.6%。
配加落地烧结矿对高炉冶炼影响

矿入炉增加了多次倒运过程,必然影响落地烧结 矿的含粉率和粒度组成结构。
截取同一筛网直送烧结矿与落地烧结矿粒度 组成分析如表]所示。落地烧结矿与直送烧结矿 在筛上物粒度组成上存在较大差别:落地烧结矿 平均粒度较直送烧结矿偏小1 ~2mm。粒度组成 上,10 - 16mm小粒级比例增多约3% -6%, 25 ~40mm大粒级比例降低约2% -3%, 40mm以 上大粒级比例降低约2% ~3%
<5mm/% 2. 52 2. 49 2. 46 2. 39 2. 39 2. 38
平均粒度/ mm 17. 95 17. 73 17. 68 19. 35 19. 17 19. 08
12.0 10.0 &0进 6.0§
4.0蚁 2.0 0.0
图1 2月份落地烧结矿占比与矿筛返粉率关系
1.2低温还原粉化率分析 在高炉上部低温区(约500〜600兀),烧结
Vol. 40 No. 3
冶金能源
May. 2021
ENERGY FOR METALLURGICAL INDUSTRY
33
矿种 落地烧结矿
直送烧结矿
表1落地烧结矿与直送烧结矿筛上粒度组成对比
> 40 mm/ % 4. 02 3.27 4. 02 6. 08 6.44 6. 03
25 ~ 40mm/% 14. 82 14. 93 14. 38 1& 29 16. 74 17. 14
唐钢3号高炉1998年开炉,设计炉容为 2560m3, 2007年推移大修扩容至3200m30自 2019年以后,采暖季环保响应进入常态化,烧 结工艺长期限产甚至停产。高炉大量配吃自产和 外购落地烧结矿,配加比例长期在50%左右, 最高短期配加100%落地烧结矿。长期大量配吃 落地烧结矿对炉况长期稳定顺行带来较大压力, 通过采取一系列针对性措施,维持了高炉的长期 稳定顺行,取得了较好的经济技术指标。
烧结矿质量及其对高炉冶炼主要操作指标的影响

高炉主要操作指标
利用系数
燃料比
1.228
813
1.998
559.4
2.412
535.0
2.153
496.7
2.28
478.0
0.788
793.2
0.463
878.0
1.519
556.9
1.719
547.6
2.147
538.0
0.472
986
1.234
610
2.04
601
2.20
550
近几年有不少钢铁企业采用低品位、大渣量的做法,主观愿望想降低成本,实际适得其反,造
2 烧结矿质量的内涵和价值
烧结矿的质量由化学成分、物理性能和冶金性能三部分组成,它们三者间的关系是:化学成分是基 础,物理性能是保证,冶金性能是关键。
2.1 烧结矿的主要化学成分及其价值
烧结矿的主要化学成分包括品位和SiO2、碱度、MgO、Al2O3和FeO,还有S、P、Ka2O、ZnO和Cl等有 害元素。 2.1.1 含铁品位对烧结矿质量的价值
900℃还原/% 80.75 80.10 77.12 85.51 81.56 79.12
烧结生产之所以要配MgO是为了满足高炉炼铁炉渣流动性、脱硫和脱碱(K2O+Na2O)的需 求。
2.1.6 FeO含量对烧结矿质量的价值 FeO含量也是烧结矿的一个重要内容,FeO含量的高低直接影响烧结矿的强度、粒度和冶金
烧结矿质量对高炉冶炼的影响 精品

吉林电子信息职业技术学院毕业论文烧结矿质量对高炉冶炼的影响摘要烧结矿是高炉炼铁生产的主要原料之一,烧结矿的性能和质量直接影响高炉冶炼的顺行、操作制度和技术经济指标。
本论文通过对烧结矿的还原,滴落实验,验证不同粒度的半焦、无烟煤代替焦粉作燃料的铁矿烧结技术的比较优势。
以及改变其粒度等方面对烧结进行分析、研究。
本项研究内容包括:原、燃料的物理化学性质、燃料的性能及反应性、烧结矿质量指标的评价;在不同原料配比条件下改变燃料粒度的烧结实验;烧结矿的物理化学性能和冶金性能等检测;对燃料种类和配比对烧结矿生产指标、烧结矿化学成分、矿物组成、还原性能、还原粉化性能、软熔滴落性能的影响进行评价,实验结果及其分析。
实验结果证明:半焦在>5mm粒级控制在15%的粒度下是很好的烧结燃料。
无烟煤相对做烧结燃料效果不好;<3mm粒级控制在70%左右为宜。
关键词:烧结矿,无烟煤,焦粉,半焦,矿物组成,烧结矿冶金性能,改变粒度I吉林电子信息职业技术学院毕业论文目录第一章绪论·············································································································· - 6 -1.1烧结生产的目的·············································································································- 6 -1.2烧结用原料条件·············································································································- 7 -1.3燃料的粒度 ······················································································································- 7 -1.4燃料的基本性质·············································································································- 8 -1.4.1燃料的工业分析、元素分析 ......................................................................... - 8 -1.4.2燃料的灰成分和灰熔点·······························································································- 10 -第二章烧结的作用·································································································- 11 -2.1烧结矿的作用 ···············································································································- 11 -2.2烧结机的作用 ···············································································································- 12 -2.3烧结矿中MgO 作用机理 ····························································································- 12 -第三章烧结生成工艺及生产的工艺流程·························································- 13 -3.1烧结生成工艺 ···············································································································- 13 -3.2烧结生产的工艺流程··································································································- 13 -3.2.1烧结原料的准备 ..................................................................................... - 14 -3.2.2配料与混合............................................................................................... - 14 -3.2.3烧结生产 ................................................................................................... - 15 -第四章烧结矿对高炉冶炼的影响·····································································- 18 -4.1烧结矿指标对高炉冶炼过程的影响·······································································- 18 -4.2烧结矿指标和冶金性能的影响因素·······································································- 20 -第五章结论·········································································································- 24 -参考文献·················································································································- 25 -致谢·································································································错误!未定义书签。
烧结配矿优化及高炉生产应对实践

M etallurgical smelting冶金冶炼烧结配矿优化及高炉生产应对实践张利波摘要:近些年,高炉炼铁一直是冶炼生铁过程中应用的最重要的技术,居于主导地位。
最近几年,全球的学者即使研究出许多高炉炼铁技术,不过在制作成本的经济性方面,依旧不能和以往的高炉制造技术进行比较。
国内,因为历史条件与制造成本的干预,非高炉炼铁技术的发展速度较慢,超过百分之九十五的生铁依旧借助高炉进行制作。
高炉生产期间,入炉原料重点是烧结矿、球团矿和块矿,而且烧结矿的比例高于百分之八十。
所以,烧结矿的品质高低在高炉生产过程中占据着主导作用,提升烧结矿品质对于缩减制作成本、保证高炉良好的运行具备着较高的作用。
关键词:烧结配矿优化;高炉生产;应对实践对策现如今使用的矿粉、矿石以及含铁工业物料等,使得烧结原料逐渐繁杂,如何通过原料的优化搭配实现品质最优、成本最优是钢铁生产重点关注的问题。
烧结矿是高炉的主要“口粮”,其质量的好坏直接影响高炉生产稳定和各项经济技术指标的完成。
为了确保烧结矿质量稳定,工作人员运用智能化手段,提升烧结配料精度,改善烧结矿质量,为高炉高效生产筑牢保障。
1 研究背景1.1 铁矿粉市场行情在我国环保政策高效实施的环境下,钢铁公司开始限制产量,铁矿石的需求数目逐渐下降。
不过在2017年~2018年鉴因为钢铁利润空间的变化,个别产能被释放,导致铁矿石的需求数目逐渐提升。
身为铁矿石的出产地澳大利亚与巴西境内铁矿石的出产量也随之增加,不过市场依然处于供需不平衡的状态,导致铁矿石的流通价格较高。
并且,因为持续的挖掘与应用优质资源,导致地球上的优质铁矿石数量逐步的减少,铁矿石供需框架的调节会是后期国际上需要一起面临与开展的工作。
我国铁矿石的存储数量位于世界前列,大约为整体存储量的百分之十二,整体的应用潜力较高。
由于铁矿的开采、加工工艺的提升,铁矿资源的整体应用会呈现出良好的经济性。
1.2 烧结配矿结构优化的理论基础低品矿粉为减少烧结资金投入最为重要的方式,不过品味下降可能导致非铁元素的高效提升,造成烧结矿品质降低,为后续高炉生产留下隐藏的危害,科学的应用铁矿粉高温特性展开烧结配矿,能够提升烧结配矿的效果。
18烧结矿冶金性能对其质量和高炉指标的影响

T10
1091 1092 1085
T40
1134 1247 1227
ΔT
43 155 142
Ts
1267 1435 1448
Td
1333 1450 1464
ΔT
66 15 16
ΔPm·9.8pa
S值(Kpa℃)
33.63 11.76 21.64
102 130 188
济钢
75.1
74.6
42.3
- - - 63.96 39.5
主要参考文献
序言:
烧结矿的冶金性能包括 900℃还原性(RI)、500℃低温还原粉化性 能( RDI )、荷重还原软化性能( TBS 、 TBE 、Δ TB )和熔融滴落性能 (Ts、Td、ΔT、ΔPm、S值)。这四项性能中900还原性是基本性能, 它不仅直接影响煤气利用率和燃料比,同时由于还原程度的不同,还 影响其还原强度(RDI)和软熔性能。500℃低温还原性能是反映烧结 矿在高炉上部还原强度的,它是高炉上部透气性的限制性环节。在高 炉冶炼进程中,高炉上部的阻力损失约占总阻力损失的 15%。烧结矿 的荷重还原软化性能是反映其在高炉炉身下部和炉腰部分软化带透气 性的,这部分的透气阻力约占高炉总阻力损失的25% 。熔融滴落性能 是烧结矿冶金性能最重要的部分,因为它约占高炉总阻力损失的60%, 是高炉下部透气性的限制性环节,要保持高炉长期顺行稳定,必须十 分重视含铁原料在熔融带的透气阻力。烧结矿在高炉的块状带、软化 带和熔融滴落带不同部位的性状和透气阻力的变化(详见示图)决定 着高炉内不同部位顺行和稳定,因此研究和分析清楚冶金性能对烧结 矿质量和高炉主要操作指标的影响是十分重要和必要的。
烧结矿的荷重还原软化性能是指其装入高炉后,随炉料下降,温度上升不断被 还原,到达炉身下部和炉腰部位,烧结矿表现出体积开始收缩即开始软化(TBS) 和 软 化 终 了 ( TBE ) 的 特 性 , 高 碱 度 烧 结 矿 的 TBS 应 ≥ 1100 ℃ , 软 化 温 度 区 间 (ΔTB= TBE -TBS)应≤150℃,烧结矿开始软化温度的高低取决于其矿物组成和 气孔结构强度〔1〕开始软化温度的变化往往是气孔结构强度起主导作用的结果, 这就是说,软化终了温度往往是矿物组成起主导作用。由高炉内各带透气阻力的 示图可知,软化带的阻力损失约占25%,是反映炉料在炉身下部和炉腰部位顺行状 况的,当烧结矿的开始软化温度低于950℃,软化温度区间>300℃时,高炉必须会 产生严重的悬料,因此为了保持高炉顺行稳定,烧结矿应具有良好的荷重还原软 化性能。关于荷重还原性能对高炉主要操作指标的影响 ,意大利的皮昂比诺 ( Piombimo )公司 4# 高炉曾于 1980 年做过统计,含铁原料的 TBS 由 1285 ℃提高到 1335℃,高炉的透气性ΔP由5.2kpa降低到4.75kpa(下降8.7%),产量提高了 16%, 日本神户公司的加古川厂和新日铁的广畑厂均通过改善酸性球团矿的软熔性能有 效地改善了高炉操作指标〔7〕。
5烧结矿(定)

燃烧带特征
燃烧带是一“嵌晶”结构,碳粒燃烧是在不含碳的惰性物料包围下进行的 远离燃料颗粒区域:温度低得多、氧化气氛
靠近燃料颗粒附近:高温、还原性气氛、氧气不足 (特别是在烧结块形成时,燃料被熔融物包裹时氧就更不足)
固体燃料的粒度
烧结粉矿(0~8mm)时,1~2mm的焦粉是最适宜的,这样的粒度有能力在周围建 立18~20mm烧结矿块 烧结精矿(0~lmm,其中0~0.074mm占30%)时,0.5~3mm的焦粉最好
利用系数=台时产量/有效抽风面积 t/(m2· h)
(2)成品率
成品率=成品烧结矿量 /(成品烧结矿量+返矿量)
(3)烧成率
烧成率=成品烧结矿量 / 混合料总消耗量
(4)返矿率
返矿率=返矿量 / 混合料总消耗量
(5)日历作业率
日历作业率=烧结机运转时间 / 日历时间
(6)劳动生产率
每人每年生产烧结矿的吨数
烧结过程影响燃烧速度的因素
一切能够增加扩散速度的因素均影响燃烧速度:
减小燃料粒度
增加气流速度(改善料层透气性、增大风机风量等) 增加气流中氧含量
燃烧带的结构示意图
燃烧带燃料燃烧的特性
1. 碳含量少、粒度细、分散 介于单颗粒与燃料群之间的固定床燃烧 2. 空气过剩系数较高(常为1.4~1.5) 烧结废气中均含一定数量的氧 3. 料层中热交换十分有利 碳粒在10~40mm厚的高温区内迅速燃烧,燃烧处于“扩散燃烧区” 4. 空气供给氧、某些氧化物供给氧 通过废气中O2、CO、CO2中的总氧来佐证:某些氧化物供给氧 无MeCO3分解、无氧化物还原、无漏风时:废气中CO2 + 0.5CO + O2 接近21% 实际上烧结赤铁矿时:废气中CO2 + 0.5CO + O2 为22~23% 实际上烧结软锰矿时:废气中CO2 + 0.5CO + O2 达到23.5% 实际上烧结磁铁矿时:废气中CO2 + 0.5CO + O2 降到18.5~20%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高炉主要操作指标
利用系数
燃料比
1.228
813
1.998
559.4
2.412
535.0
2.153
496.7
2.28
478.0
0.788
793.2
0.463
878.0
1.519
556.9
1.719
547.6
2.147
538.0
0.472
986
1.234
610
2.04
601
2.20
550
近几年有不少钢铁企业采用低品位、大渣量的做法,主观愿望想降低成本,实际适得其反,造
含
企业名称 首钢
包钢
酒钢
表1 首钢等企业烧结矿品位、SiO2含量与高炉炼铁技术经济指标的关系[1][2][3]
年份
1961 1978 1990 2000 2010 1967 1977 1997 2000 2010 1975 1986 1990 2000 2010
TFe 43.72 53.29 57.20 56.98 56.19 46.78 45.75 53.24 56.97 57.16 43.08 49.35 49.67 48.39 49.378
表2 莱钢、太钢不同碱度烧结矿的矿物组成[4]
企业名称 莱钢
烧结矿碱度 1.35
SFCA 10~12
Fe2O3 7~12
Fe3O4 50~55
玻璃相 20~25
2CaO/SiO2 3
未矿化化熔剂 1~2
1.6
15
7~10
50
15~17
6~8
2~3
1.80
25
7~10
45
12
6~8
1~2
2.10
35
2 烧结矿质量的内涵和价值
烧结矿的质量由化学成分、物理性能和冶金性能三部分组成,它们三者间的关系是:化学成分是基 础,物理性能是保证,冶金性能是关键。
2.1 烧结矿的主要化学成分及其价值
烧结矿的主要化学成分包括品位和SiO2、碱度、MgO、Al2O3和FeO,还有S、P、Ka2O、ZnO和Cl等有害 元素。
成大排放、高燃料比和低效的结果,总结历史的经验,应继续走精料之路,才能实现低成本、低燃
料比和高效炼铁的目标。
2.1.2 碱度对烧结矿质量的价值 理论研究和多年来的生产实践证明,高碱度是烧结矿质量的基础。由于烧结矿的质量取决于
其矿物组成,而烧结矿的矿物组成取决于碱度还配碳。对高炉炼铁而言,烧结矿的最佳碱度范围为 1.90~2.30,莱钢、太钢不同碱度烧结矿矿物组成列于表2,在生产实践中,烧结矿的强度和粒度, 烧结矿的冶金性能均与其碱度直接相关。
4 对改善烧结矿质量的几点结论性意见
1 烧结矿在高炉炼铁中的地位和作用
自上世纪八十年代以来,高碱度烧结矿一直是我国高炉炼铁的主要原料,近几十年来,铁原料占高 炉炼铁成本接近70%,烧结矿占高炉炼铁炉料的70%以上,占吨钢能耗指标的10%以上,是钢铁生产能耗 的第二大户,也是废气物排放的大户,因此不论从炉料组成比例、生铁成本、还是废弃物排放及环境保 护,烧结矿生产对高炉炼铁都有着举足轻重的影响。
烧结矿质量及其对高炉冶炼主要操作指标的影响
许满兴 (北京科技大学)
摘 要:本文阐述了烧结矿在高炉炼铁中的地位和作用,阐明了烧 结矿质量的内涵,分析了烧结矿的化学成分、物理性能和冶金性能 对高炉冶炼主要操作指标的影响,提出了烧结生产改善烧结矿质量 的几点结论性意见。 关键词:烧结矿质量、主要化学成分、强度和粒度、冶金性能 高炉冶炼主要操作指标
表4.
表3 几个企业烧结矿强度与碱度的关系
烧结矿碱 度
CaO/SiO2 1.6
1.80
2.0
韶钢 56.78 66.73 71.44
石刚 51.34 58.00 63.00
烧结矿强度(转鼓指数/Ti+6.3%)
邯钢
马钢
51.29 59.84 65.50
65.39(1.67) 66.37(1.84) 67.88(1.98)
2.1.1 含铁品位对烧结矿质量的价值 含铁品位是烧结矿质量的核心,我国自解放后至今半个多世纪以来,提高烧结矿质量的
一个核心问题就是不断提高烧结矿的品位、降低烧结矿的SiO2含量,由于品位的提高,渣量的 降低、高炉炼铁的产量提高,燃料比降低,表1列出了首钢、包钢和酒钢的烧结矿质量与高炉 主要技术经济指标的关系。
烧结矿质量
SiO2 10.45
FeO 23.00
10.25
21.0
12.79
6.06
9.70
5.39
8.68
11.98
27.0
7.91
27.23
6.06
10.49
5.6411.17Fra bibliotek4.6 3
8.79
13.4
21.0
10.61
11.65
10.30
13.29
8.10
10.98
7.87
9.95
CaO/SiO2 1.40 1.35 1.55 1.61 2.05 0.91 1.84 1.87 1.35 1.98 1.20 1.24 1.25 1.78 1.93
1.1 烧结矿的物理性能对高炉上部块状带的透气性起决定性的作用(強度、粒度、低温还原強度) 1.2 烧结矿的荷重还原软化性能对高炉软化带的透气性起决定性的作用 1.3 烧结矿的熔滴高能对高炉下部熔融带的透气性起决定性的作用 1.4 烧结矿的品位、碱度和脉石含量对高炉冶炼的主要指标(包括产量、燃料比、生铁质量和成本)起 着决定性的作用
宣钢 74.33(1.82) 76.17(1.97) 78.54(2.08)
烧结 CaO/SiO2 900℃ 矿 RI/%
表4 几个企业烧结矿的冶金性能与碱度的关系
500℃还原粉化/%
软化性能/℃
熔融滴落性能
RDI+6.3 RDI+3.15 RDI-_0.5 T10 T40 ΔT
Ts
Td
ΔPm·9.8pa
5~7
40
7~8
5~7
3~5
太钢
1.31
10~15
7~10
50~55
20
3~5
未见
1.78
35~40
10~15
30~35
3~5
10
3
1.96
40
15
25~30
2~3
10
3~5
2.15
45
7~10
30
1~2
10~15
3~5
几个企业烧结矿强度与碱度的关系列于表3,几个企业烧结矿的冶金性能与碱度的关系列于
主要内容: 1.烧结矿在高炉炼铁中的地位和作用 2.烧结矿质量内涵及分析
2.1.烧结矿主要化学成分及其价值 2.2.烧结矿的强度和粒度的价值 2.3.烧结矿冶金性能的价值
3.烧结矿质量对高炉冶炼主要操作指标的影响
3.1 烧结矿主要化学成分对高炉冶炼主要操作指标的影响 3.2 烧结矿强度和粒度对高炉冶炼主要操作指标的影响 3.3 烧结矿冶金性能对高高炉冶炼主要操作指标的影响