2019年全国统一高考数学试卷(理科)(新课标ⅱ)
2019年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2019年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学一、选择题1.已知集合A={x|x>-1},B={x|x<2},则A∩B等于()A.(-1,+∞) B.(-∞,2)C.(-1,2) D.∅答案 C解析A∩B={x|x>-1}∩{x|x<2}={x|-1<x<2}.2.设z=i(2+i),则等于()A.1+2i B.-1+2iC.1-2i D.-1-2i答案 D解析∵z=i(2+i)=-1+2i,∴=-1-2i.3.已知向量a=(2,3),b=(3,2),则|a-b|等于()A. B.2 C.5 D.50答案 A解析∵a-b=(2,3)-(3,2)=(-1,1),∴|a-b|==.4.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.答案 B解析设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为=.5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.6.设f(x)为奇函数,且当x≥0时,f(x)=e x-1,则当x<0时,f(x)等于()A.e-x-1 B.e-x+1C.-e-x-1 D.-e-x+1答案 D解析当x<0时,-x>0,∵当x≥0时,f(x)=e x-1,∴f(-x)=e-x-1.又∵f(x)为奇函数,∴f(x)=-f(-x)=-e-x+1.7.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面答案 B解析对于A,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A不正确;对于B,根据两平面平行的判定定理与性质知,B正确,对于C,平行于同一条直线的两个平面可能相交,也可能平行,所以C不正确;对于D,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D不正确,综上可知选B.8.若x1=,x2=是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω等于()A.2 B. C.1 D.答案 A解析由题意及函数y=sin ωx的图象与性质可知,T=-,∴T=π,∴=π,∴ω=2.9.若抛物线y2=2px(p>0)的焦点是椭圆 4+=1的一个焦点,则p等于()A.2 B.3 C.4 D.8答案 D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.10.曲线y=2sin x+cos x在点(π,-1)处的切线方程为()A.x-y-π-1=0 B.2x-y-2π-1=0C.2x+y-2π+1=0 D.x+y-π+1=0答案 C解析设y=f(x)=2sin x+cos x,则f′(x)=2cos x-sin x,∴f′(π)=-2,∴曲线在点(π,-1)处的切线方程为y-(-1)=-2(x-π),即2x+y-2π+1=0.11.已知α∈,2sin 2α=cos 2α+1,则sin α等于()A. B. C. D.答案 B解析由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因为α∈,所以cos α=,所以2sin α=1-sin2α,解得sin α=,故选B.12.设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q 两点.若|PQ|=|OF|,则C的离心率为()A. B. C.2 D.答案 A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将x2+y2=a2记为②式,①-②得x=,则以OF为直径的圆与圆x2+y2=a2的相交弦所在直线的方程为x=,所以|PQ|=2. 由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=,故选A.二、填空题13.若变量x,y满足约束条件则z=3x-y的最大值是________.答案9解析作出已知约束条件对应的可行域,如图中阴影部分(含边界)所示,由图易知,当直线y=3x-z过点C时,-z最小,即z最大.由解得即C点坐标为(3,0),故z max=3×3-0=9.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98.15.△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=________.答案解析∵b sin A+a cos B=0,∴=,由正弦定理,得-cos B=sin B,∴tan B=-1,又B∈(0,π),∴B=.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案26-1解析依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则x+x+x=1,解得x=-1,故题中的半正多面体的棱长为-1.三、解答题17.如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.(1)证明由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,B1C1∩EC1=C1,B1C1,EC1⊂平面EB1C1,所以BE⊥平面EB1C1.(2)解由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.如图,作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.所以四棱锥E-BB1C1C的体积V=×3×6×3=18.18.已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0,解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=log222n-1=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+2n-1=n2.19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为=0.21.产值负增长的企业频率为=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)=×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=i(y i-)2=×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6,s==0.02×≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.20.已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.解(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的离心率为e==-1.(2)由题意可知,若满足条件的点P(x,y)存在,则|y|·2c=16,·=-1,即c|y|=16,①x2+y2=c2,②又+=1.③由②③及a2=b2+c2得y2=.又由①知y2=,故b=4.由②③及a2=b2+c2得x2=(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4.当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).21.已知函数f(x)=(x-1)ln x-x-1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.证明(1)f(x)的定义域为(0,+∞).f′(x)=+ln x-1=ln x-(x>0).因为y=ln x在(0,+∞)上单调递增,y=在(0,+∞)上单调递减,所以f′(x)在(0,+∞)上单调递增.又f′(1)=-1<0,f′(2)=ln 2-=>0,故存在唯一x0∈(1,2),使得f′(x0)=0.又当0<x<x0时,f′(x)<0,f(x)单调递减,当x>x0时,f′(x)>0,f(x)单调递增,因此,f(x)存在唯一的极值点.(2)由(1)知f(x0)<f(1)=-2,又f(e2)=e2-3>0,所以f(x)=0在(x0,+∞)内存在唯一根x=α.由1<x0<α得0<<1<x0.又f=ln--1===0,故是f(x)=0在(0,x0)的唯一根.综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.22.[选修4-4:坐标系与参数方程]在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.解(1)因为M(ρ0,θ0)在C上,当θ0=时,ρ0=4sin =2.由已知得|OP|=|OA|cos =2.设Q(ρ,θ)为l上除P的任意一点,连接OQ,在Rt△OPQ中,ρcos=|OP|=2. 经检验,点P在曲线ρcos=2上.所以,l的极坐标方程为ρcos=2.(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P在线段OM上,且AP⊥OM,故θ的取值范围是.所以,P点轨迹的极坐标方程为ρ=4cos θ,θ∈.23.[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0. 所以,a的取值范围是[1,+∞).祝福语祝你考试成功!。
2019年高考全国2卷真题(含语文,理科数学,英语)及答案

2019年普通高等学校招生全国统一考试全国2卷含语文,理科数学,英语学科绝密★启用前2019年普通高等学校招生全国统一考试语文本试卷共22题,共150分,共10页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
杜甫之所以能有集大成之成就,是因为他有可以集大成之容量。
而其所以能有集大成之容量,最重要的因素,乃在于他生而禀有一种极为难得的健全才性——那就是他的博大、均衡与正常。
杜甫是一位感性与理性兼长并美的诗人,他一方面具有极大极强的感性,可以深入到他接触的任何事物,把握住他所欲攫取的事物之精华;另一方面又有着极清明周至的理性,足以脱出于一切事物的蒙蔽与局限,做到博观兼美而无所偏失。
这种优越的禀赋表现于他的诗中,第一点最可注意的成就,便是其汲取之博与途径之正。
就诗歌体式风格方面而言,古今长短各种诗歌他都能深入撷取尽得其长,而且不为一体所限,更能融会运用,开创变化,千汇万状而无所不工。
我们看他《戏为六绝句》之论诗,以及与当时诸大诗人,如李白、高适、岑参、王维、孟浩然等,酬赠怀念的诗篇中论诗的话,都可看到杜甫采择与欣赏的方面之广;而自其《饮中八仙歌》《曲江三章》《同谷七歌》等作中,则可见到他对各种诗体运用变化之神奇工妙;又如从《自京赴奉先县咏怀五百字》《北征》及“三吏”“三别”等五古之作中,可看到杜甫自汉魏五言古诗变化而出的一种新面貌。
就诗歌内容方面而言,杜甫更是无论妍媸巨细,悲欢忧喜,宇宙的一切人物情态,都能随物赋形,淋漓尽致地收罗笔下而无所不包,如写青莲居士之“飘然思不群”,写空谷佳人之“日暮倚修竹”;写丑拙则“袖露两肘”,写工丽则“燕子风斜”;写玉华宫之荒寂,予人以一片沉哀悲响;写洗兵马之欢忭,写出一片欣奋祝愿之情、其涵蕴之博与变化之多,都足以为其禀赋之博大、均衡与正常的证明。
2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)

绝密★启用前 全国卷Ⅰ2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .B .C . D二、填空题:本题共4小题,每小题5分,共20分。
函数小题大做-备战高考数学冲刺横向强化精练精讲(解析版)

函数小题大做一、单选题1.(2021年全国高考甲卷数学(文)试题)下列函数中是增函数的为( ) A .()f x x =- B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()3f x x 【答案】D 【分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0-∞为减函数,不合题意,舍.对于D ,()3f x x =R 上的增函数,符合题意, 故选:D.2.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x --- D .e 1x --+【答案】D 【分析】先把x <0,转化为-x>0,代入可得()f x -,结合奇偶性可得()f x . 【详解】()f x 是奇函数, 0x ≥时,()1x f x e =-.当0x <时,0x ->,()()1x f x f x e -=--=-+,得()e 1x f x -=-+.故选D . 【点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.3.(2021年全国高考甲卷数学(理)试题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫=⎪⎝⎭( ) A .94-B .32-C .74 D .52【答案】D 【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案. 【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 所以935222f f⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =. 所以91352222f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D . 【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.4.(2021年天津高考数学试题)函数2ln ||2x y x =+的图像大致为( )A .B .C .D .【答案】B 【分析】由函数为偶函数可排除AC ,再由当()0,1∈x 时,()0f x <,排除D ,即可得解. 【详解】 设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ≠,关于原点对称, 又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ;当()0,1∈x 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B.5.(2021年全国新高考II 卷数学试题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a << B .b a c <<C .a c b <<D .a b c <<【答案】C 【分析】对数函数的单调性可比较a 、b 与c 的大小关系,由此可得出结论. 【详解】55881log 2log 5log 22log 32a b =<===,即a c b <<. 故选:C.6.(2020年北京市高考数学试卷)已知函数()21xf x x =--,则不等式()0f x >的解集是( ). A .(1,1)- B .(,1)(1,)-∞-+∞ C .(0,1) D .(,0)(1,)-∞⋃+∞【答案】D 【分析】作出函数2x y =和1y x =+的图象,观察图象可得结果. 【详解】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2), 不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D. 【点睛】本题考查了图象法解不等式,属于基础题.7.(2019年北京市高考数学试卷(文科))在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为 A .1010.1 B .10.1C .lg10.1D .10.110-【答案】A 【分析】由题意得到关于12,E E 的等式,结合对数的运算法则可得亮度的比值. 【详解】两颗星的星等与亮度满足12125lg2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选A. 【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.8.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C 【分析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.9.(2019年全国统一高考数学试卷(理科)(新课标Ⅱ))设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.10.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷精编版))已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称【答案】C 【详解】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 11.(2021·四川·树德中学高一阶段练习)已知当[0,1]x ∈ 时,函数2(1)y mx =- 的图象与y x m = 的图象有且只有一个交点,则正实数m 的取值范围是 A .(0,1][23,)⋃+∞ B . (0,1][3,)⋃+∞ C . 2]3,)⋃+∞ D . 2][3,)⋃+∞【答案】B 【详解】当01m <≤时,11m≥ ,2(1)y mx =- 单调递减,且22(1)[(1),1]y mx m =-∈-,y x m =单调递增,且[,1]y x m m m =∈+ ,此时有且仅有一个交点;当1m 时,101m << ,2(1)y mx =-在1[,1]m上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥ 选B.【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决; (3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.12.(2021年天津高考数学试题)设a ∈R ,函数22cos(22).()2(1)5,x a x a f x x a x a x a ππ-<⎧=⎨-+++≥⎩,若()f x 在区间(0,)+∞内恰有6个零点,则a 的取值范围是( ) A .95112,,424⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦ B .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭C .9112,,344⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭D .11,2,3447⎛⎫⎡⎫⋃ ⎪⎪⎢⎝⎭⎣⎭【答案】A 【分析】由()222150x a x a -+++=最多有2个根,可得()cos 220x a ππ-=至少有4个根,分别讨论当x a <和x a ≥时两个函数零点个数情况,再结合考虑即可得出. 【详解】()222150x a x a -+++=最多有2个根,所以()cos 220x a ππ-=至少有4个根, 由22,2x a k k Z ππππ-=+∈可得1,24k x a k Z =++∈, 由1024k a a <++<可得11222a k --<<-, (1)x a <时,当15242a -≤--<-时,()f x 有4个零点,即7944a <≤;当16252a -≤--<-,()f x 有5个零点,即91144a <≤; 当17262a -≤--<-,()f x 有6个零点,即111344a <≤; (2)当x a ≥时,22()2(1)5f x x a x a =-+++,()()22Δ4(1)4582a a a =+-+=-, 当2a <时,∆<0,()f x 无零点; 当2a =时,0∆=,()f x 有1个零点;当2a >时,令22()2(1)5250f a a a a a a =-+++=-+≥,则522a <≤,此时()f x 有2个零点; 所以若52a >时,()f x 有1个零点. 综上,要使()f x 在区间(0,)+∞内恰有6个零点,则应满足 7944522a a ⎧<≤⎪⎪⎨⎪<≤⎪⎩或91144522a a a ⎧<≤⎪⎪⎨⎪=>⎪⎩或或1113442a a ⎧<≤⎪⎨⎪<⎩,则可解得a 的取值范围是95112,,424⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦.【点睛】关键点睛:解决本题的关键是分成x a <和x a ≥两种情况分别讨论两个函数的零点个数情况.二、填空题13.(2021年全国新高考Ⅰ卷数学试题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a ______.【答案】1 【分析】利用偶函数的定义可求参数a 的值. 【详解】因为()()322x x x a f x -=⋅-,故()()322x xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222x x x x x a x a --⋅-=-⋅-,整理得到()()12+2=0x xa --,故1a =, 故答案为:114.(2019年江苏省高考数学试卷)函数276y x x =+-_____. 【答案】[1,7]-. 【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-. 【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.15.(2021年全国新高考Ⅰ卷数学试题)函数()212ln f x x x =--的最小值为______.【答案】1 【分析】由解析式知()f x 定义域为(0,)+∞,讨论102x <≤、112x <≤、1x >,并结合导数研究的单调性,即可求()f x 最小值. 【详解】由题设知:()|21|2ln f x x x =--定义域为(0,)+∞, ∴当102x <≤时,()122ln f x x x =--,此时()f x 单调递减; 当112x <≤时,()212ln f x x x =--,有2()20f x x'=-≤,此时()f x 单调递减; 当1x >时,()212ln f x x x =--,有2()20f x x'=->,此时()f x 单调递增; 又()f x 在各分段的界点处连续,∴综上有:01x <≤时,()f x 单调递减,1x >时,()f x 单调递增; ∴()(1)1f x f ≥= 故答案为:1.16.(2018年全国普通高等学校招生统一考试数学(浙江卷))已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 【答案】(1,4) (1,3](4,)+∞ 【详解】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)+∞. 点睛:已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.11试卷第12页,共1页。
2019年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

M2 2M13α r绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)2.设z=-3+2i,则在复平面内z 对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知AB =(2,3),AC =(3,t),BC =1,则AB ⋅BC =A.-3 B.-2C.2 D.34.2019 年1 月3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2 点到月球的距离为r,根据牛顿运动定律和万有引力定律,r 满足方程:M1 +M2 = (R +r)M1 .(R +r)2r2R3α=r α3α3+ 3α4+α5≈3设,由于R 的值很小,因此在近似计算中(1+α)2,则的近似值为A.M2 RM1B.RD .3M2 R 3M15.演讲比赛共有9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉1 个最高分、1 个最低分,得到7 个有效评分.7 个有效评分与9 个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差6.若a>b,则A.ln(a−b)>0 B.3a<3bC.a3−b3>0 D.│a│>│b│7.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.若抛物线y2=2px(p>0)的焦点是椭圆x y2+=1 的一个焦点,则p= 3 p pA.2 B.3 C.4 D.8π 9.下列函数中,以2ππ为周期且在区间( ,4 2)单调递增的是A.f(x)=│cos 2x│B.f(x)=│sin 2x│C.f(x)=cos│x│D.f(x)= sin│x│π10.已知α∈(0,2 A.15),2sin 2α=cos 2α+1,则sin α=B.5C.3x2 y2 D.2 5511.设F 为双曲线C:a2 -=1(a > 0, b > 0) 的右焦点,O 为坐标原点,以OF 为直径的b2圆与圆x2+y2=a2交于P,Q 两点.若PQ =OF A.,则C 的离心率为B.C.3 3M2 RM15 3232C.2 D.12.设函数f (x) 的定义域为R,满足f (x +1) = 2 f (x) ,且当x ∈ (0,1] 时,f (x) =x(x -1) .若对任意x ∈(-∞, m] ,都有f (x) ≥-8,则m 的取值范围是9A.⎛-∞,9 ⎤B.⎛-∞,7 ⎤4 ⎥ 3 ⎥ ⎝⎦C.⎛-∞,5 ⎤⎝⎦D.⎛-∞,8 ⎤2 ⎥ 3⎥ ⎝⎦⎝⎦二、填空题:本题共4 小题,每小题5 分,共20 分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10 个车次的正点率为0.97,有20 个车次的正点率为0.98,有10 个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.14.已知f (x) 是奇函数,且当x < 0 时,f (x) =-e ax.若f (ln 2) = 8 ,则a =.15.△ABC 的内角A, B, C 的对边分别为a, b, c .若b = 6, a = 2c, B =π,则△ABC 的面积3为.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2 是一个棱数为48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为(.本题第一空2 分,第二空3 分.)三、解答题:共70 分。
数列小题大做-备战高考数学冲刺横向强化精练精讲(解析版)

数列小题大做一、单选题1.(2021·吉林省实验模拟预测(理))设等差数列{}n a 的前n 项和为n S ,若73a =,4516a a +=,则10S =( )A .60B .80C .90D .100【答案】A 【分析】由题意,利用等差数列通项公式将两式化为基本量1,a d 的关系式,计算1,a d ,然后代入等差数列前n 项和公式计算. 【详解】由题意,数列{}n a 为等差数列,所以7163a a d =+=,4512716+=+=a a a d ,联立得,1a 15d 2==-,所以101091015(2)602⨯=⨯+⨯-=S . 故选:A2.(2021年全国高考甲卷数学(文)试题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( )A .7B .8C .9D .10【答案】A 【分析】根据题目条件可得2S ,42S S -,64S S -成等比数列,从而求出641S S -=,进一步求出答案. 【详解】∵n S 为等比数列{}n a 的前n 项和, ∴2S ,42S S -,64S S -成等比数列 ∴24S =,42642S S -=-= ∴641S S -=, ∴641167S S =+=+=. 故选:A.3.(2021年全国高考甲卷数学(理)试题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B 【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【详解】由题,当数列为2,4,8,---时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B . 【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =- C .228n S n n =-D .2122n S n n =-【答案】A 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.5.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =( ) A .2n –1 B .2–21–n C .2–2n –1 D .21–n –1【答案】B 【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可. 【详解】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)122,21112n nn n n n n a q a a qS q ----=====---,因此1121222n nn n n S a ---==-.故选:B. 【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前n 项和公式的应用,考查了数学运算能力.6.(2020年全国统一高考数学试卷(理科)(新课标Ⅱ))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块【答案】C 【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列, 设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S . 【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=, 设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分 别为232,,n n n n n S S S S S --,因为下层比中层多729块, 所以322729n n n n S S S S -=-+, 即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+ 即29729n =,解得9n =, 所以32727(9927)34022n S S +⨯===.故选:C 【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题.7.(2021年浙江省高考数学试题)已知数列{}n a 满足)111,N 1nn na a n a *+=∈+.记数列{}n a 的前n 项和为n S ,则( ) A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A 【分析】 显然可知,10032S >,利用倒数法得到21111124n n n n a a a a +⎛⎫==-⎪⎪⎭,再放缩可得112n n a a +<,由累加法可得24(1)n a n ≥+,进而由11n n na a +=+113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【详解】 因为)111,N 1nn n a a n a *+==∈+,所以0n a >,10032S >. 由2111111241n n n n n n n a a a a a a ++⎛⎫⇒==-⎪⎪+⎭ 21111122n n n n a a a a ++⎛⎫∴<⎪⎪⎭112n n a a +<11122nn n a -+≤+=,当且仅当1n =时取等号,12412(1)3111n n n n n n a n a a a n n a n ++∴≥∴=≤=+++++ 113n n a n a n ++∴≤+, 由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A . 【点睛】1,n n a a +24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.8.(2021年北京市高考数学试题)已知{}n a 是各项均为整数的递增数列,且13a ≥,若12100n a a a ++⋅⋅⋅+=,则n 的最大值为( )A .9B .10C .11D .12【答案】C 【分析】使数列首项、递增幅度均最小,结合等差数列的通项及求和公式求得n 可能的最大值,然后构造数列满足条件,即得到n 的最大值. 【详解】若要使n 尽可能的大,则,递增幅度要尽可能小, 不妨设数列是首项为3,公差为1的等差数列,其前n 项和为,则,,所以11n ≤. 对于,,取数列各项为(1,2,10)n =⋯,1125a =,则1211100a a a ++⋅⋅⋅+=, 所以n 的最大值为11. 故选:C .9.(2020年北京市高考数学试卷)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B 【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项. 【详解】由题意可知,等差数列的公差511925151a a d --+===--,则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<<,且由50T <可知()06,i T i i N <≥∈,由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B. 【点睛】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.10.(2021·四川·内江市教育科学研究所一模(文))已知函数()f x 是R 上单调递减的奇函数,数列{}n a 为等差数列.若20a >,则()1f a +()()23f a f a +的值( ) A .恒为0 B .恒为正数C .恒为负数D .可正可负【答案】C 【分析】根据函数()f x 是R 上单调递减的奇函数,得到()00f =,0x >时,()0f x <,0x <时,()0f x >求解.【详解】因为函数()f x 是R 上单调递减的奇函数,所以()00f =,当0x >时,()0f x <,当0x <时,()0f x >, 因为数列{}n a 为等差数列,且20a >, 所以()20f a <,13220a a a +=>, 则13a a >-,所以()()13f a f a <-,即()()130f a f a +<, 所以()1f a +()()230f a f a +<, 故选:C11.(2019年浙江省高考数学试卷)设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A 【分析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确. 【详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<,故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥, 且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>,故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =, 则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为1x =-或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2,同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为117x ±=同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A. 【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.12.(2021·河南·南阳中学高三阶段练习(文))数列{}n a 的通项cos sin 33n n n a n n ππ22⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,其前n 项和为n S ,则S 18为( )A .173B .174C .175D .176【答案】B 【分析】化简n a 可得22cos3n n a n π=,讨论n 取不同值时n a 的通项公式,并项求和. 【详解】22222cos sin cos sin cos33333n n n n n n a n n n n πππππ22⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当3n k =()k N *∈ 时,()233k a k =;31n k =-()k N *∈时,()231312k k a --=-;32n k =-()k N *∈时,()232322k k a --=-()()()223212333231592223k k kk k a a a k k ----++-=-+=-所以()()18166530912669174222S +⨯=+++-⨯=⨯-= 故选:B二、填空题13.(2020年浙江省高考数学试卷)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是________. 【答案】10 【分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【详解】 因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10. 【点睛】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.14.(2020年江苏省高考数学试卷)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______. 【答案】4 【分析】结合等差数列和等比数列前n 项和公式的特点,分别求得{}{},n n a b 的公差和公比,由此求得d q +. 【详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据题意1q ≠. 等差数列{}n a 的前n 项和公式为()2111222n n n d d P na d n a n -⎛⎫=+=+- ⎪⎝⎭, 等比数列{}n b 的前n 项和公式为()1111111n n n b q b bQ q qq q-==-+---, 依题意n n n S P Q =+,即22111212211nn b b d d n n n a n q q q ⎛⎫-+-=+--+ ⎪--⎝⎭, 通过对比系数可知111212211dd a q b q⎧=⎪⎪⎪-=-⎪⎨⎪=⎪⎪=-⎪-⎩⇒112021d a q b =⎧⎪=⎪⎨=⎪⎪=⎩,故4d q +=.故答案为:4 【点睛】11本小题主要考查等差数列和等比数列的前n 项和公式,属于中档题.15.(2021·陕西商洛·模拟预测(理))已知等比数列{}n a 的公比0q >,其前n 项和为n S ,且236,14S S ==,则数列2211log log nn a a +⎧⎫⎨⎬⋅⎩⎭的前2021项和为___________. 【答案】20212022【分析】根据等比数列的通项公式及前n 项和公式得到方程组,求出1a 和q ,即可得到n a ,从而得到2211log log n n a a +⋅,再利用裂项相消法求和即可; 【详解】解:因233212118,6a S S a q S a a q =-===+=,所以211143a q a a q =+,所以23440q q --=,得2q 或23-(舍去),所以12a =,故2n n a =. 因为2211111log log (1)1n n a a n n n n +==-⋅++, 所以20211111112021112232021202220222022T =-+-++-=-=. 故答案为:2021202216.(2021·上海嘉定·一模)已知集合{}*21,A x x n n ==-∈N ,{}*2,n B x x n ==∈N ,将A B 中的所有元素按从小到大的顺序排列构成一个数列{}n a ,设数列{}n a 的前n 项和为n S ,则使得1000n S >成立的最小的n 的值为_____________.【答案】36【分析】由题可得2n 为数列{}n a 的12n n -+项,且利用分组求和可得1112422n n n n S --++=+-,通过计算即得.【详解】由题意,对于数列{}n a 的项2n ,其前面的项1,3,5,…,21n A -∈,共有12n -项,232,2,2,,2n B ⋅⋅⋅∈,共有n 项,所以2n 为数列{}n a 的12n n -+项,且()()()()112112211221221222422n n n n n n S ---++⎡⎤=⨯-+⨯-+⋅⋅⋅+⨯-++++=+-⎣⎦.可算得612638-+=(项),3864a =,381150S =,试卷第12页,共12页因为3763a =,3661a =,3559a =,所以371086S =,361023S =,35962S =, 因此所求n 的最小值为36.故答案为:36.13。
2019全国2卷高考数学理科含答案详解(珍藏版)
绝密★启用前2019年普通高等学校招生全国统一考试(全国2卷)理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A ={x|x 2﹣5x+6>0},B ={x|x ﹣1<0},则A ∩B =()A .(﹣∞,1)B .(﹣2,1)C .(﹣3,﹣1)D .(3,+∞)2.(5分)设z =﹣3+2i ,则在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)已知=(2,3),=(3,t ),||=1,则?=()A .﹣3B .﹣2C .2D .34.(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:+=(R +r ).设α=.由于α的值很小,因此在近似计算中≈3α3,则r 的近似值为()A .RB .RC .R D .R5.(5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A .中位数B .平均数C .方差D .极差6.(5分)若a >b ,则()A .ln (a ﹣b )>0B .3a<3bC .a 3﹣b 3>0D .|a|>|b|7.(5分)设α,β为两个平面,则α∥β的充要条件是()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.(5分)若抛物线y 2=2px (p >0)的焦点是椭圆+=1的一个焦点,则p =()A .2B .3C .4D .89.(5分)下列函数中,以为周期且在区间(,)单调递增的是()A .f (x )=|cos2x|B .f (x )=|sin2x|C .f (x )=cos|x |D .f (x )=sin|x|10.(5分)已知α∈(0,),2sin2α=cos2α+1,则sin α=()A .B .C .D .11.(5分)设F 为双曲线C :﹣=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ|=|OF |,则C 的离心率为()A .B .C .2D .12.(5分)设函数f (x )的定义域为R ,满足f (x+1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m],都有f (x )≥﹣,则m 的取值范围是()A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]二、填空题:本题共4小题,每小题5分,共20分。
2018年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.i B.C.D.2.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.43.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.CD.10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A 且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
年全国统一高考数学试卷ⅱ(理科)
年全国统一高考数学试卷Ⅱ〔理科〕一、选择题〔共12小题,每题5分,总分值60分〕1.〔5分〕集合M={x|x <3},N={x|log 2x >1},那么M ∩N=〔 〕 A . ∅ B . {x|0<x <3} C . {x|1<x <3} D . {x|2<x <3} 2.〔5分〕〔2021•石景山区一模〕函数y=sin2x •cos2x 的最小正周期是〔 〕A . 2πB . 4πC .D .3.〔5分〕=〔 〕A .B .C . iD . ﹣i 4.〔5分〕如图,PA 、PB 、DE 分别与⊙O 相切,假设∠P=40°,那么∠DOE 等于〔 〕度. A . 40 B . 50 C . 70 D . 80 5.〔5分〕△ABC 的顶点B ,C 在椭圆+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,那么△ABC 的周长是〔 〕 A . B . 6 C . D . 126.〔5分〕函数f 〔x 〕=lnx+1〔x >0〕,那么f 〔x 〕的反函数为〔 〕A . y =e x+1〔x ∈R 〕B . y =e x ﹣1〔x ∈R 〕 C . y =e x+1〔x >1〕 D . y =e x ﹣1〔x >1〕7.〔5分〕如图,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为和.过A 、B 分别作两平面交线的垂线,垂足为A ′、B ′,那么AB :A ′B ′=〔 〕 A . 2:1 B . 3:1 C . 3:2 D . 4:3 8.〔5分〕函数y=f 〔x 〕的图象与函数g 〔x 〕=log 2x 〔x >0〕的图象关于原点对称,那么f 〔x 〕的表达式为〔 〕 A . B . C . f 〔x 〕=﹣log 2x 〔x >0〕 D . f 〔x 〕=﹣log 2〔﹣x 〕〔x <0〕9.〔5分〕双曲线的一条渐近线方程为,那么双曲线的离心率为〔 〕 A .B .C .D .10.〔5分〕假设f 〔sinx 〕=2﹣cos2x ,那么f 〔cosx 〕等于〔 〕A . 2﹣sin2xB . 2+sin2xC . 2﹣cos2xD . 2+cos2x11.〔5分〕设S n 是等差数列{a n }的前n 项和,假设,那么=〔 〕A .B .C .D .12.〔5分〕函数的最小值为〔 〕A . 190B . 171C . 90D . 45二、填空题〔共4小题,每题4分,总分值16分〕 13.〔4分〕〔2021•肇庆一模〕在的展开式中常数项为 _________ 〔用数字作答〕.14.〔4分〕△ABC 的三个内角A 、B 、C 成等差数列,且AB=1,BC=4,那么边BC 上的中线AD 的长为 _________ .15.〔4分〕〔2021•甘肃一模〕过点的直线l将圆〔x﹣2〕2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=_________.16.〔4分〕〔2021•江苏一模〕一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图〔如图〕.为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,那么在[2500,3000〕〔元〕月收入段应抽出_________人.三、解答题〔共6小题,总分值74分〕17.〔12分〕向量,,.〔1〕假设,求θ;〔2〕求的最大值.19.〔12分〕某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.〔1〕用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;〔2〕假设抽检的6件产品中有2件或2件以上二等品,用户就拒绝购置这批产品,求这批产品被用户拒绝的概率.20.〔12分〕如图,在直三棱柱ABC﹣A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.〔I〕证明:ED为异面直线BB1与AC1的公垂线;〔II〕设,求二面角A1﹣AD﹣C1的大小.24.〔12分〕设函数f〔x〕=〔x+1〕ln〔x+1〕.假设对所有的x≥0,都有f〔x〕≥ax成立,求实数a的取值范围.25.〔14分〕抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.〔Ⅰ〕证明为定值;〔Ⅱ〕设△ABM的面积为S,写出S=f〔λ〕的表达式,并求S的最小值.27.〔12分〕设数列{a n}的前n项和为S n,且方程x2﹣a n x﹣a n=0有一根为S n﹣1,n=1,2,3,….〔1〕求a1,a2;〔2〕猜测数列{S n}的通项公式,并给出严格的证明.2006年全国统一高考数学试卷Ⅱ〔理科〕参考答案与试题解析一、选择题〔共12小题,每题5分,总分值60分〕1.〔5分〕集合M={x|x<3},N={x|log2x>1},那么M∩N=〔〕A.∅B.{x|0<x<3} C.{x|1<x<3} D.{x|2<x<3}考点:交集及其运算.分析:解出集合N,结合数轴求交集.解答:解:N={x|log2x>1}={x|x>2},用数轴表示可得答案D应选D.点评:考查知识点有对数函数的单调性,集合的交集,此题比拟容易2.〔5分〕〔2021•石景山区一模〕函数y=sin2x•cos2x的最小正周期是〔〕A.2πB.4πC.D.考点:三角函数的周期性及其求法;二倍角的正弦.分析:将函数化简为:y=Asin〔ωx+φ〕的形式即可得到答案.解答:解:所以最小正周期为,应选D点评:考查知识点有二倍角公式,最小正周期公式此题比拟容易3.〔5分〕=〔〕A.B.C.i D.﹣i考点:复数代数形式的混合运算.分析:化简复数的分母,再分子、分母同乘分母的共轭复数,化简即可.解答:解:应选A.点评:此题考查的知识点复数的运算,〔乘法和除法〕,比拟简单.4.〔5分〕如图,PA、PB、DE分别与⊙O相切,假设∠P=40°,那么∠DOE等于〔〕度.A.40 B.50 C.70 D.80考点:弦切角.专题:证明题.分析:连接OA、OB、OP,由切线的性质得∠AOB=140°,再由切线长定理求得∠DOE的度数.解答:解:连接OA、OB、OP,∵∠P=40°,∴∠AOB=140°,∵PA、PB、DE分别与⊙O相切,∴∠AOD=∠POD,∠BOE=∠POE,∴∠DOE=∠AOB=×140°=70°.应选C.点评:此题考查了弦切角定理和切线长定理,是根底知识,要熟练掌握.5.〔5分〕〔2021•四川二模〕△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,那么△ABC的周长是〔〕A.B.6C.D.12考点:椭圆的简单性质.专题:计算题;压轴题.分析:由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长.解答:解:由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长为4a=,所以选C点评:此题主要考查数形结合的思想和椭圆的根本性质,难度中等6.〔5分〕函数f〔x〕=lnx+1〔x>0〕,那么f〔x〕的反函数为〔〕A.y=e x+1〔x∈R〕B.y=e x﹣1〔x∈R〕C.y=e x+1〔x>1〕D.y=e x﹣1〔x>1〕考点:反函数.分析:此题考查反函数的概念、求反函数的方法、指数式与对数式的互化,求函数的值域;将y=lnx+1看做方程解出x,然后由原函数的值域确定反函数的定义域即可.解答:解:由y=lnx+1解得x=e y﹣1,即:y=e x﹣1∵x>0,∴y∈R所以函数f〔x〕=lnx+1〔x>0〕反函数为y=e x﹣1〔x∈R〕应选B点评:由于是基此题目,解题思路清晰,求解过程简捷,所以容易解答;解答时注意函数f〔x〕=lnx+1〔x>0〕值域确实定,这里利用对数函数的值域推得.7.〔5分〕如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和.过A、B分别作两平面交线的垂线,垂足为A′、B′,那么AB:A′B′=〔〕A.2:1 B.3:1 C.3:2 D.4:3考点:平面与平面垂直的性质.专题:计算题.分析:设AB的长度为a用a表示出A'B'的长度,即可得到两线段的比值.解答:解:连接AB'和A'B,设AB=a,可得AB与平面α所成的角为,在Rt △BAB'中有AB'=,同理可得AB 与平面β所成的角为,所以,因此在Rt △AA'B'中A'B'=,所以AB :A'B'=,应选A .点评: 此题主要考查直线与平面所成的角以及线面的垂直关系,要用到勾股定理及直角三角形中的边角关系.有一定的难度 8.〔5分〕函数y=f 〔x 〕的图象与函数g 〔x 〕=log 2x 〔x >0〕的图象关于原点对称,那么f 〔x 〕的表达式为〔 〕 A . B . C . f 〔x 〕=﹣log 2x 〔x >0〕 D . f 〔x 〕=﹣log 2〔﹣x 〕〔x <0〕 考点:奇偶函数图象的对称性.分析: 先设函数f 〔x 〕上的点为〔x ,y 〕,根据〔x ,y 〕关于原点的对称点为〔﹣x ,﹣y 〕且函数y=f 〔x 〕的图象与函数g 〔x 〕=log 2x 〔x >0〕的图象关于原点对称,得到x 与y 的关系式,即得答案. 解答: 解:设〔x ,y 〕在函数f 〔x 〕的图象上∵〔x ,y 〕关于原点的对称点为〔﹣x ,﹣y 〕,所以〔﹣x ,﹣y 〕在函数g 〔x 〕上∴﹣y=log 2〔﹣x 〕⇒f 〔x 〕=﹣log 2〔﹣x 〕〔x <0〕 应选D . 点评: 此题主要考查对称的性质和对数的相关性质,比拟简单,但是容易把与f 〔x 〕=﹣log 2〔﹣x 〕〔x <0〕搞混,其实9.〔5分〕〔2021•普宁市模拟〕双曲线的一条渐近线方程为,那么双曲线的离心率为〔 〕A .B .C .D .考点:双曲线的简单性质.专题:计算题. 分析:由题设条件可知双曲线焦点在x 轴,可得a 、b 的关系,进而由离心率的公式,计算可得答案. 解答:解:双曲线焦点在x 轴, 由渐近线方程可得,应选A点评: 此题主要考查双曲线的渐近线方程和离心率公式,涉及a ,b ,c 间的关系,比拟简单10.〔5分〕〔2004•安徽〕假设f 〔sinx 〕=2﹣cos2x ,那么f 〔cosx 〕等于〔 〕 A . 2﹣sin2x B . 2+sin2x C . 2﹣cos2x D . 2+cos2x考二倍角的余弦.专题:计算题.分析:此题考查的知识点是函数解析式的求法,根据中f〔sinx〕=2﹣cos2x,结合倍角公式对解析式进行凑配,不难得到函数f〔x〕的解析式,然后将cosx代入,并化简即可得到答案.解答:解:∵f〔sinx〕=2﹣〔1﹣2sin2x〕=1+2sin2x,∴f〔x〕=1+2x2,〔﹣1≤x≤1〕∴f〔cosx〕=1+2cos2x=2+cos2x.应选D点评:求解析式的几种常见方法:①代入法:即f〔x〕,g〔x〕,求f〔g〔x〕〕用代入法,只需将g〔x〕替换f〔x〕中的x即得;②换元法:f〔g〔x〕〕,g〔x〕,求f〔x〕用换元法,令g〔x〕=t,解得x=g﹣1〔t〕,然后代入f〔g〔x〕〕中即得f〔t〕,从而求得f〔x〕.当f〔g〔x〕〕的表达式较简单时,可用“配凑法〞;③待定系数法:当函数f〔x〕类型确定时,可用待定系数法.④方程组法:方程组法求解析式的实质是用了对称的思想.一般来说,当自变量互为相反数、互为倒数或是函数具有奇偶性时,均可用此法.在解关于f〔x〕的方程时,可作恰当的变量代换,列出f〔x〕的方程组,求得f〔x〕.11.〔5分〕〔2021•锦州二模〕设S n是等差数列{a n}的前n项和,假设,那么=〔〕A.B.C.D.考点:等差数列的前n项和.专题:计算题;压轴题.分析:根据等差数列的前n项和公式,用a1和d分别表示出s3与s6,代入中,整理得a1=2d,再代入中化简求值即可.解答:解:设等差数列{a n}的首项为a1,公差为d,由等差数列的求和公式可得且d≠0,∴,应选A.点评:此题主要考查等比数列的求和公式,难度一般.12.〔5分〕函数的最小值为〔〕A.190 B.171 C.90 D.45考点:数列的求和.专题:压轴题;数形结合.分析:利用绝对值的几何意义求解或者绝对值不等式的性质求解.答:解法一:f〔x〕==|x﹣1|+|x﹣2|+|x﹣3|+|x﹣19|表示数轴上一点到1,2,3,…,19的距离之和,可知x在1﹣19最中间时f〔x〕取最小值.即x=10时f〔x〕有最小值90,应选C.解法二:|x﹣1|+|x﹣19|≥18,当1≤x≤19时取等号;|x﹣2|+|x﹣18|≥16,当2≤x≤18时取等号;|x﹣3|+|x﹣17|≥14,当3≤x≤17时取等号;…|x﹣9|+|x﹣11|≥2,当9≤x≤11时取等号;|x﹣10|≥0,当x=10时取等号;将上述所有不等式累加得|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣19|≥18+16+14+…+2+0=90〔当且仅当x=10时取得最小值〕应选C.点评:此题主要考查求和符号的意义和绝对值的几何意义,难度较大,且求和符号不在高中要求范围内,只在线性回归中简单提到过.二、填空题〔共4小题,每题4分,总分值16分〕13.〔4分〕〔2021•肇庆一模〕在的展开式中常数项为45〔用数字作答〕.考点:二项式定理.分析:利用二项式的通项公式〔让次数为0,求出r〕就可求出答案.解答:解:要求常数项,即40﹣5r=0,可得r=8代入通项公式可得T r+1=C108=C102=45故答案为:45.点评:二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.〔4分〕△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,那么边BC上的中线AD的长为.考点:解三角形.专题:计算题.分析:先根据三个内角A、B、C成等差数列和三角形内角和为π可求得B的值,进而利用AD为边BC上的中线求得BD,最后在△ABD中利用余弦定理求得AD.解答:解:∵△ABC的三个内角A、B、C成等差数列∴A+C=2B∵A+B+C=π∴∵AD为边BC上的中线∴BD=2,由余弦定理定理可得故答案为:点评:此题主要考查等差中项和余弦定理,涉及三角形的内角和定理,难度一般.15.〔4分〕〔2021•甘肃一模〕过点的直线l将圆〔x﹣2〕2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=.考点:直线的斜率;直线和圆的方程的应用.专题:压轴题;数形结合.分析:此题考查的是直线垂直时斜率之间的关系,及直线与圆的相关性质,要处理此题我们先要画出满足条件的图形,数形结合容易得到符合题目中的条件的数理关系,由劣弧所对的圆心角最小弦长最短,及过圆内一点最短的弦与过该点的直径垂直,易得到解题思路.解答:解:如图示,由图形可知:点A在圆〔x﹣2〕2+y2=4的内部,圆心为O〔2,0〕要使得劣弧所对的圆心角最小,只能是直线l⊥OA,所以.点评:垂径定理及其推论是解决直线与圆关系时常用的定理,要求大家熟练掌握,垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.相关推论,过圆内一点垂直于该点直径的弦最短,且弦所地的劣弧最短,优弧最长,弦所对的圆心角、圆周角最小….16.〔4分〕〔2021•江苏一模〕一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图〔如图〕.为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,那么在[2500,3000〕〔元〕月收入段应抽出25人.考点:分层抽样方法.专题:压轴题.分析:直方图中小矩形的面积表示频率,先计算出[2500,3000〕内的频率,再计算所需抽取人数即可.解答:解:由直方图可得[2500,3000〕〔元〕月收入段共有10000×0.0005×500=2500人按分层抽样应抽出人故答案为:25点评:此题主要考查直方图和分层抽样,难度不大.三、解答题〔共6小题,总分值74分〕17.〔12分〕向量,,.〔1〕假设,求θ;〔2〕求的最大值.考点:数量积判断两个平面向量的垂直关系;向量的模.专题:计算题.分析:〔1〕利用向量垂直的充要条件列出方程,利用三角函数的商数关系求出正切,求出角.〔2〕利用向量模的平方等于向量的平方,利用三角函数的平方关系及公式,化简,利用三角函数的有界性求出范围.解答:解:〔1〕因为,所以得又,所以θ=〔2〕因为=所以当θ=时,的最大值为5+4=9故的最大值为3点评: 此题考查向量垂直的充要条件|数量积等于0;向量模的平方等于向量的平方;三角函数的同角三角函数的公式;19.〔12分〕某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品. 〔1〕用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;〔2〕假设抽检的6件产品中有2件或2件以上二等品,用户就拒绝购置这批产品,求这批产品被用户拒绝的概率. 考点:离散型随机变量及其分布列;等可能事件的概率;离散型随机变量的期望与方差. 专题:计算题. 分析: 〔1〕由取出的第一、二、三箱中分别有0件、1件、2件二等品可知变量ξ的取值,结合变量对应的事件做出这四个事件发生的概率,写出分布列和期望.〔2〕由上一问做出的分布列可以知道,P 〔ξ=2〕=,P 〔ξ=3〕=,这两个事件是互斥的,根据互斥事件的概率公式得到结果.解答:解〔1〕由题意知抽检的6件产品中二等品的件数ξ=0,1,2,3∴ξ的分布列为∴ξ的数学期望E 〔ξ〕=〔2〕∵P 〔ξ=2〕=,P 〔ξ=3〕=,这两个事件是互斥的∴P 〔ξ≥2〕=点评: 此题主要考查分布列的求法以及利用分布列求期望和概率,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大.20.〔12分〕如图,在直三棱柱ABC﹣A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.〔I〕证明:ED为异面直线BB1与AC1的公垂线;〔II〕设,求二面角A1﹣AD﹣C1的大小.考点:与二面角有关的立体几何综合题;异面直线.专题:计算题.分析:〔Ⅰ〕设O为AC中点,连接EO,BO,欲证ED为异面直线AC1与BB1的公垂线,只需证明ED与直线AC1与BB1都垂直且相交,根据线面垂直的性质可知ED⊥CC1,而ED⊥BB1,即可证得;〔Ⅱ〕连接A1E,作EF⊥AD,垂足为F,连接A1F,根据二面角的平面角定义可知∠A1FE为二面角A1﹣AD﹣C1的平面角,在三角形A1FE中求出此角即可.解答:解:〔Ⅰ〕设O为AC中点,连接EO,BO,那么EO C1C,又C1C B1B,所以EO DB,EOBD为平行四边形,ED∥OB.〔2分〕∵AB=BC,∴BO⊥AC,又平面ABC⊥平面ACC1A1,BOÌ面ABC,故BO⊥平面ACC1A1,∴ED⊥平面ACC1A1,ED⊥AC1,ED⊥CC1,∴ED⊥BB1,ED为异面直线AC1与BB1的公垂线.〔6分〕〔Ⅱ〕连接A1E,由AA1=AC=AB可知,A1ACC1为正方形,∴A1E⊥AC1,又由ED⊥平面ACC1A1和EDÌ平面ADC1知平面ADC1⊥平面A1ACC1,∴A1E⊥平面ADC1.作EF⊥AD,垂足为F,连接A1F,那么A1F⊥AD,∠A1FE为二面角A1﹣AD﹣C1的平面角.不妨设AA1=2,那么AC=2,AB=,ED=OB=1,EF==,tan∠A1FE=,∴∠A1FE=60°.所以二面角A1﹣AD﹣C1为60°.〔12分〕点评:此题主要考查了异面直线公垂线的证明,二面角的度量,以及空间想象能力和推理能力,属于根底题.24.〔12分〕设函数f〔x〕=〔x+1〕ln〔x+1〕.假设对所有的x≥0,都有f〔x〕≥ax成立,求实数a的取值范围.考点:函数恒成立问题;利用导数求闭区间上函数的最值.专题:计算题.分析:令g〔x〕=〔x+1〕ln〔x+1〕﹣ax对g〔x〕,求导得g'〔x〕=ln〔x+1〕+1﹣a,令g'〔x〕=0⇒x=e a﹣1﹣1,当a≤1时,对所有的x>0都有g'〔x〕>0,所以g〔x〕在[0,+∞〕上为单调增函数,又g〔0〕=0,所以对x≥0时有g〔x〕≥g〔0〕,即当a≤1时都有f〔x〕≥ax,所以a≤1成立,当a>1时,对于0<x<e a﹣1﹣1时,g'〔x〕<0,所以g〔x〕在〔0,e a﹣1﹣1〕上是减函数,又g〔0〕=0,所以对于0<x<e a﹣1﹣1有g〔x〕<g〔0〕,即f〔x〕<ax,所以当a>1时f〔x〕≥ax不一定成立综上所述即可得出a的取值范围.解答:解法一:令g〔x〕=〔x+1〕ln〔x+1〕﹣ax,对函数g〔x〕求导数:g′〔x〕=ln〔x+1〕+1﹣a令g′〔x〕=0,解得x=e a﹣1﹣1,〔i〕当a≤1时,对所有x>0,g′〔x〕>0,所以g〔x〕在[0,+∞〕上是增函数,又g〔0〕=0,所以对x≥0,都有g〔x〕≥g〔0〕,即当a≤1时,对于所有x≥0,都有f〔x〕≥ax.〔ii〕当a>1时,对于0<x<e a﹣1﹣1,g′〔x〕<0,所以g〔x〕在〔0,e a﹣1﹣1〕是减函数,又g〔0〕=0,所以对0<x<e a﹣1﹣1,都有g〔x〕<g〔0〕,即当a>1时,不是对所有的x≥0,都有f〔x〕≥ax成立.综上,a的取值范围是〔﹣∞,1].解法二:令g〔x〕=〔x+1〕ln〔x+1〕﹣ax,于是不等式f〔x〕≥ax成立即为g〔x〕≥g〔0〕成立.对函数g〔x〕求导数:g′〔x〕=ln〔x+1〕+1﹣a令g′〔x〕=0,解得x=e a﹣1﹣1,当x>e a﹣1﹣1时,g′〔x〕>0,g〔x〕为增函数,当﹣1<x<e a﹣1﹣1,g′〔x〕<0,g〔x〕为减函数,所以要对所有x≥0都有g〔x〕≥g〔0〕充要条件为e a﹣1﹣1≤0.由此得a≤1,即a的取值范围是〔﹣∞,1].点评:此题主要考查了函数的导数和利用导数判断函数的单调性,难度较大,涉及分类讨论的数学思想.25.〔14分〕抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.〔Ⅰ〕证明为定值;〔Ⅱ〕设△ABM的面积为S,写出S=f〔λ〕的表达式,并求S的最小值.考点:抛物线的应用.专题:计算题;压轴题.分析:〔1〕设A〔x1,y1〕,B〔x2,y2〕,M〔x o,y o〕,根据抛物线方程可得焦点坐标和准线方程,设直线方程与抛物线方程联立消去y,根据判别式大于0求得x1+x2和x1x2,根据曲线4y=x2上任意一点斜率为y′=,可得切线AM和BM的方程,联立方程求得交点坐标,求得和,进而可求得•的结果为0,进而判断出AB⊥FM.〔2〕利用〔1〕的结论,根据x1+x2的关系式求得k和λ的关系式,进而求得弦长AB,可表示出△ABM面积.最后根据均值不等式求得S的范围,得到最小值.解答:解:〔1〕设A〔x1,y1〕,B〔x2,y2〕,M〔x o,y o〕,焦点F〔0,1〕,准线方程为y=﹣1,显然AB斜率存在且过F〔0,1〕设其直线方程为y=kx+1,联立4y=x2消去y得:x2﹣4kx﹣4=0,判别式△=16〔k2+1〕>0.x1+x2=4k,x1x2=﹣4于是曲线4y=x2上任意一点斜率为y′=,那么易得切线AM,BM方程分别为y=〔〕x1〔x﹣x1〕+y1,y=〔〕x2〔x﹣x2〕+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,x o==2k,y o==﹣1,即M〔,﹣1〕从而,=〔,﹣2〕,〔x2﹣x1,y2﹣y1〕•=〔x1+x2〕〔x2﹣x1〕﹣2〔y2﹣y1〕=〔x22﹣x12〕﹣2[〔x22﹣x12〕]=0,〔定值〕命题得证.这就说明AB⊥FM.〔Ⅱ〕由〔Ⅰ〕知在△ABM中,FM⊥AB,因而S=|AB||FM|.∵,∴〔﹣x1,1﹣y1〕=λ〔x2,y2﹣1〕,即,而4y1=x12,4y2=x22,那么x22=,x12=4λ,|FM|====.因为|AF|、|BF|分别等于A、B到抛物线准线y=﹣1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=+2=λ++2=〔〕2.于是S=|AB||FM|=〔〕3,由≥2知S≥4,且当λ=1时,S取得最小值4.点评:此题主要考查了抛物线的应用.抛物线与直线的关系和抛物线的性质等都是近几年高考的热点,故应重点掌握.27.〔12分〕设数列{a n}的前n项和为S n,且方程x2﹣a n x﹣a n=0有一根为S n﹣1,n=1,2,3,….〔1〕求a1,a2;〔2〕猜测数列{S n}的通项公式,并给出严格的证明.考点:数学归纳法;类比推理.专题:证明题;压轴题.分析:〔1〕验证当n=1时,x2﹣a1x﹣a1=0有一根为a1根据根的定义,可求得a1,同理,当n=2时,也可求得a2;〔2〕用数学归纳法证明数列问题时分为两个步骤,第一步,先证明当当n=1时,结论成立,第二步,先假设n=k时结论成立,利用此假设结合题设条件证明当n=k+1时,结论也成立即可.解答:解:〔1〕当n=1时,x2﹣a1x﹣a1=0有一根为S1﹣1=a1﹣1,于是〔a1﹣1〕2﹣a1〔a1﹣1〕﹣a1=0,解得a1=.当n=2时,x2﹣a2x﹣a2=0有一根为S2﹣1=a2﹣,于是〔a2﹣〕2﹣a2〔a2﹣〕﹣a2=0,解得a2=.〔2〕由题设〔S n﹣1〕2﹣a n〔S n﹣1〕﹣a n=0,S n2﹣2S n+1﹣a n S n=0.当n≥2时,a n=S n﹣S n﹣1,代入上式得S n﹣1S n﹣2S n+1=0.①由〔1〕得S1=a1=,S2=a1+a2=+=.由①可得S3=.由此猜测S n=,n=1,2,3,.下面用数学归纳法证明这个结论.〔i〕n=1时结论成立.〔ii〕假设n=k时结论成立,即S k=,当n=k+1时,由①得S k+1=,即S k+1=,故n=k+1时结论也成立.综上,由〔i〕、〔ii〕可知S n=对所有正整数n都成立.点评:此题主要考查数学归纳法,数学归纳法的根本形式:设P〔n〕是关于自然数n的命题,假设1°P〔n0〕成立〔奠基〕2°假设P〔k〕成立〔k≥n0〕,可以推出P〔k+1〕成立〔归纳〕,那么P〔n〕对一切大于等于n0的自然数n 都成立参与本试卷答题和审题的老师有:wdlxh;wsj1012;zlzhan;zhwsd;yhx01248;涨停;wdnah;minqi5;qiss;翔宇老师;liuerq;xintrl;congtou;298520;jj2021〔排名不分先后〕菁优网2021年6月6日。
2019年高考理科数学全国2卷(附答案)
12B-SX-0000020-绝密★启用前__2019 年普通高等学校招生全国统一考试_ -__-理科数学 全国 II 卷__- 本试卷共 23 小题,满分 150 分,考试用时 120 分钟:号 -(适用地区:内蒙古 / 黑龙江 /辽宁 /吉林 /重庆 /陕西 / 甘肃 /宁夏 /青海 /新疆 / 西藏 /海南 )学 -注意事项:_-__1. 答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
_-__2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
__ -如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在___答题卡上。
写在本试卷上无效。
_ 线__ 封_ 3. 考试结束后,将本试卷和答题卡一并交回。
_密__ -__12 小题,每小题 5 分,共 60 分。
在每个小题给出的四个选: -一、 选择题:本题共 名 - 项中,只有一项是符合题目要求的。
姓 -2- 1.设集合 A={ x|x -5x+6>0} , B={ x|x-1<0} ,则 A ∩B=班-A . (-∞, 1)B . (-2, 1)C .(-3 , -1)D . (3, +∞)___ -_ 2 .设 z=-3+2i ,则在复平面内 z 对应的点位于_-__A .第一象限B .第二象限C .第三象限D .第四象限年-____ 线 3 .已知 AB =(2,3) , AC =(3 ,t), BC =1,则 AB BC= _ _ 封_A . -3B . -2C . 2D . 3_密_-__4. 2019 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,_- ___ -我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键___-_ 技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中__ -___ -继星 “鹊桥 ”,鹊桥沿着围绕地月拉格朗日 L 2 点的轨道运行. L 2 点是平衡点,__ -_M 1,月球质量为 M 2 ,地月距离为: - 位于地月连线的延长线上.设地球质量为校 学 -R , L 2 点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M 1 ,月球质量为 M 2 ,地月距离为R, L 2 点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1M 2M 1(R r) 2r 2(R r ) 3 .R设r ,由于 的值很小,因此在近似计算中3 33453 3,则R(1 ) 2r 的近似值为A .M2RB .M2RC .33M2RD .3M2RM 12M 1M 13M 15.演讲比赛共有 9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉 1 个最高分、 1 个最低分, 得到 7 个有效评分 .7 个有效评分与 9 个原始评分相比,不变的数字特征是 A .中位数B .平均数C .方差D .极差6.若 a>b ,则A . ln(a- b)>0B .3a<3bC . a 3- b 3>0D . │a │ >│b │7.设 α, β为两个平面,则α∥ β的充要条件是A . α内有无数条直线与β平行B .α内有两条相交直线与β平行C . α, β平行于同一条直线D .α,β垂直于同一平面2x2y2p=8.若抛物线 y =2px(p>0) 的焦点是椭圆1 的一个焦点,则3p p- 1 -- 2 -12B-SX-0000020A .2B . 3C . 4D . 89.下列函数中,以为周期且在区间 ( , )单调递增的是242A .f(x)= │ cos x2│B . f(x)= │ sin 2x │C .f(x)=cos │x │D . f(x)= sin x │10.已知 α∈ (0, ), 2sin 2α=cos 2α+1,则 sin α=21B .5A .55C .3D .2535x 2y 21(a 0,b 0) 的右焦点, O 为坐标原点, 以 OF11.设 F 为双曲线 C :b2a2为直径的圆与圆 x2y 2a 2交于 P ,Q 两点 .若 PQ OF ,则 C 的离心率为A . 2B . 3C . 2D .512.设函数 f ( x) 的定义域为 R ,满足 f (x 1)2 f ( x) ,且当 x (0,1] 时,f (x )x(x 1) .若对任意 x (, m] ,都有 f ( x)8 ,则 m 的9取值范围是A .9 B .7,,43C .5 D .8,,23二、填空题:本题共 4 小题,每小题 5 分,共 20 分。