最新北师大版高中数学必修二全套精编导学案
高中数学 全套教案 北师大版必修2

(北师大版)数学必修2全套教案(北师大版)数学必修2全套教案2.1.1直线的倾斜角和斜率教学目标:知识与技能(1)正确理解直线的倾斜角和斜率的概念.(2)理解直线的倾斜角的唯一性.(3)理解直线的斜率的存在性.(4)斜率公式的推导过程,掌握过两点的直线的斜率公式.情感态度与价值观(1)通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2) 通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.重点与难点:直线的倾斜角、斜率的概念和公式.教学用具:计算机教学方法:启发、引导、讨论.教学过程:(一)直线的倾斜角的概念我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P的直线l的位置能确定吗? 如图, 过一点P可以作无数多条直线a,b,c, …易见,答案是否定的.这些直线有什么联系呢?(1)它们都经过点P. (2)它们的‘倾斜程度’不同. 怎样描述这种‘倾斜程度’的不同?引入直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角....特别地,当直线l与x轴平行或重合时, 规定α= 0°.问: 倾斜角α的取值范围是什么? 0°≤α<180°.当直线l与x轴垂直时, α= 90°.因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.如图, 直线a∥b∥c, 那么它们YXcbaO的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素: 一个点...P.和一个倾斜角α........(二)直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.例如, α=45°时, k = tan45°= 1;α=135°时, k = tan135°= tan(180°- 45°) = - tan45°= - 1.学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.(三) 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1P2的斜率? 可用计算机作动画演示: 直线P1P2的四种情况, 并引导学生如何作辅助线,共同完成斜率公式的推导.(略)斜率公式:对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90°, 直线与x 轴垂直;(2)k与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换, 但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4) 当 y1=y2时, 斜率k = 0, 直线的倾斜角α=0°,直线与x轴平行或重合.(5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.(四)例题:例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA的斜率, 并判断它们的倾斜角是钝角还是锐角.(用计算机作直线, 图略)分析: 已知两点坐标, 而且x1≠x2, 由斜率公式代入即可求得k的值;而当k = tanα<0时, 倾斜角α是钝角;而当k = tanα>0时, 倾斜角α是锐角;而当k = tanα=0时, 倾斜角α是0°.略解: 直线AB的斜率k1=1/7>0, 所以它的倾斜角α是锐角;直线BC的斜率k2=-0.5<0, 所以它的倾斜角α是钝角;直线CA的斜率k3=1>0, 所以它的倾斜角α是锐角.例2 在平面直角坐标系中, 画出经过原点且斜率分别为1, -1, 2, 及-3的直线a, b, c, l.分析:要画出经过原点的直线a, 只要再找出a上的另外一点M. 而M的坐标可以根据直线a的斜率确定; 或者k=tanα=1是特殊值,所以也可以以原点为角的顶点,x 轴的正半轴为角的一边, 在x 轴的上方作45°的角, 再把所作的这一边反向延长成直线即可.略解: 设直线a上的另外一点M的坐标为(x,y),根据斜率公式有1=(y-0)/(x-0)所以 x = y可令x = 1, 则y = 1, 于是点M的坐标为(1,1).此时过原点和点M(1,1), 可作直线a.同理, 可作直线b, c, l.(用计算机作动画演示画直线过程)(五)练习: P91 1. 2. 3. 4.(六)小结:(1)直线的倾斜角和斜率的概念.(2) 直线的斜率公式.(七)课后作业: P94 习题3.1 1. 3.(八)板书设计:1(1(22用获得新知识的特点。
高中数学(直线和圆的位置关系)导学案 北师大版必修2 学案

第10课时直线和圆的位置关系1.理解直线与圆的位置关系的种类.2.利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离.3.会用方程思想(判别式法)或点到直线的距离来判断直线与圆的位置关系.一艘船在沿直线返回港口的途中,接到台风预报:台风中心位于船正西70千米处,受影响的X围是半径为30千米的圆形区域.已知港口位于台风中心正北40千米处,如果这艘船不改变航线,那么它是否会受到台风影响?这个问题可归结为直线和圆是否有公共点的问题,也是我们这节课研究的对象.问题1:直线与圆的位置关系有三种:、、.判断直线与圆的位置关系有两种方法:(1)代数法:联立直线方程与圆的方程消去x或y整理成一元二次方程后,计算判别式Δ,当判别式Δ<0时,直线和圆;当判别式Δ=0时,直线和圆 ;当判别式Δ>0时,直线和圆.(2)几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r⇒,d=r⇒,d>r⇒.问题2:过一定点是否都存在圆的切线?如果存在,如何求圆的切线方程?(1)若点在圆内,此时直线和圆相交,不存在圆的切线.(2)若点在圆上,则过该点的切线只有,切线方程求法如下:①直接法,先求该点与圆心的连线的直线的斜率,再利用垂直关系求出切线斜率,最后用点斜式求出切线方程.②设元法,先设出切线方程(注意斜率不存在时的讨论),再利用圆心到切线的距离等于半径,求出所设参数.③公式法,设A(x0,y0)是圆(x-a)2+(y-b)2=r2上的一点,则过点A的切线方程为:(x-a)(x0-a)+(y-b)·(y0-b)=r2,特别地,当圆心在原点时,即:A(x0,y0)是圆x2+y2=r2上一点,则过点A的切线方程为:.(3)若点在圆外,则过该点的切线有,切线方程求法如下:首先分析斜率不存在是否满足条件,再分析斜率存在时:设斜率为k,写出切线方程,利用圆心到切线的距离等于半径求出斜率,从而求出切线方程.问题3:计算直线被圆截得的弦长的常用方法(1)几何法:运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数法:运用韦达定理及两点距离公式有|AB|= .问题4:用直线与圆的知识解决实际问题的步骤(1)仔细审题,理解题意;(2)引入,建立;(3)用直线与圆的知识解决已建立的数学模型;(4)用结果解释.1.直线3x+4y=5与圆x2+y2=16的位置关系是( ).2.自点A(-1,4)作圆(x-2)2+(y-3)2=1的切线,则切线长为().A. B.3 C.3.若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,则k的取值X围是.4.过原点作圆x2+y2-2x-2y+1=0的切线,求切线方程.圆的切线方程已知圆的方程是x2+y2=r2,求经过圆上一点M(x0,y0)的切线方程.求圆的弦长求直线x-y+2=0被圆x2+y2=4截得的弦长.利用圆的方程求最值已知实数x,y满足(x-2)2+y2=4,求3x2+4y2的最值.求过点P(4,5)的圆(x-2)2+y2=4的切线方程.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.当直线l与圆C相交于A,B两点,且AB=2时,求直线l的方程.已知点P(x,y)在圆x2+(y-1)2=1上运动,则的最大值为;最小值为.1.直线y=x+1与圆x2+y2=1的位置关系是().2.圆C:x2+y2-4x=0在点P(1,)处的切线方程为().A.x+y-2=0B.x+y-4=0C.x-y+4=0D.x-y+2=03.直线x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于.4.已知圆x2+y2=8内一点P(-1,2),过点P的直线l的倾斜角为135°,直线l交圆于A、B两点,求AB的长.(2012年·卷) 直线y=x被圆x2+(y-2)2=4截得的弦长为.考题变式(我来改编):第10课时直线和圆的位置关系知识体系梳理问题1:相交相切相离(1)相离相切相交(2)相交相切相离问题2:(2)一条③x0x+y0y=r2(3)两条问题3:(2)·|x A-x B|=问题4:(2)数学符号数学模型(4)实际问题基础学习交流1.A∵d==1<4,∴直线与圆的位置关系是相交.2.B因为过圆外一点作圆的切线,两条切线长相等,故切线长为=3,或2-(-1)=3.3.(0,)依题意有<1,解得0<k<,∴k的取值X围是(0,).4.解:已知圆的标准方程为(x-1)2+(y-1)2=1,所以圆与坐标轴相切,所以切线方程为x=0或y=0.重点难点探究探究一: 【解析】(法一)当点M不在坐标轴上时,设切线的斜率为k,半径OM的斜率为k1,∵圆的切线垂直于过切点的半径,∴k=-.∵k1=,∴k=-.∴经过点M的切线方程是y-y0=-(x-x0),整理得x0x+y0y=+.又∵点M(x0,y0)在圆上,∴+=r2.∴所求的切线方程是x0x+y0y=r2.当点M在坐标轴上时,可以验证上面的方程同样适用.(法二)设P(x,y)为所求切线上的任意一点,当P与M不重合时,△OPM为直角三角形,OP为斜边,∴OP2=OM2+MP2,即x2+y2=++(x-x0)2+(y-y0)2,整理得x0x+y0y=r2.可以验证,当P与M重合时同样适合上式,故所求的切线方程是x0x+y0y=r2.(法三)设P(x,y)为所求切线上的任意一点(M与P不重合),当点M不在坐标轴上时,由OM⊥MP得k OM· k MP=-1,即·=-1,整理得x0x+y0y=r2.可以验证,当点M在坐标轴上时,同样适合上式;当P与M重合时亦适合上式.故所求的切线方程是x0x+y0y=r2.【小结】(1)求圆的切线方程一般有三种方法:①设切线斜率,利用判别式,但过程冗长,计算复杂,易出错,通常不采用此法,但该法却是判断直线和曲线相切的通法,以后会经常用到;②设切线斜率,利用圆心到直线的距离等于半径;③设切点,利用过圆心和切点的直线与切线垂直.前两种方法要验证斜率是否存在.(2)过圆外一点可作圆的两条切线.探究二:【解析】(法一)直线x-y+2=0和圆x2+y2=4的公共点坐标就是方程组的解.根据x-y+2=0得y=x+2,代入x2+y2=4得x2+x=0,解得或∴公共点坐标为(-,1)和(0,2),直线x-y+2=0被圆x2+y2=4截得的弦长为=2.(法二)如图,设直线x-y+2=0与圆x2+y2=4交于A,B两点,弦AB的中点为M,则OM⊥AB(O为坐标原点),所以OM==,所以AB=2AM=2=2=2.【小结】在本题的两种方法中,前一种方法是代数法,后一种方法是几何法.在处理与直线和圆相交形成的弦的有关问题时,我们经常用到如下解法:(1)设弦的两个端点坐标分别为(x1,y1)、(x2,y2),代入圆的方程后寻求坐标与弦的关系,然后加以求解;(2)涉及圆的弦长问题时,为了简化运算,常利用垂径定理或半弦长、弦心距及半径构成的直角三角形进行运算.探究三:【解析】由(x-2)2+y2=4得y2=4x-x2,所以3x2+4y2=3x2+4(4x-x2)=-x2+16x=-(x-8)2+64,故3x2+4y2在x=8时有最大值64,没有最小值.[问题]在圆的方程中变量x的取值X围是R吗?[结论]将x=8代入圆方程(x-2)2+y2=4,得y2=-32,矛盾,所以上述解法是错误的.因为y2=4-(x-2)2≥0,所以x的取值X围不是R.于是,正确解答如下:由(x-2)2+y2=4得y2=4x-x2≥0,得0≤x≤4,所以3x2+4y2=3x2+4(4x-x2)=-x2+16x=-(x-8)2+64(0≤x≤4),所以当x=y=0时,3x2+4y2取得最小值0;当x=4,y=0时,3x2+4y2取得最大值48.【小结】确定圆的一般方程x2+y2+Dx+Ey+F=0中的变量的取值X围的方法:先配方,再根据平方项非负来确定.圆的方程中变量的X围一般是以隐含条件的形式出现在试题中,因此在解题时注意挖掘出这个隐含条件.思维拓展应用应用一:把点P(4,5)代入(x-2)2+y2=4,得(4-2)2+52=29>4,即点P在圆(x-2)2+y2=4外.设切线斜率为k,则切线方程为y-5=k(x-4),即kx-y+5-4k=0,又圆心坐标为(2,0),r=2,由圆心到切线的距离等于半径,得=2,解得k=.将k代入所设方程得此时切线方程为21x-20y+16=0.当直线的斜率不存在时,还有一条切线是x=4.因此切线方程为x=4或21x-20y+16=0.应用二:将圆C的方程x2+y2-8y+12=0配方后得到标准方程x2+(y-4)2=4,则此圆的圆心为C(0,4),半径为2.(法一)过圆心C作CD⊥AB交AB于点D,则根据题意和圆的性质,得即:+2=4.解得a=-7或a=-1.即直线l的方程为7x-y+14=0或x-y+2=0.(法二)联立方程组消去y,得(a2+1)x2+4(a2+2a)x+4(a2+4a+3)=0.Δ=-16(4a+3)>0,即a<-,设此方程的两根分别为x1,x2,由韦达定理知x1+x2=-,x1x2=.由AB=2=,可求出a=-7或a=-1,所以直线l的方程是7x-y+14=0或x-y+2=0.应用三:-因为表示的几何意义是圆上的动点与(2,1)连线的斜率,所以设=k,即kx-y+1-2k=0,当直线与圆相切时,斜率k取最大值或最小值,此时=1,解得k=±.所以的最大值为 ,最小值为-.基础智能检测1.B因为圆心(0,0)到直线x-y+1=0的距离d=<1,故直线与圆相交,又(0,0)不在直线上,所以直线不过圆心.2.D因为点P在圆C上,k PC=-,所以切线的斜率为,所以切线方程为y-=(x-1),即x-y+2=0.3.-3或由题设知圆心坐标为(1,0),因为直线与圆相切,所以d==r=,解得m=或-3.4.解:k AB=-1,直线AB的方程为y-2=-(x+1),即x+y-1=0.故圆心(0,0)到AB的距离d==,从而弦长|AB|=2 =.全新视角拓展2本题考查直线和圆的位置关系以及简单的平面几何知识.(法一)几何法:圆心到直线的距离为d==,圆的半径r=2,所以弦长为l=2×=2=2;(法二)代数法:联立直线和圆的方程消去y可得x2-2x=0,所以直线和圆的两个交点坐标分别为(2,2),(0,0),弦长为=2.。
最新北师大版高中数学必修2全册学案

北师大版高中数学必修2全册学案第一章立体几何初步1.1 简单旋转体[学习目标] 1.通过实物操作,增强直观感知. 2.能根据几何结构特征对空间物体进行分类. 3.会用语言概述球、圆柱、圆锥、圆台的结构特征. 4.会表示有关几何体以及柱、锥、台的分类.课前自主学习几种简单旋转体【即时小测】1.思考下列问题(1)铅球和乒乓球都是球吗?提示:铅球是球,乒乓球不是球,铅球是实心球,符合球的定义,乒乓球是空心球,不符合球的定义.(2)圆柱、圆锥、圆台的底面都是圆吗?提示:它们的底面都不是圆,而是圆面.2.用一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( )A.圆柱B.圆锥C.球D.圆台提示:C 由球的性质可知,用平面截球所得截面都是圆面.3.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是( )A.①② B.②③C.①③ D.②④提示:D 依据圆柱、圆锥和圆台的定义及母线的性质可知,②④正确,①③错误.课堂互动题型一球的结构特征例1 有下列说法:①球是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体;②球的直径是球面上任意两点间的连线;③用一个平面截一个球,得到的是一个圆;④空间中到一定点距离等于定长的点的集合是球.其中正确的序号是________.[解析]球可看作是半圆面绕其直径所在的直线旋转形成的,因此①正确;如果球面上的两点连线经过球心,则这条线段就是球的直径,因此②错误;球是一个几何体,平面截它应得到一个面而不是一条曲线,所以③错误;空间中到一定点距离等于定长的点的集合是一个球面,而不是一个球体,所以④错误.[答案]①类题通法透析球的概念(1)球是旋转体,球的表面是旋转形成的曲面,球是球面及其内部空间组成的几何体,球体与球面是两个不同的概念,用一个平面截球得到的是圆面而不是圆.(2)根据球的定义,篮球、排球等虽然它们的名字中都有一个“球”字,但它们都是空心的,不符合球的定义.[变式训练1]下列命题:①球面上四个不同的点一定不在同一平面内;②球面上任意三点可能在一条直线上;③空间中到定点的距离等于定长的点的集合构成球面.其中正确的命题序号为________.答案③解析①中作球的截面,在截面圆周上任取四点,则这四点在同一平面内,所以①错;②球面上任意三点一定不能共线,所以②错;③由球的定义可知③正确.题型二圆柱、圆锥、圆台的结构特征例2 下列命题:①用一个平面去截圆锥得到一个圆锥和一个圆台;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱的任意两条母线平行;④以等腰三角形的底边上的高所在的直线为旋转轴,其余各边旋转一周形成的曲面围成的几何体叫圆锥.其中正确命题的个数为( )A.0 B.1 C.2 D.3[解析]本题主要考查圆柱、圆锥、圆台的概念,关键理解它们的形成过程.①用平行于圆锥底面的平面去截圆锥才能得到一个圆锥和一个圆台;②以直角梯形垂直于底边的腰为轴旋转一周可得到圆台;③、④显然都正确.[答案] C 类题通法透析几种旋转体的概念解决此类问题一般是利用有关旋转体的定义,所以必须对各种旋转体的概念在理解的基础上熟记.圆柱、圆锥、圆台它们都是由平面图形旋转得到的,圆柱和圆台有两个底面,圆柱的两个底面是半径相等的圆面,圆台的两个底面是半径不等的圆面,圆锥只有一个底面.[变式训练2] 下列命题中:①圆台的母线有无数条,且它们长度相同;②圆台的母线延长后一定相交于一点;③圆台可以看作直角梯形以其垂直于底边的腰所在直线为旋转轴,其余三边旋转形成的曲面围成的几何体;④圆绕其直径所在直线旋转半周形成的曲面围成的几何体是球.正确命题的序号是________.答案 ①②③④解析 由圆台与球的定义可知①②③④都对. 题型三 圆柱、圆锥、圆台和球的结构特征的应用例3 如下图,用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1∶4,截去的圆锥的母线长是3 cm ,求圆台的母线长.[解] 如图,设圆台的母线长为y cm ,截得的圆锥底面与原圆锥底面半径分别是x cm,4x cm ,根据相似三角形的性质得33+y =x4x, 解此方程得y =9,因此,圆台的母线长为9 cm.类题通法处理旋转体的有关问题一般要作出其轴截面,在轴截面中去寻找各元素的关系,常利用相似三角形去寻找等量关系.[变式训练3]圆锥的轴截面是正三角形,它的面积是3,则圆锥的高与母线的长分别为________.答案3,2解析设正三角形的边长为a,则34a2=3,∴a=2.由于圆锥的高即为圆锥的轴截面三角形的高,所以所求的高为32a=3,圆锥的母线即为圆锥的轴截面正三角形的边,所以母线长为2.培优训练易错点空间位置关系考虑不全导致漏解[典例] 已知半径为10的球的两个平行截面的周长分别是12π和16π,试求这两个截面间的距离.[错解] 如图(1),设球的球心为O,C,D分别为两截面圆的圆心,AB为经过C,O,D 的球的直径,由题意知两截面圆的半径分别为6和8.在Rt△COE中,OC=102-62=8.在Rt△DOF中,OD=102-82=6.所以CD=OC-OD=8-6=2.故这两个截面间的距离为2.[错因分析] 错解中由于考虑问题不全面而导致错误.事实上,两个截面既可以在球心的同侧,也可以在球心的两侧.[正解]如图(1)(2),设球的球心为O,C,D分别为两截面圆的圆心,AB为经过C,O,D的球的直径,由题意知两截面圆的半径分别为6和8.当两截面在球心同侧时,CD=OC-OD=102-62-102-82=2.当两截面在球心两侧时,CD=OC+OD=102-62+102-82=14.所以这两个截面间的距离为2或14.课堂小结1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.重视圆柱、圆锥、圆台的轴截面在解决几何量中的特殊作用,切实体会空间几何平面化的思想.随堂巩固训练1.图1是由哪个平面图形旋转得到的( )答案 D解析图中给出的组合体是一个圆台上接一个圆锥,因此平面图形应由一个直角三角形和一个直角梯形构成,并且上面应是直角三角形,下面应是直角梯形.2.将一个等腰梯形绕着它较长的底边所在的直线旋转一周,所得几何体由下面哪些简单几何体构成( )A.一个圆台和两个圆锥 B.两个圆台和一个圆锥C.两个圆柱和一个圆锥 D.一个圆柱和两个圆锥答案 D解析把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体.3.给出下列四个命题:①夹在圆柱的两个平行截面间的几何体还是一个旋转体;②圆锥截去一个小圆锥后剩余部分是圆台; ③通过圆台侧面上一点,有无数条母线. 其中正确命题的序号是________. 答案 ②解析 ①错误,没有说明这两个平行截面的位置关系,当这两个平行截面与底面平行时正确,其他情况则结论是错误的,如图(1);②正确,如图(2);③错误,通过圆台侧面上一点,只有一条母线,如图(3).4.圆台上底面面积为π,下底面面积为16π,用一个平行于底面的平面去截圆台,该平面自上而下分圆台的高的比为2∶1,则这个截面的面积为________.答案 9π解析 如下图,把圆台还原成圆锥,设截面⊙O 1的半径为r ,因为圆台上底面面积为π,下底面面积为16π,所以上底面半径为1,下底面半径为4,所以SO SO 2=14.设SO =x ,则SO 2=4x ,从而OO 2=3x .因为OO 1∶O 1O 2=2∶1,所以OO 1=2x ,则SO 1=SO +OO 1=3x .在△SBO 1中,1r =SO SO 1=x3x ,所以r =3,因此截面的面积是9π.1.2 简单多面体[学习目标] 1.通过对实物模型的观察,归纳认知简单多面体——棱柱、棱锥、棱台的结构特征. 2.能运用棱柱、棱锥、棱台的结构特征解决简单多面体的有关计算.课前自主学习1.几种常见的简单多面体2.我们把若干个平面多边形围成的几何体叫作多面体.其中棱柱、棱锥、棱台是简单多面体.【即时小测】1.思考下列问题(1)如下图中的几何体,哪些是旋转体?哪些是多面体?提示:观察图中的几何体,其中②是圆柱,③是圆锥,④是半球,⑥是圆台,都是旋转体;①和⑤都是由若干个平面多边形围成的几何体,都是多面体.(2)棱锥有哪些作为棱锥集合的特征性质?如何利用棱锥的特征性质给棱锥下一个定义?提示:通过观察,我们可以得到棱锥的主要特征性质:棱锥有一个面是多边形,而其余各面都是有一个公共顶点的三角形.有一个面是多边形,其余各面是有一个公共顶点的三角形,这些面围成的几何体叫作棱锥.2.若正棱锥的底面边长和侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥C.五棱锥 D.六棱锥提示:D 六棱锥的所有棱长不能都相等.3.棱台不一定具有的性质是( )A.两底面相似 B.侧面都是梯形C.侧棱都相等 D.侧棱延长后都交于一点提示:C 只有正棱台的侧棱都相等.课堂互动题型一棱柱的结构特征例1 下列说法正确的是( )A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形[解析]由棱柱的定义可判断A、B、C均错,故选D.[答案] D类题通法棱柱结构特征问题的解题策略(1)有关棱柱概念辨析问题应紧扣棱柱定义①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个面平行,再看是否满足其他特征.三个条件缺一不可.(2)多注意观察一些实物模型和图片便于反例排除.[变式训练1]下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.答案③④解析三棱柱的两底面都是三角形,所以①②错误.③显然正确.对于④若用平行于底面的平面截棱柱,则截成的两部分都是棱柱,故④正确.题型二棱锥、棱台的结构特征例2 下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②棱锥的侧面只能是三角形;③由四个面围成的封闭图形只能是三棱锥;④棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.[解析]因为棱台的侧棱延长后必交于一点所以侧面一定不会是平行四边形,故①正确,②③显然也正确.对于④一个四棱锥沿顶点与底面对角线切开是两个三棱锥,故④错误.[答案]①②③类题通法棱锥、棱台结构特征问题的判断方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法[变式训练2]判断如图所示的几何体是不是棱台,为什么?答案图①,②,③都不是棱台.解析因为图①和图③都不是由棱锥所截得的,故图①,③都不是棱台,虽然图②是由棱锥所截得的,但截面不和底面平行,故不是棱台,只有用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分才是棱台.题型三几类特殊的四棱柱例3 一个棱柱是正四棱柱的条件是( )A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是正方形,相邻的两个侧面是矩形D.每个侧面都是全等的矩形[解析]将正方体ABCD-A1B1C1D1的下底面ABCD水平移动一段距离(上底面A1B1C1D1不动),形成新的几何体,如下图所示.新的几何体底面ABCD为正方形,侧面B1BCC1与A1ADD1是矩形,且侧面ABB1A1,侧面CDD1C1与底面的垂直关系未发生变化,但它是斜四棱柱,故A、B错;对于D选项,底面是菱形的直四棱柱每个侧面都是全等的矩形,但它不是正四棱柱.故选C.[答案] C类题通法几种四棱柱之间关系是判断基础四棱柱是一种非常重要的棱柱,平行六面体(底面是平行四边形的四棱柱)、直平行六面体(侧棱垂直于底面的平行六面体)、长方体、正方体、正四棱柱等都是一些特殊的四棱柱,它们之间的关系如下图所示:[变式训练3]用一个平面去截正方体,所得截面不可能是( )A.六边形B.菱形C.梯形D.直角三角形答案 D解析用一个平面去截正方体,当截面为三角形时,可能为锐角三角形、等腰三角形、等边三角形,但不可能为直角三角形.培优训练易错点⊳概念理解不透判断易错[典例] 有两个面互相平行,其余各面都是平行四边形,由这些面围成的几何体是棱柱吗?[错解] 因为棱柱的两个底面平行,其余各面都是平行四边形,所以所围成的几何体是棱柱.[错因分析] 棱柱的定义是这样的:有两个面互相平行,其余各面都是平行四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的几何体叫作棱柱.显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.定义都是非常严格的,只要不满足所有的条件就会有特殊的例子出现.这提醒我们必须严格按照定义判定.[正解]满足题目条件的几何体不一定是棱柱,如图所示.课堂小结1.棱柱、棱锥、棱台的关系棱柱、棱锥、棱台的关系如下图所示.2.棱柱、棱锥、棱台的共性棱柱、棱锥、棱台的各面都是平面多边形,因此可以看作是由平面多边形所围成的几何体,即多面体.所谓多面体就是由平面多边形所围成的几何体,它还含有除棱柱、棱锥、棱台之外的几何体.随堂巩固训练1.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为( )A.1 B.2 C.3 D.4答案 D解析三棱锥的四个面都是三角形都可以作为棱锥的底面.2.下列几何体中棱柱有( )A.5个 B.4个 C.3个 D.2个答案 D解析由棱柱的定义可知,只有①③两个满足棱柱的定义,故选D.3.下面三个命题,其中正确的有( )①用一个平面去截棱锥,棱锥底面与截面之间的部分一定是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个 B.1个 C.2个 D.3个答案 A解析本题主要考查棱台有关的概念.关键利用棱台的定义和特殊的几何体加以说明.命题①中的平面不一定平行于底面,故①错;命题②③可用举反例说明不成立,如图所示,故②③不对.4.已知集合I={四棱柱},M={平行六面体},N={直平行六面体},P={正四棱柱},Q={长方体},R={直四棱柱},S={正方体},则下列关系中不正确的是( )答案 C解析各个集合中的元素首先都是四棱柱,所以选项D中的关系是正确的;正方体是侧棱与底面边长都相等的正四棱柱,而正方形是矩形的特例,所以正四棱柱是特殊的长方体,再由长方体的定义知选项A中的关系是正确的;同理选项B的关系也正确;而M∩R=N,且直平行六面体的底面不一定是矩形,所以选项C的关系不正确.2 直观图[学习目标] 1.用斜二测画法画水平放置的平面图形的直观图. 2.用斜二测画法画常见的柱、锥、台以及简单组合体的直观图.课前自主学习1.平面图形直观图的画法 斜二测画法规则:(1)在已知图形中建立平面直角坐标系xOy ,画直观图时,它们分别对应x ′轴和y ′轴,两轴交于点O ′,使∠x ′O ′y ′=45°,它们确定的平面表示水平平面.(2)已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x ′轴和y ′轴的线段.(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的12.2.立体图形与平面图形相比多了一个 z 轴,其直观图中对应于z 轴的是 z ′轴,平面x ′O ′y ′表示水平平面,平面y ′O ′z ′和x ′O ′z ′表示直立平面.平行于z 轴的线段,在直观图中平行性和长度都不变.【即时小测】1.思考下列问题(1)相等的角在直观图中还相等吗?提示:不一定.例如正方形的直观图为平行四边形. (2)空间几何体的直观图唯一吗?提示:不唯一.作直观图时,由于选轴的不同,画出的直观图也不同. 2.长方形的直观图可能为下图中的哪一个( )A .①②B .①②③C .②⑤D .③④⑤提示:C 因为长方形的直观图中直角应为45°角,且平行线仍为平行的平行四边形,只有②⑤满足.3.梯形的直观图是( ) A .梯形 B .矩形 C .三角形D .任意四边形提示:A 因为梯形的两底在直观图中应平行且不相等,故仍为梯形. 4.如图所示的直观图△A ′O ′B ′,其平面图形的面积为________.提示:6 由直观图可知其对应的平面图形AOB 中,∠AOB =90°,OB =3,OA =4,∴S△AOB=12OA ·OB =6.课堂互动题型一 画水平放置的平面图形的直观图例1 画出如图所示水平放置的等腰梯形的直观图.[解] 画法:(1)如图所示,取AB 所在直线为x 轴,AB 中点O 为原点,建立直角坐标系,画对应的坐标系x ′O ′y ′,使∠x ′O ′y ′=45°.(2)以O ′为中点在x ′轴上取A ′B ′=AB ,在y ′轴上取O ′E ′=12OE ,以E ′为中点画C ′D ′∥x ′轴,并使C ′D ′=CD .(3)连接B ′C ′,D ′A ′,所得的四边形A ′B ′C ′D ′就是水平放置的等腰梯形ABCD 的直观图.类题通法本题巧借等腰梯形的对称性建系使“定点”“画图”简便易行.在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键,一般要使平面多边形尽可能多的顶点在坐标轴上,以便于画点.原图中不平行于坐标轴的线段可以通过作平行于坐标轴的线段来完成.[变式训练1] 用斜二测画法画如图所示边长为4 cm 的水平放置的正三角形的直观图.解 (1)如图①所示,以BC 边所在的直线为x 轴,以BC 边上的高线AO 所在的直线为y 轴.(2)画对应的x ′轴、y ′轴, 使∠x ′O ′y ′=45°.在x ′轴上截取O ′B ′=O ′C ′=OB =OC =2 cm ,在y ′轴上取O ′A ′=12OA ,连接A ′B ′,A ′C ′,则三角形A ′B ′C ′即为正三角形ABC 的直观图,如图②所示.题型二 空间几何体的直观图 例2 画出正五棱柱的直观图.[解] (1)画轴.画x ′轴、y ′轴和z ′轴,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°,如图①所示.(2)画底面.按x ′轴、y ′轴画正五边形的直观图ABCDE .(3)画侧棱.过点A 、B 、C 、D 、E 分别作z ′轴的平行线,并在这些平行线上分别截取AA ′、BB ′、CC ′、DD ′、EE ′都相等.(4)成图,顺次连接A ′、B ′、C ′、D ′、E ′,去掉辅助线,改被挡部分为虚线,如图②所示.类题通法画空间几何体的直观图,一般先用斜二测画法画出水平放置的平面图形,再画z轴,并确定竖直方向上的相关的点,最后连点成图便可.直观图画法口诀可以总结为:“一斜、二半、三不变”.[变式训练2] 用斜二测画法画长、宽、高分别为4 cm 、3 cm 、2 cm 的长方体ABCD -A ′B ′C ′D ′的直观图.解 画法:(1)画轴.如图,画x 轴、y 轴、z 轴,三轴相交于点O ,使∠xOy =45°,∠xOz =90°. (2)画底面.以点O 为中点,在x 轴上取线段MN ,使MN =4 cm ;在y 轴上取线段PQ ,使PQ =32cm.分别过点M 和N 作y 轴的平行线,过点P 和Q 作x 轴的平行线,设它们的交点分别为A ,B ,C ,D ,四边形ABCD 就是长方体的底面ABCD .(3)画侧棱.过A ,B ,C ,D 各点分别作z 轴的平行线,并在这些平行线上分别截取2 cm 长的线段AA ′,BB ′,CC ′,DD ′.(4)成图.顺次连接A ′,B ′,C ′,D ′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.题型三 由直观图还原平面图形例3 如图,一个平面图形的斜二测画法的直观图是一个边长为a 的正方形,则原平面图形的面积为( )A.24a 2B .22a 2C .a 2D .2a 2 [解析] 由直观图还原出原图,如图,所以S =a ·22a =22a 2.[答案] B类题通法由直观图还原平面图形的关键两点(1)平行x′轴的线段长度不变,平行y′轴线段扩大为原来的2倍;(2)对于相邻两边不与x′、y′轴平行的顶点可通过作x′轴,y′轴平行线变换确定其在xOy中的位置.[变式训练3]一梯形的直观图是一个如图所示的等腰梯形,且梯形OA′B′C′的面积为2,则原梯形的面积为( )A.2 B. 2 C.2 2 D.4答案 D解析如图,由斜二测画法原理知,原梯形与直观图中的梯形上下底边的长度是一样的,不一样的是两个梯形的高.原梯形的高OC是直观图中OC′长度的2倍,OC′的长度是直观图中梯形的高的2倍,由此知原梯形的高OC的长度是直观图中梯形高的22倍,故其面积是梯形OA′B′C′面积的22倍,梯形OA′B′C′的面积为2,所以原梯形的面积是4.培优训练易错点⊳画直观图时忽略斜二测画法的规则[典例] 画出下图中四边形OABC的直观图.[错解] 如图(1)所示,画x ′轴和y ′轴,使∠x ′O ′y =45°.在x ′轴上取O ′B ′=4,O ′D ′=3,在y ′轴上取O ′C ′=1,过D ′作∠B ′D ′A ′=90°,取A ′D ′=1,顺次连接O ′A ′,A ′B ′,B ′C ′,擦去辅助线,所得四边形O ′A ′B ′C ′为四边形OABC 的直观图,如图(2)所示.[错因分析] 错解中没有将∠B ′D ′A ′画成135°.[正解] 如图(1)所示,画x ′轴和y ′轴,使∠x ′O ′y ′=45°.在x ′轴上取O ′B ′=4,O ′D ′=3,在y ′轴上取O ′C ′=1,过D ′作∠B ′D ′A ′=135°,取A ′D ′=1,顺次连接O ′A ′,A ′B ′,B ′C ′,擦去辅助线,所得四边形O ′A ′B ′C ′为四边形OABC 的直观图,如图(2)所示.课堂小结1.斜二测画法是联系直观图和原图形的桥梁,可根据它们之间的可逆关系寻找它们的联系;在求直观图的面积时,可根据斜二测画法,画出直观图,从而确定其高和底边等,而求原图形的面积可把直观图还原为原图形.两者之间关系为:S 直S 原=24. 2.在用斜二测画法画直观图时,平行线段仍然平行,所画平行线段之比仍然等于它的真实长度之比,但所画夹角大小不一定是其真实夹角大小.随堂巩固训练1.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积为( )A .16B .64C.16或64 D.无法确定答案 C解析等于4的一边在原图形中可能等于4,也可能等于8,所以正方形的面积为16或64.2.利用斜二测画法画出边长为3 cm的正方形的直观图,正确的是图中的( )答案 C解析正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.3.在用斜二测画法画水平放置的平面图形的直观图时,与轴不平行的线段的长度( ) A.变大B.变小C.一定改变D.可能不变答案 C解析当与x轴不平行时,过该线段的中点作x轴的垂线,该垂线与y轴平行,画直观图时,该直线平行于y′轴,并且长度减半,从而原线段端点位置改变,导致长度改变.4.水平放置的△ABC有一边在水平线上,它的直观图是正△A1B1C1,则△ABC是( ) A.锐角三角形 B.直角三角形C.钝角三角形 D.任意三角形答案 C解析水平放置的△ABC有一边在水平线上,因为直观图是正三角形,所以原图形有一角大于90°,故为钝角三角形.3 三视图[学习目标] 1.理解三视图的概念;能画出简单空间图形的三视图. 2.了解简单组合体的组成方式,会画简单几何体的三视图. 3.能识别三视图所表示的立体模型.课前自主学习1.组合体(1)定义:由基本几何体生成的几何体叫作组合体.(2)基本形式:有两种,一种是将基本几何体拼接成组合体;另一种是从基本几何体中切掉或挖掉部分构成组合体.2.三视图(1)空间几何体的三视图是指主视图、左视图、俯视图.(2)三视图的排列规则是俯视图放在主视图的下方,长度与主视图一样,左视图放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样.(3)三视图的主视图、俯视图、左视图分别是从正前方、正上方、正左侧观察同一个几何体,所画出的空间几何体的平面图形.【即时小测】1.思考下列问题(1)对于一般的物体,三视图分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)?提示:主视图反映了物体上下、左右的位置关系,即反映物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映物体的长度和宽度;左视图反映了物体上下、前后的位置关系,即反映物体的高度和宽度.(2)三视图中的三个图形一般怎样排列?对于一般的几何体,几何体的主视图、左视图和俯视图的长度、宽度和高度有什么关系?提示:三视图的排列规则是:俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样.为了便于记忆,通常说:“长对正,高平齐,宽相等”或说“主俯一样长,主左一样高,俯左一样宽”.(3)下面是某一几何体的三视图,想象几何体的结构特征,你能画出几何体的直观图吗?提示:由几何体的三视图可知,几何体是一个倒立的三棱台,即上底面面积大,下底面面积小,直观图如下图.2.如下图所示,乙图是甲几何体的________视图.。
高中数学 第一章 立体几何初步 1234 空间图形的基本关系与公理导学案(无答案)北师大版必修2 学

4空间图形的基本关系与公理【教学目标】1.理解空间中点、线、面的位置关系;2.理解空间中平行直线、相交直线、异面直线、平行平面、相交平面等概念;3.掌握三个公理及推论,并能运用它们去解决有关问题;4.会用集合语言来描述点、直线和平面之间的关系以及图形的性质.【重点难点】掌握三个公理及推论,并能运用它们去解决有关问题【教法教具】以讲学稿为依托的探究式教学方法,多媒体教学【教学课时】 2课时【教学流程】自主学习(课前完成,含独学和质疑)1.空间点与直线的位置关系(1)如果点P在直线a,记作P∈a.(2)如果点P在直线a,记作P∉a.2.空间点与平面的位置关系(1)如果点P在平面α,记作P∈α.(2)如果点P在平面α,记作P∉α.3.空间两条直线的位置关系(1)平行直线:如果直线a和b在同一个平面内,但没有,这样的两条直线叫作平行直线,记作a∥b.(2)相交直线:如果直线a和b有且只有公共点P,这样的两条直线叫作相交直线,记作a∩b=P.(3)异面直线:如果直线a和b不同在平面内,这样的两条直线叫作异面直线.4.空间直线与平面的位置关系(1)直线在平面内:如果直线a与平面α有个公共点,我们称直线a在平面α内,记作aα.(2)直线与平面相交:如果直线a与平面α有且只有公共点P,我们称直线a与平面α相交于点P,记作a∩α=P.(3)直线与平面平行:如果直线a与平面α没有,我们称直线a与平面α平行,记作a∥α.5.空间平面与平面的位置关系(1)平行平面:如果平面α与平面β没有,我们称平面α与平面β是平行平面,记作α∥β.(2)相交平面:如果平面α和平面β不重合,但有,我们称平面α与平面β相交于直线l,记作α∩β=l.6.公理1如果一条直线上的在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).7.公理2经过的三点,有且只有一个平面.或简单说成:不共线的三点确定一个平面.8.公理3如果两个的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.9.公理2的推论推论1:经过一条直线和这条,有且只有一个平面;推论2:经过两条直线,有且只有一个平面;推论3:经过两条直线,有且只有一个平面.合作探究:(对学、群学)探究点一空间点、线、面的位置关系导引观察下面三个长方体回答下列问题.思考 1 观察长方体,你能发现长方体有多少个顶点?多少条棱?多少个面?棱所在的直线,以及侧面、底面之间的位置关系吗?例1 将下面用符号语言表示的关系用文字语言予以叙述,并用图形语言予以表示:α∩β=l,A∈l,ABα,ACβ.跟踪训练1 根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形:(1)A∈α,B∉α;(2)lα,m∩α=A,A∉l;(3)P∈l,P∉α;Q∈l,Q∈α.探究点二空间图形的公理思考1 实际生活中,我们有这样的经验:把一根直尺边缘上的任意两点放到桌面上,可以看到,直尺的整个边缘就落在了桌面上.从经验中我们能得到什么结论呢?思考2 如何用符号语言表示公理1?公理1有怎样的用途?思考3 生活中经常看到用三角架支撑照相机;测量员用三角架支撑测量用的平板仪;有的自行车后轮旁只安装一只撑脚.上述事实和类似经验可以归纳出平面怎样的性质?思考4 如何用符号语言表示公理2?公理2有怎样的用途?思考5 如图所示,直线BC外一点A和直线BC能确定一个平面吗?为什么?思考6 如图所示,两条相交直线能不能确定一个平面?为什么?思考7 如图所示,两条平行直线能不能确定一个平面?为什么?思考8 我们已经看到各种棱柱、棱锥的每两个相交的面之间的交线都是直线段,由此你能总结出怎样的结论?思考9 如何用符号语言表示公理3?公理3有怎样的用途?例2 已知a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:a,b,c和l共面.跟踪训练2 已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1、l2、l3在同一平面内.探究点三共线问题例3 已知△ABC在平面α外,AB∩α=P,AC∩α=R,BC∩α=Q,如图所示.求证:P、Q、R三点共线.跟踪训练3 如图所示,在正方体ABCD—A1B1C1D1中,E为AB的中点,F为AA1的中点.求证:CE、D1F、DA三线交于一点.【达标拓展】(检测、拓展)1.若A∈平面α,B∈平面α,C∈直线AB,则( )A.C∈αB.C αC.ABαD.AB∩α=C2.平行六面体ABCD—A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为( )A.3 B.4 C.5 D.63.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成________部分.4.如图,已知D,E是△ABC的边AC,BC上的点,平面α经过D,E两点,若直线AB与平面α的交点是P,则点P与直线DE的位置关系是________.【学后反思】【练案】一、基础过关1.下列图形中,不一定是平面图形的是( )A.三角形B.菱形C.梯形D.四边相等的四边形2.空间中,可以确定一个平面的条件是( )A.两条直线B.一点和一条直线C.一个三角形 D.三个点3.如图所示,用符号语言可表示为( )A.α∩β=m,nα,m∩n=AB.α∩β=m,n∈α,m∩n=AC.α∩β=m,nα,A m,A nD.α∩β=m,n∈α,A∈m,A∈n4.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( ) A.1条或2条B.2条或3条C.1条或3条 D.1条或2条或3条5.给出以下命题:①和一条直线都相交的两条直线在同一平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两个平面重合;④两两平行的三条直线确定三个平面.其中正确命题的个数是________.6.已知α∩β=m,aα,bβ,a∩b=A,则直线m与A的位置关系用集合符号表示为________.7.如图,梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.二、能力提升8.空间不共线的四点,可以确定平面的个数是( )A.0B.1C.1或4D.无法确定9.空间中A,B,C,D,E五个点,已知A,B,C,D在同一平面内,B,D,C,E在同一平面内,那么这五点( )A.共面B.不一定共面C.不共面D.以上都不对10.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是________.①A∈a,A∈β,B∈a,B∈β⇒aβ;②M∈α,M∈β,N∈α,N∈β⇒α∩β=MN;③A∈α,A∈β⇒α∩β=A;④A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合.11.如图,在长方体ABCD-A1B1C1D1中,O1是A1C1与B1D1的交点,长方体体对角线A1C交截面AB1D1于点P.求证:O1,P,A三点在同一条直线上.12.已知a,b,c,d是两两相交且不共点的四条直线,求证:a,b,c,d共面.三、探究与拓展13.在四面体ABCD中,E,G分别为BC,AB的中点,F在CD上,H在AD上,且有DF∶FC=DH∶HA=2∶3.求证:EF,GH,BD交于一点.。
本册综合-北师大版高中数学必修第二册(2019版)教案

本册综合-北师大版高中数学必修第二册(2019版)教案一、教材概述《本册综合高中数学必修Ⅱ》是根据高中数学课程标准和教育部新课程改革的要求编写的,由北师大版社主编。
该教材突破传统的章节划分方式,采用“函数与方程式”“向量和立体几何”“几何变换”“三角函数和解三角形”四大板块,对数学知识进行归纳和整合。
同时,也注重学生对数学的实际应用,增强了习题的实用性。
二、教学目标本册教材的选修内容重点是向量和立体几何、几何变换、三角函数和解三角形。
学生在学习本册内容后应该具备以下能力:•掌握向量的基本概念和运算法则•掌握平面几何图形的性质和证明•熟练掌握平移、旋转、翻折等几何变换的基本概念和性质•掌握三角函数的定义、性质和基本公式•熟练掌握三角函数的应用三、教学安排3.1 向量和立体几何3.1.1 向量的基本概念在向量的学习中,首先要介绍向量的基本概念,如坐标表示、大小、方向等,然后介绍向量的加减、数量积、矢量积等运算规则,最后介绍平面向量和空间向量的坐标表示及其性质,并让学生通过练习题目掌握向量的应用。
3.1.2 线性运动对于线性运动的学习,我们要基于向量的概念进行介绍。
首先要明确“位移向量”和“方向向量”的概念,并熟练掌握相关的公式。
然后要介绍匀速直线运动和变速直线运动,让学生能够理解在不同的运动状态下,各种参数的变化规律。
最后,结合示例让学生练习运用向量的知识解决线性运动相关的实际问题。
3.1.3 空间几何图形在空间几何图形的学习中,教师要介绍由空间几何图形的投影形成的图形,并要求学生能够通过三视图来确定一个几何体的形状和尺寸。
同时,也要介绍立体角的概念和性质,并要求学生掌握应用立体角求体积的方法。
最后,要通过实例让学生练习应用立体角求解实际问题。
3.2 几何变换3.2.1 平移、旋转和翻折在几何变换中,我们要介绍平移、旋转、翻折等概念和性质,并让学生掌握相关的公式和应用方法。
重点讲解平移等几种基本变换的复合变换,让学生能够通过复合变换构造出更多的变换方式,并练习应用于题目中。
新课标高中数学必修二全册导学案及答案

(1).光线叫做几何体的正视图.
(2).光线叫做几何体侧视图.
(3).光线叫做几何体的俯视图.
几何体的正视图、侧视图和俯视图统称为几何体的三视图。
A例1.根据长方体的模型,请您画出它们的三视图,并观察三种图形之间的关系.
三视图的画法规则:、、。
A例2.请您画出圆柱、圆锥、圆台、球的三视图
六、达标测试
3、A类是自主探究,B类是合作交流。
四、知识链接:
圆柱:
圆锥:
圆台:
五、学习过程:
A问题1:什么是投影、投影线、投影面?
投射线可自一点发出,也可是一束与投影面成一定角度的平行线,这样就使投影法分为中心投影和平行投影
A问题2:什么是中心投影、平行投影?
物体上某一点与其投影面上的投影点的连线是平行的,则为平行投影,如果聚于一点,则为中心投影.
1.1.1棱柱、棱锥、棱台的结构特征
一、学习目标:
1、知识与技能:(1)能根据几何结构特征对空间物体进行分类。(2)会用语言概述棱柱、棱锥、棱台的结构特征。(3)会表示有关几何体以及柱、锥、台的分类。
2、过程与方法:(1)通过直观感受空间物体,概括出柱、锥、台的几何结构特征。(2)观察、讨论、归纳、概括所学的知识。
学习难点:圆柱、锥、台的结构特征的概括。
三、使用说明及学法指导:
1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。
3、A类是自主探究,B类是合作交流。
四、知识链接:
棱柱:
棱锥:
棱台:
五、学习过程:
A问题1:观察下列图形探究各自的特点及共同点
北师大版高中数学必修二导学案全册(81页)

EC FB 2 求证: 90 °.
图 2-5
年级高一
泗县三中教案、学案用纸
学科数学 课题 平行关系 1
12 / 80
A.棱锥 B.棱柱 C.平面 D.长方体
2. 棱台不具有的性质是( ).
A.两底面相似
B.侧面都是梯形
C.侧棱都相等
D.侧棱延长后都交于一点
3. 已知集合 A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},
F={直平行六面体},则( ).
A. A B C D F E
审核人
识别三视图所表示的空间几何体及直观图
2012-3-4
1. 了解中心投影与平行投影的区别; 2. 能画出简单空间图形的三视图与直观图; 学 3. 能识别三视图所表示的空间几何体及空间几何体的直观图;
习
目
标
教 学过 程
一 自主学习
1. 中心投影和平行投影的有关概念 2.三视图与直观图有关概念及三视图的画法规则 3.看右面的图理解三视图概念
1. 下面说法正确的是( ).
①平面 ABCD 的面积为10cm2 ②100 个平面重合比 50 个平面重合厚③空间图形中虚线都
是辅助线④平面不一定用平行四边形表示.
A.① B.② C.③ D.④
2. 下列结论正确的是( ).
①经过一条直线和这条直线外一点可以确定一个平面②经过两条相交直线,可以确定一
请正画视出图它俯的视图图形为侧_视__图__________________. 7. 一个三角形的直观图是腰长为 4 的等腰直角三角形,则它的原面积是( ).
2017-2018学年北师大版高中数学必修2全册学案

2017-2018学年高中数学北师大版必修2全册同步学案目录第一章1简单几何体第一章2直观图第一章3三视图第一章4.1 空间图形基本关系的认识 4.2 空间图形的公理(一)第一章4.2 空间图形的公理(二)第一章5.1平行关系的判定第一章5.2平行关系的性质第一章6.1垂直关系的判定第一章6.2垂直关系的性质第一章7.1简单几何体的侧面积第一章7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积第一章7.3球的表面积和体积第一章疑难规律方法第一章章末复习课第二章1.1直线的倾斜角和斜率第二章1.2 第1课时直线方程的点斜式第二章1.2 第2课时直线方程的两点式和一般式第二章1.3两条直线的位置关系第二章1.4两条直线的交点第二章1.5 第1课时两点间的距离公式第二章1.5 第2课时点到直线的距离第二章2.1圆的标准方程第二章2.2圆的一般方程第二章2.3 第1课时直线与圆的位置关系第二章2.3 第2课时圆与圆的位置关系第二章3.1空间直角坐标系的建立 3.2空间直角坐标系中点的坐标第二章3.3空间两点间的距离公式第二章疑难规律方法第二章章末复习课(一)第二章章末复习课(二)学习目标 1.理解旋转体与多面体的概念.2.掌握球、圆柱、圆锥、圆台的结构特征.3.掌握棱柱、棱锥、棱台的基本性质.知识点一两平面平行和直线与平面垂直的概念思考1如何定义两平面平行?思考2如何判定直线与平面垂直?梳理(1)________________的两个平面平行.(2)如果一条直线与一个平面内的__________________都垂直,则这条直线与这个平面垂直.知识点二旋转体与多面体知识点三常见的旋转体及概念思考1以直角三角形的一条直角边所在的直线为轴旋转180°所得的旋转体是圆锥吗?思考2能否由圆锥得到圆台?梳理记作:球O 球面:以_______线为旋转轴,将半圆________面.球体:球面所围成的几何体叫作球体,简称球记作:圆柱OO′以直线为旋转轴,其余各边旋转而形成的的几何体叫作圆柱记作:圆锥OO′以直角三角形的__________直线为旋转轴,其余各边旋转而形成的的几何体叫作圆锥记作:圆台OO′以直角梯形_____________在的直线为旋转轴,其余各边旋转而形成的所围成的几何体叫作圆台特别提醒:(1)经过旋转体轴的截面称为该几何体的轴截面.(2)圆柱的母线互相平行,圆锥的母线相交于圆锥的顶点,圆台的母线延长后相交于一点.知识点四常见的多面体及相关概念思考观察下列多面体,试指明其类别.梳理(1)棱柱①定义要点:(ⅰ)两个面________________;(ⅱ)其余各面都是________________;(ⅲ)每相邻两个四边形的公共边都________________.②相关概念:底面:两个________________的面.侧面:除底面外的其余各面.侧棱:相邻______________的公共边.顶点:底面多边形与________的公共顶点.③记法:如三棱柱ABC-A1B1C1.④分类及特殊棱柱:(ⅰ)按底面多边形的边数分,有____________________、________________、________________、…….(ⅱ)直棱柱:侧棱________于底面的棱柱.(ⅲ)正棱柱:底面是________________的直棱柱.(2)棱锥①定义要点:(ⅰ)有一个面是________________;(ⅱ)其余各面是三角形;(ⅲ)这些三角形有一个________________.②相关概念:底面:除去棱锥的侧面余下的那个________________.侧面:除底面外的其余__________面.侧棱:相邻两个________的公共边.顶点:________的公共顶点.③记法:如三棱锥S-ABC.④分类及特殊棱锥:(ⅰ)按底面多边形的边数分,有________、__________、__________、……,(ⅱ)正棱锥:底面是______________,且各侧面________的棱锥.(3)棱台①定义要点:用一个______________________的平面去截棱锥,________与________之间的部分.②相关概念:上底面:原棱锥的________.下底面:原________的底面.侧棱:相邻的________的公共边.顶点:________与底面的公共顶点.③记法:如三棱台ABC-A1B1C1.④分类及特殊棱台:(ⅰ)按底面多边形的边数分,有____________________、________________、________________、……,(ⅱ)正棱台:由________________截得的棱台.类型一旋转体的概念例1下列命题正确的是________.(填序号)①以直角三角形的一边所在直线为旋转轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰所在直线为旋转轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高线所在的直线为旋转轴,其余各边旋转一周形成的几何体是圆锥;⑤半圆面绕其直径所在直线旋转一周形成球;⑥用一个平面去截球,得到的截面是一个圆面.反思与感悟(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成.②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.跟踪训练1下列命题:①圆柱的轴截面是过母线的截面中最大的一个;②用任意一个平面去截圆锥得到的截面一定是一个圆;③圆台的任意两条母线的延长线,可能相交也可能不相交;④球的半径是球心与球面上任意一点的连线段.其中正确的个数为()A.0 B.1C.2 D.3类型二多面体及其简单应用例2(1)下列关于多面体的说法正确的个数为________.①所有的面都是平行四边形的几何体为棱柱;②棱台的侧面一定不会是平行四边形;③底面是正三角形,且侧棱相等的三棱锥是正三棱锥;④棱台的各条侧棱延长后一定相交于一点;⑤棱柱的每一个面都不会是三角形.(2)如图所示,长方体ABCD-A1B1C1D1.①这个长方体是棱柱吗?如果是,是几棱柱?为什么?②用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,说明理由.(提示:可以证明BC綊MN)引申探究若用一个平面去截本例(2)中的四棱柱,能截出三棱锥吗?反思与感悟(1)棱柱的识别方法①两个面互相平行.②其余各面都是四边形.③每相邻两个四边形的公共边都互相平行.(2)棱锥的识别方法①有一个面是多边形.②其余各面都是有一个公共顶点的三角形.③棱锥仅有一个顶点,它是各侧面的公共顶点.④对几类特殊棱锥的认识(ⅰ)三棱锥是面数最少的多面体,又称四面体.它的每一个面都可以作为底面.(ⅱ)各棱都相等的三棱锥称为正四面体.(ⅲ)正棱锥有以下性质:侧面是全等的等腰三角形,顶点与底面正多边形中心的连线与底面垂直.(3)棱台的识别方法①上、下底面互相平行.②各侧棱延长交于一点.跟踪训练2下列说法正确的是()A.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台B.两底面平行,并且各侧棱也互相平行的几何体是棱柱C.棱锥的侧面可以是四边形D.棱柱中两个互相平行的平面一定是棱柱的底面1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个2.关于下列几何体,说法正确的是()A.图①是圆柱B.图②和图③是圆锥C.图④和图⑤是圆台D.图⑤是圆台3.下面有关棱台说法中,正确的是()A.上下两个底面平行且是相似四边形的几何体是四棱台B.棱台的所有侧面都是梯形C.棱台的侧棱长必相等D.棱台的上下底面可能不是相似图形4.等腰三角形ABC绕底边上的中线AD所在的直线旋转一周所得的几何体是() A.圆台B.圆锥C.圆柱D.球5.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的母线长为________.1.圆柱、圆锥、圆台的关系如图所示.2.棱柱、棱锥、棱台定义的关注点(1)棱柱的定义有以下两个要点,缺一不可:①有两个平面(底面)互相平行;②其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行.(2)棱锥的定义有以下两个要点,缺一不可:①有一个面(底面)是多边形;②其余各面(侧面)是有一个公共顶点的三角形.(3)用一水平平面截棱锥可得到棱台.答案精析问题导学知识点一思考1两平面无公共点.思考2直线和平面内的任何一条直线都垂直.梳理(1)无公共点(2)任何一条直线知识点二平面曲线旋转面旋转体平面多边形多面体知识点三思考1不是.以直角三角形的一条直角边所在的直线为轴旋转180°所得的旋转体是圆锥的一半,不是整个圆锥.思考2用平行于圆锥底面的平面截去一个圆锥可以得到.梳理半圆的直径曲面圆心球面球心矩形的一边曲面一条直角边曲面垂直于底边的腰曲面旋转轴旋转轴圆面不垂直于旋转轴不垂直于旋转轴知识点四思考(1)五棱柱;(2)四棱锥;(3)三棱台.梳理(1)①(ⅰ)互相平行(ⅱ)四边形(ⅲ)互相平行②互相平行两个侧面侧面④(ⅰ)三棱柱四棱柱五棱柱(ⅱ)垂直(ⅲ)正多边形(2)①(ⅰ)多边形(ⅲ)公共顶点②多边形三角形侧面侧面④(ⅰ)三棱锥四棱锥五棱锥(ⅱ)正多边形全等(3)①平行于棱锥底面底面截面②截面棱锥侧面侧面④(ⅰ)三棱台四棱台五棱台(ⅱ)正棱锥题型探究例1④⑤⑥解析①以直角三角形的一条直角边所在直线为旋转轴旋转一周才可以得到圆锥;②以直角梯形垂直于底边的腰所在直线为旋转轴旋转一周可得到圆台;③它们的底面为圆面;④⑤⑥正确.跟踪训练1 C例2 3解析①中两个四棱柱放在一起,如下图所示,能保证每个面都是平行四边形,但并不是棱柱.故①错;②中棱台的侧面一定是梯形,不可能为平行四边形,②正确;根据棱锥的概念知,③正确;根据棱台的概念知,④正确;棱柱的底面可以是三角形,故⑤错.正确的个数为3.(2)解①长方体是棱柱,是四棱柱.因为它有两个平行的平面ABCD与A1B1C1D1,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,符合棱柱的定义.②用平面BCNM把这个长方体分成两部分,其中一部分有两个平行的平面BB1M与CC1N,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,符合棱柱的定义,所以是三棱柱,可用符号表示为三棱柱BB1M-CC1N;另一部分有两个平行的平面ABMA1与DCND1,其余各面都是四边形且每相邻两个四边形的公共边互相平行,符合棱柱的定义,所以是四棱柱,可用符号表示为四棱柱ABMA1-DCND1.引申探究解如图,几何体B-A1B1C1就是三棱锥.跟踪训练2B[A中所有侧棱不一定交于一点,故A不正确;B正确;C中棱锥的侧面一定是三角形,故C不正确;D中棱柱的侧面也可能平行,故D不正确.]当堂训练1.D[由棱柱的定义知,①③为棱柱.]2.D[由旋转体的结构特征知,D正确.]3.B[由棱台的结构特征知,B正确.]4.B[中线AD⊥BC,左右两侧对称,旋转体为圆锥.]5.2解析如图所示,设等边三角形ABC为圆锥的轴截面,由题意知,圆锥的母线长即为△ABC的边长,且S△ABC=34AB2,∴3=34AB2,∴AB=2.故答案为2.学习目标 1.掌握斜二测画法的作图规则.2.会用斜二测画法画出简单几何体的直观图.知识点斜二测画法思考1边长2 cm的正方形ABCD水平放置的直观图如下,在直观图中,A′B′与C′D′有何关系?A′D′与B′C′呢?在原图与直观图中,AB与A′B′相等吗?AD与A′D′呢?思考2正方体ABCD-A1B1C1D1的直观图如图所示,在此图形中各个面都画成正方形了吗?梳理(1)水平放置的平面图形直观图的画法斜二测画法规则:①在已知图形中建立平面直角坐标系xOy,画直观图时,它们分别对应x′轴和y′轴,两轴相交于点O′,使∠x′O′y′=________,它们确定的平面表示________________.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成________于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持原长度______;平行于y轴的线段,长度为原来的________.(2)立体图形直观图的画法类型一水平放置的平面图形的直观图例1画出如图水平放置的直角梯形的直观图.引申探究若将本例中的直角梯形改为等腰梯形,其直观图如何?反思与感悟(1)本题利用直角梯形互相垂直的两边建系,使画直观图非常简便.(2)在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键之一,一般要使平面多边形尽可能多的顶点落在坐标轴上,以便于画点.原图中不平行于坐标轴的线段可以通过作平行于坐标轴的线段来作出其对应线段.关键之二是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.跟踪训练1 用斜二测画法画边长为4 cm 的水平放置的正三角形(如图)的直观图.类型二 直观图的还原与有关计算 命题角度1 由直观图还原平面图形例2 如图所示,△A ′B ′C ′是水平放置的平面图形的斜二测直观图,将其还原成平面图形.反思与感悟 由直观图还原平面图形的关键:(1)平行x ′轴的线段长度不变,平行y ′轴的线段扩大为原来的2倍.(2)对于相邻两边不与x ′轴,y ′轴平行的顶点可通过作x ′轴,y ′轴的平行线变换确定其在xOy 中的位置.跟踪训练2 如图所示,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,C ′D ′=2 cm ,则原图形是________. 命题角度2 原图形与直观图的面积的计算例3 如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图.若A 1D 1∥O ′y ′,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=O ′D 1=1.试画出原四边形的形状,并求出原图形的面积.反思与感悟 (1)由原图形求直观图的面积,关键是掌握斜二测画法,明确原来实际图形中的高,在直观图中变为与水平直线成45°角且长度为原来一半的线段,这样可得出所求图形相应的高.(2)若一个平面多边形的面积为S ,它的直观图面积为S ′,则S ′=24S .跟踪训练3 如图所示,一个水平放置的三角形的斜二测直观图是等腰直角三角形A ′B ′O ′,若O ′B ′=1,那么原三角形ABO 的面积是( ) A.12 B.22C. 2D .2 2类型三 空间几何体的直观图例4 画出底面是正方形,侧棱均相等的四棱锥的直观图.反思与感悟 简单几何体直观图的画法 (1)画轴:通常以高所在直线为z 轴建系.(2)画底面:根据平面图形直观图的画法确定底面.(3)确定顶点:利用与z 轴平行或在z 轴上的线段确定有关顶点. (4)连线成图.跟踪训练4 用斜二测画法画棱长为2 cm 的正方体ABCD -A ′B ′C ′D ′的直观图.1.利用斜二测画法画出边长为3 cm的正方形的直观图,图中正确的是()2.下列关于直观图的说法不正确的是()A.原图形中平行于y轴的线段,对应线段平行于直观图中y′轴,长度不变B.原图形中平行于x轴的线段,对应线段平行于直观图中x′轴,长度不变C.在画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′可以画成45°D.在画直观图时,由于选轴的不同所画的直观图可能不同3.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24倍B.2倍 C.22倍 D.2倍4.如图,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是________.5.画出一个正三棱台的直观图.(尺寸:上、下底面边长分别为1 cm,2 cm,高为2 cm)1.画水平放置的平面图形的直观图,关键是确定直观图的顶点.确定点的位置,可采用直角坐标系.建立恰当的坐标系是迅速作出直观图的关键,常利用图形的对称性,并让顶点尽量多地落在坐标轴上或与坐标轴平行的直线上.2.用斜二测画法画图时要紧紧把握住:“一斜”、“二测”两点:(1)一斜:平面图形中互相垂直的Ox、Oy轴,在直观图中画成O′x′、O′y′轴,使∠x′O′y′=45°.(2)二测:在直观图中平行于x轴的长度不变,平行于y轴的长度取一半,记为“横不变,纵折半”.答案精析问题导学 知识点思考1 A ′B ′∥C ′D ′,A ′D ′∥B ′C ′,A ′B ′=AB ,A ′D ′=12AD .思考2 没有都画成正方形.梳理 (1)①45° 水平平面 ②平行 ③不变 12(2)z ′轴 平行性及长度相等 平面x ′O ′y ′ y ′O ′z ′ x ′O ′z ′ 题型探究 例1 解 画法:(1)在已知的直角梯形OBCD 中,以底边OB 所在直线为x 轴,垂直于OB 的腰OD 所在直线为y 轴建立平面直角坐标系.画出相应的x ′轴和y ′轴,使∠x ′O ′y ′=45°,如图(1)(2)所示;(2)在x ′轴上截取O ′B ′=OB ,在y ′轴上截取O ′D ′=12OD ,过点D ′作x ′轴的平行线l ,在l 上沿x ′轴正方向取点C ′使得D ′C ′=DC .连接B ′C ′,如图(2); (3)所得四边形O ′B ′C ′D ′就是直角梯形OBCD 的直观图,如图(3).引申探究 解 画法:(1)如图所示,取AB 所在直线为x 轴,AB 中点O 为原点,建立直角坐标系,画出对应的x ′轴和y ′轴,使∠x ′O ′y ′=45°;(2)以O ′为中点在x ′轴上取A ′B ′=AB ,在y 轴上取O ′E ′=12OE ,以E ′为中点画出C ′D ′∥x ′轴,并使C ′D ′=CD ;(3)连接B ′C ′,D ′A ′,所得的四边形A ′B ′C ′D ′就是水平放置的等腰梯形ABCD 的直观图.跟踪训练1 解 画法:(1)如图①所示,以BC 边所在的直线为x 轴,以BC 边上的高线AO 所在的直线为y 轴建立直角坐标系xOy .(2)画出对应的x ′轴、y ′轴,使∠x ′O ′y ′=45°.在x ′轴上截取O ′B ′=O ′C ′=2 cm ,在y ′轴上截取O ′A ′=12OA ,连接A ′B ′,A ′C ′,则三角形A ′B ′C ′即为正三角形ABC 的直观图,如图②所示. 例2 解 画法:(1)画出直角坐标系xOy ,在x 轴的正方向上取OA =O ′A ′,即CA =C ′A ′;(2)过点B ′作B ′D ′∥y ′轴,交x ′轴于点D ′,在OA 上取OD =O ′D ′,过点D 作DB ∥y 轴,且使DB =2D ′B ′; (3)连接AB ,BC ,得△ABC .则△ABC 即为△A ′B ′C ′对应的平面图形,如图所示.跟踪训练2 菱形解析 如图所示,在原图形OABC 中,应有OD =2O ′D ′=2×22=4 2 cm ,CD =C ′D ′=2 cm ,∴OC =OD 2+CD 2=(42)2+22=6(cm),∴OA =OC ,故四边形OABC 是菱形.例3 解 如图,建立直角坐标系xOy ,在x 轴上截取OD =O ′D 1=1,OC =O ′C 1=2.在过点D 的y 轴的平行线上截取DA =2D 1A 1=2. 在过点A 的x 轴的平行线上截取AB =A 1B 1=2. 连接BC ,即得到了原图形.由作法可知,原四边形ABCD 是直角梯形,上、下底长度分别为AB =2,CD =3,直角腰的长度AD =2,所以面积为S =2+32×2=5.跟踪训练3 C 例4 解 画法:(1)画轴.画Ox 轴、Oy 轴、Oz 轴,使∠xOy =45°(或135°),∠xOz =90°,如图①.(2)画底面,以O 为中心在xOy 平面内,画出正方形直观图ABCD . (3)画顶点.在Oz 轴上截取OP 使OP 的长度是原四棱锥的高.(4)成图.顺次连接P A ,PB ,PC ,PD ,并擦去辅助线,将被遮住的部分改为虚线,得四棱锥的直观图如图②. 跟踪训练4 解 画法:(1)画轴.如图①,画x 轴、y 轴、z 轴,三轴相交于点O ,使∠xOy =45°,∠xOz =90°. (2)画底面.以点O 为中心,在x 轴上取线段MN ,使MN =2 cm ;在y 轴上取线段PQ ,使PQ =1 cm.分别过点M 和N 作y 轴的平行线,过点P 和Q 作x 轴的平行线,设它们的交点分别为A ,B ,C ,D ,四边形ABCD 就是正方体的底面ABCD .(3)画侧棱.过A ,B ,C ,D 各点分别作z 轴的平行线,并在这些平行线上沿Oz 轴方向分别截取2 cm 长的线段AA ′,BB ′,CC ′,DD ′.(4)成图.顺次连接A ′,B ′,C ′,D ′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),得到正方体的直观图(如图②).当堂训练1.C 2.A 3.A 4.105.解画法:(1)作水平放置的下底面等边三角形的直观图△ABC,其中O为△ABC的重心,BC=2 cm,线段AO与x轴的夹角为45°,AO=2OD.(2)过O作z轴,使∠xOz=90°,在Oz轴上截取OO′=2 cm,作上底面等边三角形的直观图△A′B′C′,其中B′C′=1 cm,连接AA′,BB′,CC′,得正三棱台的直观图.学习目标 1.理解三视图的概念,能画出简单空间图形的三视图.2.了解简单组合体的组成方式,会画简单几何体的三视图.3.能识别三视图所表示的立体模型.知识点一组合体1.定义:由__________________形成的几何体叫作组合体.2.基本形式:有两种,一种是将基本几何体________成组合体;另一种是从基本几何体中______或______部分构成组合体.知识点二空间几何体的三视图思考对于一般的物体,三视图分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)?梳理(1)三视图的概念三视图包括__________(又称__________)、__________,左视图(侧视图通常选择________,简称__________).(2)三视图的画法规则①________视图反映物体的长度——“____________”.②________视图反映物体的高度——“____________”.③________视图反映物体的宽度——“____________”.(3)绘制三视图时的注意事项①在绘制三视图时,需要画出所有的轮廓线,其中,视线所见的轮廓线画实线,看不见的轮廓线画虚线.②同一物体放置的位置不同,所画的三视图可能不同.③三视图的摆放规则:左视图放在主视图的右面,俯视图放在主视图的正下方.类型一简单几何体的三视图例1(1)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的左视图为()(2)画出如图所示的几何体的三视图.反思与感悟(1)观察立体图形时,要选择在某个方向上“平视”,用目光将立体图形“压缩”成平面图形,这样就得到了三视图.注意三视图的排列规则和虚、实线的确定.一般地,几何体的轮廓线中能看到的画成实线,不能看到的画成虚线.(2)画简单组合体的三视图,要注意从三个方向观察几何体的轮廓线,还要搞清楚各简单几何体之间的组接位置,其组接的交线往往又是简单组合体的轮廓线,被挡住的要画成虚线.跟踪训练1如图是根据某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm).试画出它的三视图.类型二由三视图还原成实物图例2(1)若某几何体的三视图如图所示,则这个几何体的直观图可以是()(2)根据以下三视图想象物体原形,并画出物体的实物草图.反思与感悟(1)通过主视图和左视图确定是柱体、锥体还是台体.若主视图和左视图为矩形,则原几何体为柱体;若主视图和左视图为等腰三角形,则原几何体为锥体;若主视图和左视图为等腰梯形,则原几何体为台体.(2)通过俯视图确定是多面体还是旋转体,若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.跟踪训练2(1)已知如图所示的三视图,则该几何体是什么?它的高与底面面积分别是多少?(尺寸的长度单位为m)(2)如图所示为长方体木块堆成的几何体的三视图,此几何体共由________块木块堆成.1.如图所示,甲、乙、丙是三个几何体的三视图,则下列甲、乙、丙对应的标号正确的是()①长方体;②圆锥;③三棱锥;④圆柱.A.④③②B.②①③C.①②③D.③②④2.一个长方体截去两个三棱锥,得到的几何体如图所示,则该几何体的三视图为()3.某几何体的主视图和左视图均如图所示,则该几何体的俯视图不可能是()4.如图所示,正三棱柱ABC-A1B1C1(底面为等边三角形)的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为()A.8 3 B.4 3C.2 3 D.165.有一个正三棱柱的三视图如图所示,则这个三棱柱的高和底面边长分别为________.1.三视图是指主视图、左视图和俯视图,画图时应遵循“长对正、高平齐、宽相等”或“主俯一样长,主左一样高,俯左一样宽”的原则,若相邻两物体的表面相交,表面的交线是它们的分界线.在三视图中,分界线和可见轮廓线都用实线画出,重叠的线只画一条,不可见轮廓线要用虚线画出.2.空间几何体的三视图可以使我们很好地把握空间几何体的性质,由空间几何体可画出它的主视图,同样由三视图可以想象出空间几何体的形状,两者之间的相互转化,可以培养我们的几何直观能力和空间想象能力.答案精析问题导学知识点一1.基本几何体2.拼接切掉挖掉知识点二思考主视图反映了物体上下、左右的位置关系,即反映物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映物体的长度和宽度;左视图反映了物体上下、前后的位置关系,即反映物体的高度和宽度.梳理(1)主视图正视图俯视图左侧视图左视图(2)①主、俯长对正②主、左高平齐③俯、左宽相等题型探究例1B[依题意,左视图中棱的方向是从右下角到左上角,故选B.](2)解题图①是一个圆柱和一个长方体的组合体,按照圆柱、长方体的三视图画法画出它们的组合体的三视图,如图(1);题图②为球与圆台的组合体,其三视图如图(2).跟踪训练1解这个几何体是由一个长方体挖去一个圆柱体构成的,三视图如图所示.例2D[A、B选项中的主视图不符合要求,C选项中的俯视图显然不符合要求,故选D.] (2)解此几何体上面可以为圆台,下面可以为圆柱,所以实物草图如图.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版高中数学必修二导学案第一章统计§1.1 从普查到抽样授课时间第周星期第节课型新授课主备课人学习目标1.了解普查和抽样调查的概念,2.明确两种调查的优缺点重点难点1.了解普查和抽样调查的概念,2.明确两种调查的优缺点学习过程与方法自主学习一、普查阅读课本P3回答下列问题:1.什么叫普查?2.为什么要进行人口普查?3.在第五次人口普查中,武汉一人口普查员过渡劳累以身殉职,说明普查有什么弊端?4.什么样的调查适用普查?例 1 医生是如何检察人的血液中血脂的含量是否偏高的?你觉得这样做的合理性是什么?二、抽样调查回答课本思考交流的问题得到:1.抽样调查的定义:2.抽样调查与普查相比各有什么优缺点。
(在课本中画出)3.独立完成课本例2普查是通过调查总体的方式来收集数据的,抽样调查是通过调查样本的方式来收集数据的精讲互动三、样本的选取我们引入了几个概念:(1)总体:(2)个体:(3)样本:(4)样本容量:练习:为了了解一批炮弹的杀伤力,选取100发进行实弹射击实验:总体:这批炮弹的杀伤力个体:炮弹的杀伤力样本:弹射击实验的100发炮弹的杀伤力样本容量:100达标训练1.判断题1)我们学习的调查有抽样调查和全面调查( )2)要想准确知道全班同学的平均年龄,应调查每个同学( )3)任何事件都可作抽样调查( )4)抽样调查即通过样本来估计总体( )5)调查武汉市居民的月收入情况采用全面调查( )2.2003年我国每日公布非典疫情,其中有关数据收集所采用的调查方式是____ ;3.为了了解某校高一年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指()A 400名学生B 被抽取的50名学生C 400名学生的体重D 被抽取的50名学生的体重4.体育测试中,从某校高一(1)班中抽取男、女生各15名人进行三项体育成绩复查测试,在这个问题中,下列叙述正确的是()A 该校所有初三学生是总体B 所抽取的30名学生是样本C 所抽取的15名学生是样本D 所抽取的30名学生的体育成绩是样本5.下列调查,哪些是抽样调查?并说明理由.1)为了了解高一年级(6)班每个学生的身高情况,对全班同学进行调查.2)为了了解人们对春节晚会(央视)的收视情况,对部分电视观众作了调查.3)灯泡厂为了了解一批灯泡的使用寿命,从中选取了10个灯泡进行实验.6.你认为下列调查用普查还是抽样调查较合适?并简单说明理由.1)检验某厂生产的乒乓球的合格率;2)试验某种绿豆的发芽率;3)了解青少年对《新闻联播》的收视率;4)检查某批飞机零件的合格率;5)审查自己某篇作文的错别字;6)了解江苏省居民年收入情况.作业习题1-1 1,2,3布置§1.2.2分层抽样授课时间第周星期第节课型新授课主备课人学习目标1.正确理解分层抽样;2.掌握分层抽样的一般步骤;3.正确理解分层抽样、系统抽样、简单随机抽样的区别和联系,并且选择适当正确的方法进行抽样重点难点1.掌握分层抽样的特点和一般步骤;2.根据实际情况选择正确的抽样方法.学习过程与方法自主学习问题:某校高一、高二和高三年级分别有学生1000,800和700名,为了了解全校学生的视力情况,欲从中抽取容量为100的样本,怎样抽样较为合理.【分析】如果在2500名学生中随机抽取100名学生作为样本,或者在三个年级中平均抽取学生组成样本,这样的样本是否合理?能否反映总体情况?1.分层抽样分层抽样的概念:将总体按其分成若干类型,然后在每个类型中随机抽取一定的样本.这样的抽样方法称为分层抽样分层抽样的步骤为:【小结】①分层抽样适用于总体由差异比较明显的几个部分组成的情况,是等可能抽样,它也是客观的、公平的;②分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,使样本具有较好的代表性,而且在各层抽样时可以根据情况采用不同的抽样方法,因此在实践中有着非常广泛的应用.独立完成课本例2和例3精讲互动例1某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人,上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取。
【解】例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如下表所示:很喜爱喜爱一般不喜爱2435 4567 3926 1072电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?【解】例3某所学校有小学部、初中部和高中部,在校小学生、初中生和高中生之比为5:2:3,且已知初中生有800人,现要从这所学校中抽取一个容量为80的样本以了解他们对某一问题的看法,应采用什么抽样方法?从小学部、初中部及高中部各抽取多少名?总体上看,平均多少名学生中抽取到一名学生?【解】达标训练1.某公司生产三种型号的轿车,产量分别为1200辆、6000辆、2000辆。
为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车应分别抽取__ ____、___ ___和___ __辆。
2.某商场想通过检查发票及销售记录的2%来快速估计每月的销售总额,采取如下方法:从某本50张的发票存根中随机抽取一张,如15号,然后按顺序往后将65号、115号、165号、…发票上的销售额组成一个调查样本。
这种抽取样本的方法是( )(A)抽签法 (B)系统抽样(C)分层抽样 (D)随机数表法3.某班有50名学生,(其中有30名男生,20名女生)现调查平均身高,准备抽取10%,问应如何抽样?如果已知男女身高有显著不同,又应如何抽样?作业完成资料习题布置学习小结/教学反思§1.2.2系统抽样授课时间第周星期第节课型新授课主备课人学习目标1.正确理解系统抽样;2.掌握系统抽样的一般步骤;3.正确理解分层抽样、系统抽样、简单随机抽样的区别和联系,并且选择适当正确的方法进行抽样.重点难点1.掌握系统抽样的特点和一般步骤;2.根据实际情况选择正确的抽样方法.学习过程与方法自主学习问题:某校高一年级共有20个班,每班有50名学生,为了了解高一学生的视力情况,从这1000人中抽取一个容量为100的样本进行检查,应该怎样抽样?【分析】这个案例的总体中个体数较多,生活中还有容量大的多的总体,面对这样的总体,采用抽签或随机数表等简单随机抽样方法是不科学的.抽取样本最关键的就是要保证抽样过程的,要保证总体中每个个体被抽到的.在这样的前提下,我们可以寻求更好的抽样方法.系统抽样以简单随机抽样为基础,通过将较大容量的总体分组,只需在某一个组内用简单随机抽样方式来获取一个个体,然后在一定规则下就能抽取出全部样本.系统抽样系统抽样的概念: ,这样的抽样方法称为系统抽样系统抽样的步骤为:精讲互动例1某工厂平均每天生产某种机器零件大约10000件,要求产品检验员每天抽取50件零件,检查其质量状况。
假设一天的生产时间中生产机器零件的件数是均匀的,请你设计一个调查方案。
【解】例2某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其质量状况,请你设计一个调查方案。
分析系统抽样的弊端(阅读课本14页):达标训练1.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除个体的数目是2.全班有50位同学,需要从中选取7人,若采用系统抽样的方法来选取,则每位同学能被选取的可能性是3.一个总体中有100个个体,随机编号为0,1,2, ...,99,依编号顺序平均分成10个小组,组号依次为1,2,3, ...,10.现用系统抽样的方法抽取一个容量为10的样本,规定如果在第一组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m=,则在第7组中抽取的号码是_____________.+的个位数字相同.若6m k4. 要从1003名学生中选取一个容量为20的样本,试叙述系统抽样的步骤。
【解】作业习题1-2 1,2,4布置§1.3统计图表授课时间第周星期第节课型新授课主备课人学习目标1.掌握常用四种统计图表(条形统计图、扇形统计图、折线统计图、茎叶图)的功能及其特点.2.能针对实际问题和收集到的数据的特点,选择科学的统计图表.3.能从统计图表中获取有价值的信息重点难点1.选择一种适当数据表示方法;2.能从统计图表中获取有价值的信息学习过程与方法自主学习复习回顾1.四种常用的统计图表为;2.绘制频数条形统计图的一般步骤:阅读课本16-22页并回答课本中的问题.精讲互动分析绘制四种统计图表的方法及优缺点达标训练1.关于频率直方图的下列有关说法正确的是()A.直方图的高表示取某数的频率B.直方图的高表示该组上的个体在样本中出现的频率C.直方图的高表示取某组上的个体在样本中出现的频数与组距的比值D.直方图的高表示取该组上的个体在样本中出现的频率与组距的比值2.某地一种植物一年生长的高度如下表:高度(cm) [10,20) [20,30) [30,40) [40,50) [50,60)棵数20 30 80 40 30则该植物一年生长在[30,40)内的频率是()A.0.80 B.0.65C.0.40 D.0.253.如图表示甲、乙两名篮球运动员每场比赛得分情况的茎叶图,则甲和乙得分的中位数的和是()4.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力从4.6到5.0之间的学生数为b,则a,b的值分别为()A.0.27,78 B.0.27,83C.2.7,78 D.2.7,835.一组数据中的每一个数据都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是()A.81.2,4.4 B.78.8,4.4C.81.2,84.4 D.78.8,75.66.(2008年上海卷)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是________.7.(15分)下图是某个人口为90万人的县城人口年龄分布:(1)年龄大于60岁的有多少人?(2)年龄小于20岁和在40~60岁间的共有多少人?(3)年龄在20~40岁的人口比大于60岁的人口多多少?8.(15分)为了了解九年级学生中女生的身高(单位:cm)情况,某中学对九年级女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:组别频数频率145.5~149.5 1 0.02149.5~153.5 4 0.08153.5~157.5 20 0.400.30157.5~161.55161.5~165.5 8 0.16165.5~169.5 m n合计M N(1)求出表中m,n,M,N所表示的数分别是多少?(2)画出频率分布直方图;(3)全体女生中身高在哪组范围内的人数最多?估计九年级学生中女生的身高在161.5以上的概率.9.(16分)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表:甲27 38 30 37 35 31乙33 29 38 34 28 36(1)画出茎叶图,由茎叶图你能获得哪些信息?(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.1.4.1 数据的数字特征授课时间第周星期第节课型新授课主备课人学习目标1.掌握平均数、中位数、众数、极差、方差、标准差的计算、意义和作用;2.根据问题的需要选择适当的数字特征来表达数据的信息.重点难点根据问题的需要选择适当的数字特征来表达数据的信息.学习过程与方法自主学习复习回顾1.什么叫平均数?有什么意义?2.什么叫中位数?有什么意义?3.什么叫众数?有什么意义?练习1:某公司员工的月工资情况如表所示:月工资/元8000 5000 4000 2000 1000 800 700 600 500员工/人 1 2 4 6128 20 5 2(1)分别计算该公司员工月工资的平均数、中位数、和众数。