新教材第五章统计与概率5.3.3 课时21古典概型

合集下载

2019_2020学年新教材高中数学第五章统计与概率5.3.3古典概型课件新人教B版必修第二册

2019_2020学年新教材高中数学第五章统计与概率5.3.3古典概型课件新人教B版必修第二册
5.3.3 古典概型
-1-
课标阐释
1.理解古典概型及其概 率计算公式. 2.会计算一些随机事件 所含的样本点个数及事 件发生的概率. 3.通过古典概型概率的 计算培养学生的数学运 算与数学建模的能力.
思维脉络


课前篇自主预习
一、古典概型 1.填空. (1)古典概型的定义:一般地,如果随机试验的样本空间所包含的 样本点个数是有限的(简称为有限性),而且可以认为每个只包含一 个样本点的事件(即基本事件)发生的可能性大小都相等(简称为等 可能性),则称这样的随机试验为古典概率模型,简称为古典概型. (2)古典概型的判断标准 一个试验是否为古典概型,在于这个试验是否具备古典概型的两 个特点:有限性和等可能性,并不是所有试验都是古典概型.
课堂篇探究学习
探究一
探究二
探究三
思维辨析 当堂检测
古典概型的概率计算
例2将一枚质地均匀的正方体骰子先后抛掷两次观察朝上的面
的点数.
(1)一共有多少种不同的结果?
(2)点数之和为5的结果有多少种?
(3)点数之和为5的概率是多少?
解:(1)将一枚质地均匀的正方体骰子抛掷一次,朝上的面的点数
有1,2,3,4,5,6,共6种结果,故先后将这枚骰子抛掷两次,一共有
取,而采用“不放回”抽样,则同一个个体不可能被重复抽取.
课堂篇探究学习
探究一
探究二
探究三
思维辨析 当堂检测
延伸探究1若本例条件不变,求从袋中摸出一个球后放回,再摸出
分析即可.


课前篇自主预习
二、古典概型的概率公式及求解步骤
1.填空.
概率公式
如果随机事件 A 包含的样本点个数为 m,由互斥事件的概率加法

新教材高中数学第5章统计与概率5-3概率5-3-3古典概型新人教B版必修第二册

新教材高中数学第5章统计与概率5-3概率5-3-3古典概型新人教B版必修第二册
(红1,蓝2),(红2,蓝1),(蓝1,蓝2)},共包含5个样本点,由古典概型概率公式得,
5
P(A)=10
=
1
.
2
规律方法
解决古典概型综合问题的两个关键点
(1)审读题干:对于实际问题要认真读题,深入理解题意,计算样本点总数要
做到不重不漏,这是解决古典概型问题的关键.
(2)编号:分析实际问题时,往往对要研究的对象进行编号或者用字母代替,
(木,土),(水,火),(水,土),(火,土)},共10个样本点,记A:2类元素相生,则A={(木,
火),(火,土),(木,水),(金,水),(金,土)},共5个样本点,所以2类元素相生的概率
为 P(A)= 5 = 1 ,故选A.
10
2
1 2 3 4
3.甲、乙两校共有5名教师报名支援边远地区教育,其中甲校3名教师,乙校
分层抽样的样本空间.
(2)在三种抽样方式下,分别计算抽到的两人都是男生的概率.
解 设第一次抽取的人记为x1,第二次抽取的人记为x2,则可用数组(x1,x2)表
示样本点.
(1)根据相应的抽样方法可知:有放回简单随机抽样的样本空间
Ω1={(B1,B1),(B1,B2),(B1,G1),(B1,G2),(B2,B1),(B2,B2),(B2,G1),(B2,G2),(G1,B1),
1 2 3 4
.故选D.
2.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是
金、木、水、火、土彼此之间存在的相生相克的关系.若从
5类元素中任选2类元素,则2类元素相生的概率为( A )
1
A.2
1
B.3
1
C.
4
1
D.

2021高中数学第五章统计与概率5.3.3古典概型ppt课件新人教B版必修第二册

2021高中数学第五章统计与概率5.3.3古典概型ppt课件新人教B版必修第二册
3
答案: 1
3
5.据报道:2019年我国高校毕业生达834万人,创历史新高,就业压力进一步加 大.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录 用的机会均等,则甲或乙被录用的概率为________.
2.古典概型的计算公式:
试验的样本空间包含n个样本点,事件C包含有m个样本点,则事件C发生的概率为:
m
P(C)=_n__.
【思考】 若一次试验的结果所包含的基本事件的个数是有限个,则该试验是古典概型吗? 提示:不是,还必须满足每个基本事件出现的可能性相等.
【基础小测】 1.辨析记忆(对的打“√”,错的打“×”) (1)“抛掷两枚硬币,至少一枚正面向上”是基本事件. ( ) (2)从甲地到乙地共n条路线,求某人正好选中最短路线的概率. ( ) (3)抛掷一枚质地均匀的硬币首次出现正面为止. ( ) 提示:(1)×.有3个事件(正,正),(正,反),(反,正). (2)√.满足古典概型的有限性和等可能性. (3)×.基本事件既不是有限个也不具有等可能性.
12 2
4.三张卡片上分别写上字母E,E,B,将三张卡片随机地排成一行,恰好排成英文
单词BEE的概率为________.
【解析】三张卡片的排列方法有EEB,EBE,BEE,因此样本空间为Ω={EEB,EBE,
BEE},共包含3个样本点,且这3个样本点发生的可能性是相等的,恰好排成英文 单词BEE包含1个样本点,故所求概率为1 .
必备知识·自主学习
导思
1.什么叫基本事件?它有什么特点? 2.什么叫古典概率模型?它有什么特点?
1.古典概型: 一般地,如果随机试验的样本空间所包含的样本点个数是_有__限__的__,而且可以认 为每个只包含一个样本点的事件发生的可能性_大__小__都__相__等__,则称这样的随机试 验为古典概率模型,简称古典概型.

2019_2020学年新教材高中数学第5章统计与概率5.3.3古典概型课时21古典概型练习含解析新人教b版必修第二册

2019_2020学年新教材高中数学第5章统计与概率5.3.3古典概型课时21古典概型练习含解析新人教b版必修第二册

课时21 古典概型知识点一样本点个数的计算错误!未指定书签。

1.一个家庭有两个小孩,对于性别,则所有的样本点是( )A.(男,女),(男,男),(女,女)B.(男,女),(女,男)C.(男,男),(男,女),(女,男),(女,女)D.(男,男),(女,女)答案 C解析把第一个孩子的性别写在前边,第二个孩子的性别写在后边,则所有的样本点是(男,男),(男,女),(女,男),(女,女).故选C.2.做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.(1)写出这个试验的样本空间;(2)求出这个试验的样本点的总数;(3)写出“第1次取出的数字是2”这一事件包含的样本点.解(1)这个试验的样本空间Ω={(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}.(2)样本点的总数为6.(3)“第1次取出的数字是2”包含以下2个样本点:(2,0),(2,1).知识点二古典概型的判断错误!未指定书签。

3.下列问题中是古典概型的是( )A.种下一粒杨树种子,求其能长成大树的概率B.掷一个质地不均匀的骰子,求出现1点的概率C.在区间[1,4]上任取一个数,求这个数大于1.5的概率D.同时掷两个质地均匀的骰子,求向上的点数之和是5的概率答案 D解析A,B两项中的样本点的发生不是等可能的;C项中样本点的总数是无限的;D项中每个样本点的发生是等可能的,且样本点总数有限.故选D.4.下列概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;②某射手射击一次,可能命中0环,1环,2环,…,10环;③某小组有男生5人,女生3人,从中任选1人做演讲;④一只使用中的灯泡的寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.其中属于古典概型的是________.答案③解析①不属于,原因是所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因是命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,原因是满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于,原因是灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因是该品牌月饼被评为“优”或“差”的概率不一定相同,不满足等可能性.知识点三古典概型概率的计算错误!未指定书签。

【新教材】高中数学 新人教B版必修第二册 5.3.3 古典概型 课件

【新教材】高中数学 新人教B版必修第二册 5.3.3 古典概型 课件
第五章 统计与概率
5.3 概率 5.3.3 古典概型
栏目导航
学习目标
核心素养
1.理解古典概型及其概率计算公
式,会判断古典概型.(难点) 1.古典概型及其特征的学习,体现
2.会用列举法求古典概型的概 了数学抽象的核心素养.
率.(重点)
2.通过古典概型概率的求解,培
3.应用古典概型的概率计算公式 养数学运算的核心素养.
∵A中含有样本点个数为m=6,
∴P(A)=mn =68=0.75.
栏目导航
(2)记事件B为“三次颜色全相同”. 则B={(红,红,红),(白,白,白)} ∵B中含有样本点个数为m=2, ∴P(B)=mn =28=0.25.
栏目导航
(3)记事件C为“三次摸到的红球多于白球”. 则C={(红,红,红),(红,红,白),(红,白,红),(白,红, 红)} ∵C中含有样本点个数为m=4, ∴P(C)=48=0.5.
求复杂事件的概率.(难点)
栏目导航
自主预习 探新知
栏目导航
1.古典概型的概念 一般地,如果随机试验的样本空间所包含的样本点个数是 _有__限__的__(简称为 有限性 ),而且可以认为每个只包含一个样本点的 事件(即基本事件)发生的可能性大小都相等 (简称为 等可能性 ),则 称这样的随机试验为古典概率模型,简称为古典概型.
栏目导航
判断一个事件是否是古典概型,关键看该事件是否具备古典概 型的两大特征
1有限性:在一次试验中,所有可能出现的基本事件只有有限 个.
2等可能性:每个基本事件出现的可能性相等.
栏目导航
2.(1)在数轴上0~3之间任取一点,求此点的坐标小于1的概 率.此试验是否为古典概型?为什么?
(2)从1,2,3,4四个数中任意取出两个数,求所取两数之一是2的概 率,此试验是古典概型吗?试说明理由.

2019_2020学年新教材高中数学第五章统计与概率5.3.5随机事件的独立性课件新人教B版必修第二册

2019_2020学年新教材高中数学第五章统计与概率5.3.5随机事件的独立性课件新人教B版必修第二册
=P( A )·P( B )+P(A)·P( B )+P( A )·P(B) =0.02+0.08+0.18=0.28. 若 A、B 相互独立,则 P(AB)=P(A)·P(B)
方法归纳 解决此类问题要明确互斥事件和相互独立事件的意义,若 A, B 相互独立,则 A 与 B,A 与 B , A 与 B 也是相互独立的,代入相 互独立事件的概率公式求解.
跟踪训练 3 甲、乙两人组成“星队”参加猜成语活动,每轮 活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为34,乙每轮 猜对的概率为23.在每轮活动中,甲和乙猜对与否互不影响,各轮结 果也互不影响.求“星队”在两轮活动中猜对 3 个成语的概率.
解析:设 A1,A2 分别表示甲两轮猜对 1 个,2 个成语的事件, B1,B2 分别表示乙两轮猜对 1 个,2 个成语的事件.根据独立性假 定,得 P(A1)=2×34×14=38,P(A2)=342=196.
(3)“2 人至少有 1 人射中”包括“2 人都中”和“2 人有 1 人 射中”2 种情况,其概率为 P=P(AB)十[P(A B )+P( A B)]=0.72+ 0.26=0.98.
(4)“2 人至多有 1 人射中目标”包括“有 1 人射中”和“2 人 都未射中”两种情况.
故所求概率为 P=P(A] B )+P(A B )+P( A B)
解析:(1)对同一目标射击,甲、乙两射手是否击中目标是互不 影响的,所以事件 A 与 B 相互独立;对同一目标射击,甲、乙两射 手可能同时击中目标,也就是说事件 A 与 B 可能同时发生,所以事 件 A 与 B 不是互斥事件.
甲、乙击中目标相互不影响,所以相互独立,甲击中目标、乙 击中目标,可以同时发生,所以不互斥.
题型一 相互独立事件的判断[经典例题] 例 1 从一副扑克牌(去掉大、小王)中任抽一张,设 A=“抽到 K”,B=“抽到红牌”,C=“抽到 J”,那么下列每对事件是否 相互独立?是否互斥?是否对立?为什么? (1)A 与 B;(2)C 与 A.

概率论与数理统计-等可能概型-古典概型

概率论与数理统计-等可能概型-古典概型

P( A)
m n
A
所包含样本点的个数
样本点总数
.
称此为概率的古典定义.
3. 古典概型的基本模型:摸球模型
(1) 无放回地摸球 问题1 设袋中有4 只白球和 2只黑球, 现从袋中无 放回地依次摸出2只球,求这2只球都是白球的概率.
解 设 A {摸得 2 只球都是白球},
基本事件总数为 6,
பைடு நூலகம்
2
A 所包含基本事件的个数为 故 P( A) 4 6 2 .
解 设 x, y 分别为 甲、乙两人到 达的时刻, 则有
1 x 2,
时刻, 那么 0 x T , 0 y T .
两人会面的充要条件为 x y t,
若以 x, y 表示平面 上点的坐标 , 则有
故所求的概率为
阴影部分面积 p 正方形面积
T 2 (T t )2
T2
1 (1 t )2 . T
y
T
y x t
x yt
o

t

T
x
例8 甲、乙两人约定在下午1 时到2 时之间到某 站乘公共汽车 , 又这段时间内有四班公共汽车, 它们的开车时刻分别为 1:15、1:30、1:45、2:00. 如果甲、乙约定 (1) 见车就乘; (2) 最多等一辆 车. 求甲、乙同乘一车的概率. 假定甲、乙两人到达车站的时 刻是互相不牵连的,且每人在 1 时到 2 时的任何时刻到达车 站是等可能的.
3
3
3
3
4个球放到3个杯子的所有放法 3 3 3 3 34种,
4种 2
2种 2
2个
2个
因此第1、2个杯子中各有两个球的概率为
p 4 2 34 2 .

20222023新教材高中数学第五章统计与概率5.3.3古典概型课件新人教B版必修第二册

20222023新教材高中数学第五章统计与概率5.3.3古典概型课件新人教B版必修第二册

【归纳总结】
古典概型的两个特点
(1)有限性:试验中所有可能出现的基本事件是有限个;
(2)等可能性:每个基本事件发生的可能性是相等的.
必须这两个特点都具备,才是古典概型。
训练题1. 题下列试验中是古典概型的是 ( ) A.在适宜的条件下,种下一粒种子,观察它是否发芽 B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球 C.向一个圆面内随机地投一个点,观察该点落在圆内的位置 D.射击运动员向一靶心进行射击,试验结果为命中10环,命中9环,…,命 中0环
【解】(1)每次摸出1个球后,放回袋中,再摸1个球.显然,这是有放回抽 样,依次摸出的球可以重复,且摸球可无限地进行下去,即所有可能结果有 无限个,因此该试验不是古典概型. (2)从5名同学中任意抽取1名,有5种等可能发生的结果:抽到学生甲,抽 到学生乙,抽到学生丙,抽到学生丁,抽到学生戊.因此该试验是古典概型. (3)射击的结果:脱靶0次,脱靶1次,脱靶2次,…,脱靶5次.这都是样本 点,但不是等可能事件.因此该试验不是古典概型.
【解题提示】先判断试验是否为古典概型,再写出样本空间Ω及包含的 样本点总数n,再求出随机事件A包含的样本点个数m,代入概率公式计 算即可.
【解】(1)由题意知,“从6个国家中任选2个国家”所包含的样本点有(A1,A2) ,(A1,A3),(A1,B1),(A1,B2),(A1,B3),(A2,A3),(A2,B1), (A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(B1,B2),(B1 ,B3),(B2,B3),共15个.事件“所选2个国家都是亚洲国家”所包含的样本点有 (A1,A2),(A1,A3),(A2,A3),共3个,则所求事件的概率为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.3.3古典概型课时21古典概型知识点一样本点个数的计算错误!未指定书签。

1.一个家庭有两个小孩,对于性别,则所有的样本点是()A.(男,女),(男,男),(女,女)B.(男,女),(女,男)C.(男,男),(男,女),(女,男),(女,女)D.(男,男),(女,女)答案 C解析把第一个孩子的性别写在前边,第二个孩子的性别写在后边,则所有的样本点是(男,男),(男,女),(女,男),(女,女).故选C.2.做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.(1)写出这个试验的样本空间;(2)求出这个试验的样本点的总数;(3)写出“第1次取出的数字是2”这一事件包含的样本点.解(1)这个试验的样本空间Ω={(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}.(2)样本点的总数为6.(3)“第1次取出的数字是2”包含以下2个样本点:(2,0),(2,1).知识点二古典概型的判断错误!未指定书签。

3.下列问题中是古典概型的是()A.种下一粒杨树种子,求其能长成大树的概率B.掷一个质地不均匀的骰子,求出现1点的概率C.在区间[1,4]上任取一个数,求这个数大于1.5的概率D.同时掷两个质地均匀的骰子,求向上的点数之和是5的概率答案 D解析A,B两项中的样本点的发生不是等可能的;C项中样本点的总数是无限的;D项中每个样本点的发生是等可能的,且样本点总数有限.故选D.4.下列概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;②某射手射击一次,可能命中0环,1环,2环,…,10环;③某小组有男生5人,女生3人,从中任选1人做演讲;④一只使用中的灯泡的寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.其中属于古典概型的是________.答案③解析①不属于,原因是所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因是命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,原因是满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于,原因是灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因是该品牌月饼被评为“优”或“差”的概率不一定相同,不满足等可能性.知识点三古典概型概率的计算错误!未指定书签。

5.一个口袋内装有大小相同的6个小球,其中2个红球记为A1,A2,4个黑球记为B1,B2,B3,B4,从中一次摸出2个球.(1)写出这个试验的样本空间及样本点总数;(2)求摸出的2个球颜色不同的概率.解(1)这个试验的样本空间Ω={(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4)},共15个样本点.(2)因为(1)中的15个样本点出现的可能性是相等的,事件“2个球颜色不同”包含的样本点有(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),共8个,故所求事件的概率P=8 15.6.一个盒子里装有标号为1,2,3,4的4张形状、大小完全相同的标签,先后随机地选取2张标签,根据下列条件,分别求2张标签上的数字为相邻整数的概率.(1)标签的选取是无放回的;(2)标签的选取是有放回的.解记事件A为“选取的2张标签上的数字为相邻整数”.(1)从4张标签中无放回地随机选取2张,则试验的样本空间Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)},共有12个样本点,这12个样本点出现的可能性是相等的,A={(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)},包含6个样本点.由古典概型的概率计算公式知P(A)=612=12,故无放回地选取2张标签,其上数字为相邻整数的概率为1 2.(2)从4张标签中有放回地随机选取2张,则试验的样本空间Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)},共有16个样本点,这16个样本点出现的可能性是相等的.A={(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)},包含6个样本点,由古典概型的概率计算公式知P(A)=616=38,故有放回地选取2张标签,其上数字为相邻整数的概率为38.7.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.解甲校的男教师用A,B表示,女教师用C表示,乙校的男教师用D表示,女教师用E,F表示.(1)根据题意,从甲校和乙校报名的教师中各任选1名,这个试验的样本空间Ω={AD,AE,AF,BD,BE,BF,CD,CE,CF},共有9个样本点,这9个样本点发生的可能性是相等的.其中“性别相同”包含的样本点有AD,BD,CE,CF,共4个.故选出的2名教师性别相同的概率P=4 9.(2)若从报名的6名教师中任选2名,这个试验的样本空间Ω={AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF},共有15个样本点,这15个样本点发生的可能性是相等的.其中“选出的2名教师来自同一个学校”包含的样本点有AB,AC,BC,DE,DF,EF,共6个样本点.故选出的2名教师来自同一学校的概率P=615=25.易错点对样本空间列举不全致误错误!未指定书签。

8.任意掷两个骰子,计算:(1)出现点数之和为奇数的概率;(2)出现点数之和为偶数的概率.易错分析本题易出现样本空间Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,4),(4,5),(4,6),(5,5),(5,6),(6,6)}的错误;忽略先后顺序导致对样本空间列举不全致误.正解任意掷两个骰子,这个试验的样本空间Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)},共包含36个样本点,这36个样本点发生的可能性是相等的.(1)“出现点数之和为奇数”包含的样本点有(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5),共18个.因此点数之和为奇数的概率为1836=12.(2)点数之和为偶数的概率为1-12=12.一、选择题1.下列有关古典概型的四种说法:①试验中所有样本点的个数只有有限个;②每个事件出现的可能性相等;③每个样本点出现的可能性相等;④已知样本点总数为n,若随机事件A包含k个样本点,则事件A发生的概率P(A)=k n.其中所有正确说法的序号是()A.①②④B.①③C.③④D.①③④答案 D解析②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.故选D.2.将一个骰子先后抛掷2次,观察向上的点数,则点数之和是3的倍数的概率是()A.19 B.16 C.14 D.13答案 D解析这个试验的样本空间中共包含36个样本点,且这36个样本点发生的可能性是相等的,“点数之和为3的倍数”包含的样本点有(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2),(4,5),(5,1),(5,4),(6,3),(6,6),共12个,因此所求概率为1236=13.3.从数字1,2,3中任取两个不同的数字构成一个两位数,则这个两位数大于23的概率是( )A.13B.16C.18D.14答案 A解析 这个试验的样本空间Ω={12,13,21,23,31,32},共包含6个样本点,这6个样本点发生的可能性是相等的,因此是古典概型.其中“大于23”包含的样本点有31,32,共2个,所以所求概率P =26=13.4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,若双方均不知道对方马的出场顺序,则田忌获胜的概率为( )A.13B.14C.15D.16答案 D解析 设齐王的下等马、中等马、上等马分别为a 1,a 2,a 3,田忌的下等马、中等马、上等马分别为b 1,b 2,b 3.齐王与田忌赛马,其情况有:(a 1,b 1),(a 2,b 2),(a 3,b 3),齐王获胜;(a 1,b 1),(a 2,b 3),(a 3,b 2),齐王获胜;(a 2,b 1),(a 1,b 2),(a 3,b 3),齐王获胜;(a 2,b 1),(a 1,b 3),(a 3,b 2),齐王获胜;(a 3,b 1),(a 1,b 2),(a 2,b 3),田忌获胜;(a 3,b 1),(a 1,b 3),(a 2,b 2),齐王获胜.共6种情况,且这6种情况发生的可能性是相等的.其中田忌获胜的只有一种情形,即(a 3,b 1),(a 1,b 2),(a 2,b 3),则田忌获胜的概率为16.故选D.5.甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3,4},若|a -b |≤1,则称甲乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A.38 B.58 C.316 D.516答案 B解析两人分别从1,2,3,4四个数中任取一个,这个试验共包含16个样本点,这16个样本点发生的可能性是相等的,其中“|a-b|≤1”包含的样本点有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),共10个,故他们“心有灵犀”的概率为1016=58.二、填空题6.在三张奖券中有一、二等奖各一张,另一张无奖,甲、乙两人各抽取一张(不放回),两人都中奖的概率为________.答案1 3解析设一、二等奖分别用A,B表示,另一张无奖用C表示,甲、乙两人各抽取一张,这个试验的样本空间Ω={AB,AC,BA,BC,CA,CB},共包含6个样本点,这6个样本点发生的可能性是相等的.其中两人都中奖的事件包含的样本点有AB,BA,共2个,故所求的概率P=26=13.7.从甲、乙、丙、丁四人中随机选取两人,则甲、乙两人中有且只有一人被选取的概率为________.答案2 3解析从甲、乙、丙、丁四人中随机选取两人,这个试验的样本空间Ω={(甲、乙),(甲、丙),(甲、丁),(乙、丙),(乙、丁),(丙、丁)},共6个样本点,这6个样本点发生的可能性是相等的.其中“甲、乙两人中有且只有一人被选取”这个事件包含的样本点有(甲、丙),(甲、丁),(乙、丙),(乙、丁),共4个,故甲、乙两人中有且只有一人被选取的概率为46=23.8.一个三位自然数百位、十位、个位上的数字依次为a,b,c,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若a,b,c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为“有缘数”的概率是______.答案1 2解析由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数为6个,由1,3,4组成的三位自然数为6个,由2,3,4组成的三位自然数为6个,共有24个,且组成这24个自然数的可能性是相等的.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个,所以组成的三位数为“有缘数”的概率为1224=12.三、解答题9.先后掷两个质地均匀的骰子,观察朝上的面的点数,记事件A :两个骰子点数相同,事件B :点数之和小于7,事件C :点数之和小于11,求P (A ),P (B ),P (AB ),P (A +B ),P (C ).解 用数对(x ,y )表示抛掷结果,则这个试验的样本空间Ω=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共包含36个样本点,这36个样本点发生的可能性是相等的,A ={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)},包含6个样本点,所以P (A )=636=16.B =⎩⎨⎧⎭⎬⎫(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),(5,1),包含15个样本点,所以P (B )=1536=512.AB ={(1,1),(2,2),(3,3)},包含3个样本点,所以P (AB )=336=112.A +B =⎩⎨⎧⎭⎬⎫(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),(5,1),(4,4),(5,5),(6,6),包含18个样本点,所以P (A +B )=1836=12.因为事件C 的对立事件C -表示“点数之和等于或大于11”,所以C -={(5,6),(6,5),(6,6)},P (C -)=336=112.所以P (C )=1-P (C -)=1-112=1112.10.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解用数对(x,y)表示儿童参加活动先后记录的数,则样本空间Ω与点集S ={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以样本点总数n=16,且这16个样本点发生的可能性是相等的.(1)记“xy≤3”为事件A,则事件A包含的样本点共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516.(2)记“xy≥8”为事件B,“3<xy<8”为事件C. 则事件B包含的样本点共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),所以P(B)=616=38.事件C包含的样本点共5个,即(1,4),(2,2),(2,3),(3,2),(4,1),所以P(C)=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.。

相关文档
最新文档