直线与直线直线与平面平面与平面垂直的判定与性质

合集下载

直线、平面垂直的判定及其性质

直线、平面垂直的判定及其性质

题型三 线面垂直的综合应用 如图所示, 例 3 如图所示,在四棱锥 P—ABCD 中,平面 PAD⊥平面 ABCD,AB∥DC, ⊥ , ∥ , 是等边三角形, △PAD 是等边三角形, 已知 BD =2AD=8,AB=2DC=4 5. = , = = (1)设 M 是 PC 上的一点, 设 上的一点, 求证: 求证:平面 MBD⊥平面 PAD; ⊥ ; (2)求四棱锥 P—ABCD 的体积 求四棱锥 的体积.
解析
①中由 n∥β,α∥β 得 n∥α 或 n⊂α, ∥ ∥ ∥ ⊂
又 m⊥α,∴m⊥n,故①正确; ⊥ ∴ ⊥ ① ②中可能 n⊂β,故②错误; ⊂ ② ③中直线 n 可能与平面 β 斜交或平行,也可能 在平面 β 内,故③错; ③ ④中由 m∥n,m⊥α,可得 n⊥α,又 α∥β 可 ∥ ⊥ ⊥ ∥ 得 n⊥β, ⊥ 故④正确. ④
(2)解 解
过 P 作 PO⊥AD, ⊥
∵面 PAD⊥面 ABCD, ⊥ ∴PO⊥面 ABCD, ⊥ 即 PO 为四棱锥 P—ABCD 的高. 又△PAD 是边长为 4 的等边三角形, △ ∴PO=2 3. 在底面四边形 ABCD 中,AB∥DC,AB=2DC, ∥ ∴四边形 ABCD 为梯形. 在 Rt△ADB 中,斜边 AB 边上的高为 △ 此即为梯形的高. 2 5+4 5 8 5 × =24. ∴S 四边形 ABCD= 2 5 1 ∴VP—ABCD= ×24×2 3=16 3. 3 4×8 8 5 = , 5 4 5
如图所示, 、 、 变式训练 1 如图所示,P、Q、R 分别为正方 体 ABCD—A1B1C1D1 的 棱 AB、BB1、BC 的中点 、 的中点. 求证: 求证:BD1⊥平面 PQR.
证明
连接 BD、AC、AB1、A1B.

高中 直线、平面垂直的判定与性质 知识点+例题+练习

高中 直线、平面垂直的判定与性质 知识点+例题+练习

教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。

2.3直线、平面垂直的判定及其性质(新课知识讲解)

2.3直线、平面垂直的判定及其性质(新课知识讲解)

从一条直线出发的两个半平面所组 成的图形叫做二面角
思考:下列两个二面角在摆放上有什 么不同?
β l l
α
α
β
思考:一个二面角是由一条直线和两 个半平面组成,其中直线l叫做二面 角的棱,两个半平面α 、β 都叫做 二面角的面,二面角通常记作“二 面角α -l-β ”.那么两个相交平面共 组成几个二面角?
β


l
α
二面角的 画法与记法 2、二面角的记法: 面1-棱-面2 (1)、以直线l 为棱,以 a , 为半平面的二面角记为:
a l
a, (2)、以直线AB 为棱,以 为半平面的二面角记为:
a AB

a
l

A
B
a
二面角的 平面角的定义、范围及作法 1、二面角的平面角: 以二面角的棱上任意一点为端点,在两个面上分别引 垂直于棱的两条射线,这两条射线所成的角叫做二面角的 平面角。 ? AOB AOB== a 注:(1)二面角的平面角与点的位置 等角定理:如果一个角的两边和另 无关,只与二面角的张角大小有关。 A 一个角的两边分别平行,并且方向相 O (2)二面角是用它的平面角来度 同,那么这两个角相等。) B l 量的,一个二面角的平面角多大,就 说这个二面角是多少度的二面角。 B O (3)平面角是直角的二面角叫做 A 直二面角。 (4)二面角的取值范围一般规定 为(0,π)。 观看动画演示
4.总结反思—提高认识
(1)通过本节课的学习,你学会了
哪些判断直线与平面垂直的方法?
(2)在证明直线与平面垂直时应注
意哪些问题?
(3)本节课你还有哪些问题?
直线与平面垂直的判定方法 1. 定义:如果一条直线垂于一个平面内的任何一条 直线,则此直线垂直于这个平面. 2.判定定理:如果一条直线垂直于一个平面内的两条 相交直线,那么此直线垂直于这个平面。 3. 如果两条平行直线中的一条垂直于一个平面,那 么另一条也垂直于同一个平面。

直线、平面垂直的判定及性质

直线、平面垂直的判定及性质

第3讲直线、平面垂直的判定及性质1.直线与平面垂直:(1)方法1:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.(2)方法2:如果两条直线平行,其中一条直线垂直于一个平面,那么另一条直线垂直于该平面.(3)方法3:如果两个平面垂直,那么一个平面内垂直于它们的交线的直线垂直于另一个平面.2.面面垂直:(1)方法1:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2) 方法2:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.考向一直线与平面垂直的判定与性质【1】如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.【2】(2012·南通调研)如图,平面P AC⊥平面ABC,点E、F、O分别为线段P A、PB、AC的中点,点G 是线段CO的中点,AB=BC=AC=4,P A=PC=2 2.求证:(1)P A⊥平面EBO;(2)FG∥平面EBO.【3】(2012·福建卷)如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE;若存在,求出AP的长;若不存在,说明理由.【4】(2012·镇江调研)如图所示,四棱锥P-ABCD的底面是一直角梯形,BA⊥AD,CD⊥AD,CD=2AB,P A⊥底面ABCD,E为PC的中点.(1)证明:EB∥平面P AD;(2)若P A=AD,证明:BE⊥平面PDC.【5】(2011·扬州调研)如图,在平行四边形ABCD中,BD⊥CD,正方形ADEF所在的平面和平面ABCD 垂直,点H是BE的中点,点G是AE、DF的交点.(1)求证:GH∥平面CDE;(2)求证:BD⊥平面CDE.【6】(2012·扬州调研)在正三棱柱ABC-A1B1C1中,点D是BC的中点,BC=BB1.(1)求证:A1C∥平面AB1D;(2)试在棱CC1上找一点M,使MB⊥AB1.考向二平面与平面垂直的判定与性质【7】如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,EC=CA=2BD,M是EA的中点.求证:(1)DE=DA;(2)平面BDM⊥平面ECA.【8】(2011·江苏卷)如图在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面P AD .考向三 线面、面面垂直的综合应用【9】(2012·广东)如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△P AD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若PH =1,AD =2,FC =1,求三棱锥E -BCF 的体积; (3)证明:EF ⊥平面P AB .【10】(2012·南通市第一学期期末考试)在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,PD ∥MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且AD =PD =2MA .(1)求证:平面EFG ⊥平面PDC ; (2)求三棱锥P -MAB 与四棱锥P -ABCD 的体积之比.考向四 求线段的长度问题【11】(2011·浙江卷)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【12】(2011·江西卷)如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D ,现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′-PBCD 的体积最大时,求P A 的长;(2)若点P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE .【训练达标】【1】如图,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ; (2)PD ⊥平面ABE .【2】(2012·江苏)如图,在直三棱柱ABC -A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .【3】如图所示,在四棱锥P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5.(1)设M 是PC 上的一点,求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积.【4】如图所示,已知长方体ABCD —A 1B 1C 1D 1的底面ABCD 为正方形,E 为线段AD 1的中点,F 为线段BD 1的中点,(1)求证:EF ∥平面ABCD ;(2)设M 为线段C 1C 的中点,当D 1D AD的比值为多少时,DF ⊥平面D 1MB ?并说明理由.【5】如图,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.(1)求PB 和平面P AD 所成的角的大小;(2)证明AE ⊥平面PCD ;(3)求二面角A —PD —C 的正弦值.【6】如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.求证:(1)AN∥平面A1MK;(2)平面A1B1C⊥平面A1MK.【7】如图所示,在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,A1B1=A1C1,侧面BB1C1C⊥底面A1B1C1.(1)若D是BC的中点,求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C.【8】如图,在正方体ABCD—A1B1C1D1中,E、F分别是CD、A1D1的中点.(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP?若存在,确定点P的位置,若不存在,说明理由.【9】如图所示,在三棱锥P—ABC中,△P AB是等边三角形,∠P AC=∠PBC=90°.(1)证明:AB⊥PC;(2)若PC=4,且平面P AC⊥平面PBC,求三棱锥P—ABC的体积.【10】如图,在三棱柱ABC—A1B1C1中,AA1⊥BC,∠A1AC=60°,A1A=AC=BC=1,A1B= 2.(1)求证:平面A1BC⊥平面ACC1A1;(2)如果D为AB中点,求证:BC1∥平面A1CD.。

线线垂直、线面垂直、面面垂直的判定和性质

线线垂直、线面垂直、面面垂直的判定和性质

空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。

推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。

2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。

两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。

推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。

一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。

直线与直线直线与平面平面与平面垂直的判定与性质汇总

直线与直线直线与平面平面与平面垂直的判定与性质汇总

【课题】9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质【教学目标】知识目标:(1)了解空间两条直线垂直的概念;(2)掌握与平面垂直的判定方法与性质,平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与平面、平面与平面垂直的判定方法与性质.【教学难点】判定空间直线与直线、直线与平面、平面与平面垂直.【教学设计】在平面内,过一点可以作一条且只能作一条直线与已知直线垂直;在空间中,过一点作与已知直线垂直的直线,能作无数条.例1是判断异面直线垂直的巩固性题目,根据异面直线垂直的定义,只要判断它们所成的角为90即可.在判定直线与平面垂直时,要特别注意“平面内两条相交的直线”的条件.可举一些实例,以加深学生对条件的理解.两个平面互相垂直是两个平面相交的特殊情况.在日常生活和工农业生产中,两个平面互相垂直的例子非常多,教学时可以多结合一些实例,以引起学生的兴趣.例4是判断平面与平面垂直的巩固性题目,关键是在平面B AC内找到一条直线AC与平面B1BDD11垂直.例5是巩固平面与平面垂直的性质的题目.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】图9-43图9−44看曲尺的另一条直角边是否和圆木柱吻合,然后把直角尺换个位置,照样再检查一次(应当注意,直角尺*巩固知识典型例题【知识巩固】例2长方体ABCD-A1B1C1D1中(如图9−45),直线AA1与平面ABCD垂直吗?为什么?图9−45解因为长方体ABCD-A1B1C1D1中,侧面ABB1A1、AA1D1D都是长方形,所以AA1⊥AB,AA1⊥AD.且AB和AD是平面ABCD内的两条相交直线.由直线与平面垂直的判定定理知,直线AA1⊥平面ABCD.图9−46[小提示]在实际生活中,我们采用如图9−46所示的“合页型折纸”检验直线与平面垂直,就是直线与平面垂直方法的应用.【做一做】图9−48α,所以AB∥CD.因为BD 确定平面β,在平面β内,过点A作中,因为AE=BD=5 cm,图9−52C1D1中,B1B⊥平面ABCD1,因此AC⊥平面BB1D1D,内,所以平面B1AC与平面B1BDD图9−54AD.又由于BD⊥AB,所以在直角三角形2222BD,3425+=+=cm).第2题图【教师教学后记】。

高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)

第五节 直线、平面垂直的判定与性质一、基础知识1.直线与平面垂直 (1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直, 就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:文字语言 图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a ,b ⊂αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α 性质定理 垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b⎣⎢⎡⎦⎥⎤❶如果一条直线与平面内再多(即无数条)的直线垂直,但这些直线不相交就不能说明这条直线与此平面垂直. 2.平面与平面垂直的判定定理与性质定理文字语言 图形语言符号语言判定定理一个平面过另一个平面的垂线❷,则这两个平面垂直⎭⎪⎬⎪⎫l ⊂βl ⊥α⇒α⊥β 性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=a l ⊥a ⇒l ⊥α[❷要求一平面只需过另一平面的垂线.]二、常用结论直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.考点一直线与平面垂直的判定与性质[典例]如图,在四棱锥P­ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥P­ABCD中,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.∵AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.∵PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂底面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,∵PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.[解题技法]证明线面垂直的4种方法(1)线面垂直的判定定理:l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α. (2)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)性质:①a ∥b ,b ⊥α⇒a ⊥α,②α∥β,a ⊥β⇒a ⊥α. (4)α⊥γ,β⊥γ,α∩β=l ⇒l ⊥γ.(客观题可用) [口诀归纳]线面垂直的关键,定义来证最常见, 判定定理也常用,它的意义要记清. 平面之内两直线,两线相交于一点, 面外还有一直线,垂直两线是条件. [题组训练]1.(2019·安徽知名示范高中联考)如图,在直三棱柱ABC ­A 1B 1C 1中,AB =BC =BB 1,AB 1∩A 1B =E ,D 为AC 上的点,B 1C ∥平面A 1BD .(1)求证:BD ⊥平面A 1ACC 1;(2)若AB =1,且AC ·AD =1,求三棱锥A ­BCB 1的体积. 解: (1)证明:如图,连接ED ,∵平面AB 1C ∩平面A 1BD =ED ,B 1C ∥平面A 1BD , ∴B 1C ∥ED , ∵E 为AB 1的中点, ∴D 为AC 的中点, ∵AB =BC ,∴BD ⊥AC .∵A 1A ⊥平面ABC ,BD ⊂平面ABC ,∴A 1A ⊥BD . 又∵A 1A ,AC 是平面A 1ACC 1内的两条相交直线, ∴BD ⊥平面A 1ACC 1.(2)由AB =1,得BC =BB 1=1,由(1)知AD =12AC ,又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC , ∴S △ABC =12AB ·BC =12,∴V A ­BCB 1=V B 1­ABC =13S △ABC ·BB 1=13×12×1=16.2.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,∵SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)∵AB=BC,∴BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.考点二面面垂直的判定与性质[典例](2018·江苏高考)在平行六面体ABCD­A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.[证明](1)在平行六面体ABCD­A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD­A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.[解题技法] 证明面面垂直的2种方法 定义法利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题定理法 利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决[题组训练]1.(2019·武汉调研)如图,三棱锥P ­ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.求证:平面P AC ⊥平面ABC .证明:取AC 的中点O ,连接BO ,PO . 因为△ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ∩OP =O , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .2.(2018·安徽淮北一中模拟)如图,四棱锥P ­ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG , ∵F 为PD 的中点,G 为PC 的中点, ∴FG 为△CDP 的中位线, ∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点, ∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE , ∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC ,∴AF∥平面PEC.(2)∵P A=AD,F为PD中点,∴AF⊥PD,∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵CD⊥AD,AD∩P A=A,∴CD⊥平面P AD,∵AF⊂平面P AD,∴CD⊥AF.又PD∩CD=D,∴AF⊥平面PCD.由(1)知EG∥AF,∴EG⊥平面PCD,又EG⊂平面PEC,∴平面PEC⊥平面PCD.[课时跟踪检测]A级1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:选C对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.2.(2019·湘东五校联考)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.①③解析:选A对于①,若α∥β,m⊥α,l⊂β,则m⊥l,故①正确,排除B.对于④,若m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β.故④正确.故选A.3.已知P A垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是()A.P A⊥BC B.BC⊥平面P ACC.AC⊥PB D.PC⊥BC解析:选C由P A⊥平面ACB⇒P A⊥BC,故A不符合题意;由BC⊥P A,BC⊥AC,P A∩AC=A,可得BC⊥平面P AC,所以BC⊥PC,故B、D不符合题意;AC⊥PB显然不成立,故C符合题意.4.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平央ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.5.如图,在正四面体P­ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析:选D因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,所以BC⊥平面P AE,又DF∥BC,则DF⊥平面P AE,从而平面PDF⊥平面P AE.因此选项B、C均正确.6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有________个;与AP垂直的直线有________个.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,又∵AP⊂平面P AC,∴AB⊥AP,与AP垂直的直线是AB.答案:317.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;②若α外的一条直线l与α内的一条直线平行,则l∥α;③设α∩β=l,若α内有一条直线垂直于l,则α⊥β;④直线l⊥α的充要条件是l与α内的两条直线垂直.其中所有的真命题的序号是________.解析:①正确;②正确;满足③的α与β不一定垂直,所以③错误;直线l⊥α的充要条件是l与α内的两条相交直线垂直,所以④错误.故所有的真命题的序号是①②.答案:①②8.在直三棱柱ABC­A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.解析:如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABC­A1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案:①③9.(2019·太原模拟)如图,在四棱锥P­ABCD中,底面ABCD是菱形,∠BAD=60°,P A=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面P AD⊥平面ABCD,求三棱锥P­NBM的体积.解:(1)证明:连接BD.∵P A=PD,N为AD的中点,∴PN⊥AD.又底面ABCD是菱形,∠BAD=60°,∴△ABD为等边三角形,∴BN⊥AD,又PN∩BN=N,∴AD⊥平面PNB.(2)∵P A=PD=AD=2,∴PN=NB= 3.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,PN⊥AD,∴PN⊥平面ABCD,∴PN⊥NB,∴S△PNB=12×3×3=32.∵AD⊥平面PNB,AD∥BC,∴BC ⊥平面PNB .又PM =2MC , ∴V P ­NBM =V M ­PNB =23V C ­PNB =23×13×32×2=23.10.如图,在直三棱柱ABC ­A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .证明:(1)在直三棱柱ABC ­A 1B 1C 1中,AC ∥A 1C 1, 在△ABC 中,因为D ,E 分别为AB ,BC 的中点. 所以DE ∥AC ,于是DE ∥A 1C 1,又因为DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC ­A 1B 1C 1中,AA 1⊥平面A 1B 1C 1, 因为A 1C 1⊂平面A 1B 1C 1,所以AA 1⊥A 1C 1,又因为A 1C 1⊥A 1B 1,A 1B 1∩AA 1=A 1,AA 1⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1, 所以A 1C 1⊥平面ABB 1A 1, 因为B 1D ⊂平面ABB 1A 1, 所以A 1C 1⊥B 1D ,又因为B 1D ⊥A 1F ,A 1C 1∩A 1F =A 1,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F , 所以B 1D ⊥平面A 1C 1F , 因为直线B 1D ⊂平面B 1DE , 所以平面B 1DE ⊥平面A 1C 1F .B 级1.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. 解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3. 连接OB , 因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为AC ∩OB =O ,所以PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H , 又由(1)可得OP ⊥CH , 所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.2.(2019·河南中原名校质量考评)如图,在四棱锥P ­ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F 分别是CD ,PC 的中点.求证:(1)BE ∥平面P AD ; (2)平面BEF ⊥平面PCD .证明:(1)∵AB ∥CD ,CD =2AB ,E 是CD 的中点, ∴AB ∥DE 且AB =DE , ∴四边形ABED 为平行四边形,∴AD ∥BE ,又BE ⊄平面P AD ,AD ⊂平面P AD , ∴BE ∥平面P AD .(2)∵AB ⊥AD ,∴四边形ABED 为矩形, ∴BE ⊥CD ,AD ⊥CD ,∵平面P AD ⊥底面ABCD ,平面P AD ∩底面ABCD =AD ,P A ⊥AD , ∴P A ⊥底面ABCD , ∴P A ⊥CD ,又P A ∩AD =A , ∴CD ⊥平面P AD ,∴CD ⊥PD , ∵E ,F 分别是CD ,PC 的中点, ∴PD ∥EF ,∴CD ⊥EF ,又EF ∩BE =E , ∴CD ⊥平面BEF ,∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .。

直线、平面垂直与平面,平面垂直地判定及其性质

直线、平面垂直与平面,平面垂直的判定及其性质类型1线面垂直的判定[要点点击]对直线与平面垂直的几点说明(1) 直线与平面垂直是直线与平面相交的一种特殊形式.(2) 由直线与平面垂直的定义,得如果一条直线垂直于一个平面,那么这条直线垂直于该平面内的任意一条直线.这是判断两条直线垂直的一种重要方法.[典例1]如图,在四棱锥P— ABC西,底面ABC的菱形,P任PG P申PD ACT BD=0求证:(1) PCX平面ABCD(2) ACX平面PBD[巧归纳]证明线面垂直的步骤(1) 在这个平面内找两条直线,使它和这条直线垂直;(2) 确定这个平面内的两条直线是相交的直线;(3) 根据判定定理得出结论.[练习1]如图所示,空间四边形ABCD勺边BO AC AA BD作BA CD垂足为E, 作A电BE垂足为H求证:A电平面BCD类型2直线与平面所成的角[要点点击]对斜线和平面所成的角的定义的理解斜线和平面所成的角的定义表明斜线和平面所成的角是通过斜线在平面内的射影而转化为两条相交直线所成的角.[典例2]如图,三棱锥A— SBC中,Z BS& 90° , Z ASE^ Z ASO60° , S任SB=SC求直线AS与平面SBC听成的角.[巧归纳]求直线和平面所成角的步骤(1) 寻找过斜线上一点与平面垂直的直线;(2) 连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;(3) 把该角归结在某个三角形中,通过解三角形,求出该角.[练习2]如图所示,已知正四面体(各棱长都相等的三棱锥)A— BCD勺棱长为a, E为AD的中点,连接CE(1) 求证:顶点A在底面BCDtt的射影是△ BCD勺外心;(2) 求AD与底面BC所成的角的余弦值;(3) 求CE与底面BC所成的角的正弦值.类型3线面垂直的综合应用[典例3]如图所示,四棱锥P— ABC[^,底面ABC驹矩形,PDL底面ABCD AS PD E, F分别为CD PB的中点.(1) 求证:EFL平面PAB(2) 设AA寸2BG求AC与平面AEF所成角的正弦值.[思路点拨](1)要证线面垂直,需证平面内有两条相交直线与已知直线垂直,而根据条件易得EFL PB, Ed AF,所以本题得证.(2)要求线面角,得先找出或作出这个角,根据条件易得 只需过AC 与BE 的交点G 作BF 的平行线 GH 贝U GK 平面EFA / GA 咽所求角.[巧归纳]利用直线与平面垂直的判定定理判定直线与平面垂直的技巧证明线面垂直时要注意分析几何图形, 寻找隐含的和题目中推导出的线线垂直关系, 进 而证明线面垂直.三角形全等、等腰三角形、梯形底边的中线、高、菱形、正方形的对角线、 三角形中的勾股定理等都是找线线垂直的方法.[练习3] 如图,在四棱锥 P-ABCW ,底面为直角梯形,AD/ BC ZBAt> 90° , PA上底面 ABCD 且P 任AA A 申2BG M N 分别为PC PB 的中点. 类型4面面垂直的判定[要点点击]平面与平面垂直的关键点(1) 两个平面垂直是两个平面相交的特殊情况.例如正方体中任意相邻两个面都是互相 垂直的.(2) 两个平面垂直和两条直线互相垂直的共同点:都是通过所成的角是直角来定义的.[典例4] 如图所示,在梯形 ABC 畔,AB// CD E, F 是线段AB 上的两点,且 Dd AB, Cd AB A 申 12, A [> 5, BO 4^2, DB 4.现将△ ADE △ CF 盼别沿 DE CF 折起,使 A, B 两点重合于点G,得到多面体CDEFG(1)求证:平面 DEQ 平面 CFG⑵求多面体CDEFGJ 体积.[思路点拨](1)由^ EGF^的数量关系证得 E(^FG 再由C 巨平面EGF ? E(^CF 从 而E 饥平面CFG 进而得证.(2)作出四棱锥的高,由体积公式易得.又Cm GA F, . . E 国平面CFGBPL 平面EF4故在△ BEF 中, A B又EG 平面DEG 平面DEQ平面CFG[巧归纳]常用的两个平面互相垂直的判定方法(1) 定义法,即说明这两个平面所成的二面角是直二面角;(2) 判定定理,即一个平面经过另一个平面内的一条垂线,则这两个平面互相垂直;(3) 两个平行平面中的一个垂直于第三个平面,则另一个也垂直于第三个平面.对于判定定理,可简述为"线面垂直,则面面垂直”.[练习4]如图,在长方体ABCD-ABCD中,AAAA 1, AA = 2, M是棱CC的中点.求证:平面ABI^平面ABM类型5二面角及其平面角的求法[要点点击]确定二面角的平面角的方法(1)定义法:在二面角的棱上找一个特殊点,在两个半平面内分别过该点作垂直于棱的射线.(2)垂面法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.[典例5]在四棱锥P— ABC呻,底面是边长为a的正方形,P[U面ABCD PA a.⑴求证:Ad面PBD(2) 求二面角P— BO D的平面角;(3) 求二面角P- AO D的平面角的正切值.[巧归纳]求二面角大小的步骤(1) 找出这个平面角.(2) 证明这个角是二面角的平面角.(3)作出这个角所在的三角形,解这个三角形,求出角的大小.[练习5]如图,四边形ABC说正方形,P/U平面ABCD且P任AB求二面角B—PC 一D的平面角的大小.类型6垂直关系的综合应用[要点点击]有助于判断面面垂直的结论(1) m// n,讪a , n? 3 ? a X 3 >(2) 讪a , n± 3 , m^n? a ± 3 ;⑶ a // 3 , y X a ? 7X3 .[典例6]如图,在四棱锥P- ABC西,底面是边长为a的正方形,侧棱PA a, PA=Pd .2a,求证:(1) PCX平面ABCD(2) 平面PA(X平面PBD(3) 二面角P- BO D是45°的二面角.[巧归纳]证明两个平面垂直,通常是通过证明线线垂直线面垂直r面面垂直来实现的,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每[练习6]如图,四棱锥P— ABCD勺底面是边长为a的正方形,PBL平面ABCD(1)求证:平面PA[X平面PAB⑵若平面PD牌平面ABCIM 60°的二面角,求该四棱锥的体积.类型7线面垂直性质定理的应用[要点点击]直线与平面垂直性质定理的理解(1) 该定理考查的是在直线与平面垂直的条件下,可得出什么结论.(2) 定理给出了判定两条直线平行的另一种方法(只要判定这两条直线都与同一个平面垂直即可).(3) 定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行” 关系相互转化的依据.(4) 定理的推证过程采用了反证法.[典例7]如图所示,在正方体A i B i CD — ABC[^, EF与异面直线AC AD都垂直相交,求证:EF// BD.[巧归纳]线面垂直的性质定理的应用线面垂直的性质是证明线线平行的方法之一,还可应用线面垂直的其他性质进而证明线面平行、面面平行,实现线面垂直关系与线线平行关系的相互转化.[练习7]如图,PAL正方形ABCN在平面,经过点A且垂直于PC的平面分别交PB,PC PD于点E, F, G 求证:AH PB类型8面面垂直性质定理的应用[要点点击]从平面与平面垂直的性质定理可以看出,由平面与平面垂直可以得到直线与平面垂直,而由平面与平面垂直的判定定理可以看出,由直线与平面垂直可以得到平面与平面垂直,其转化关系可表示为面面垂直的判定定理线面垂直I面面垂直的件质宋理I面面垂直这种相互转化的关系是解决空间图形问题的重要思想方法.[典例8]如图,在三棱锥V— ABg,平面VA乩平面ABC △ VAB为等边三角形,AC±BC且A。

高中数学-直线与平面垂直、平面与平面垂直的性质


的一条垂线,那么这两个平面互相垂直.
返回
②利用面面垂直的判定定理证明面面垂直时的一般 方法是:先从现有的直线中寻找平面的垂线,若这样的 直线图中存在,则可通过线面垂直来证明面面垂直;若 这样的直线图中不存在,则可通过辅助线来解决,而作 辅助线则应有理论根据并有利于证明,不能随意添加. ③证明两个平面垂直,通常是通过证明线线垂直→线 面垂直→面面垂直来实现的.因此,在关于垂直问题的 论证中要注意线线垂直、线面垂直、面面垂直的相 互转化.每一垂直的判定就是从某一垂直开始转向另 一垂直,最终达到目的,其转化关系如图所示:
返回
④用面面垂直的性质定理.如果两个平面垂直,那么在一个
平面内垂直于它们交线的直线必垂直于另一个平面.
⑤作定理用的正确命题.如果一条直线垂直于两个平行平面
中的一个平面,它也垂直于另一个平面.
⑥分析线面关系问题的证明思路应养成“看到结论想判定,
看到条件想性质”的习惯,并结合对图形、模型(自己动
手构造)的深入观察,寻求证题思路.
证明:作AE⊥SB于E, ∵平面SAB⊥平面SBC, ∴AE⊥平面SBC,AE⊥BC, ∵SA⊥平面ABC,∴SA⊥BC, ∴BC⊥平面SAB,∴AB⊥BC.
返回
本学案证明题的主要方法有哪些?
(1)线面垂直的判定方法
①利用定义.要证明一条直线a⊥平面α,转化为证明直线
a垂直于平面α内的任何一条直线c.
返回
返回
返回
返回
返回
返回
返回
返回
返回
学点二 面面垂直的性质定理应用 如果两个相交平面都垂直于第三个平面,那么它 们的交线垂直于第三个平面.
【分析】欲证线面垂直,可用线线垂直或用
m∥l m⊥γ

直线、平面垂直的判定及其性质-人教版高中数学

知识图谱-空间中的垂直关系直线与平面垂直平面与平面垂直射影问题第03讲_直线、平面垂直的判定及其性质错题回顾空间中的垂直关系知识精讲一.线线垂直如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.由定义知,垂直有相交垂直和异面垂直.如果定义了异面直线所成角,则异面垂直即异面直线所成角为.二.直线与平面垂直1.概念:如果一条直线和一个平面相交于点,并且和这个平面内过交点的任何直线都垂直,则称这条直线与这个平面互相垂直.这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫垂足.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段.垂线段的长度叫做这个点到平面的距离.如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直.画直线与平面垂直时,通常把直线画成和表示平面的平行四边形的一边垂直,如图.直线与平面互相垂直,记作.2.线面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.3.线面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行.直线与平面垂直的性质有:(1)一条直线垂直于一个平面,则这条直线垂直于该平面内的所有直线.(2)推论1:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面;(3)推论2:如果两条直线垂直于同一个平面,那么这两条直线平行;(4)垂直于同一直线的两个平面平行.线面垂直的判定定理把定义中的与任意一条直线垂直这个很强的命题,转化为只需证明与两条相交直线垂直这个问题,从而大大简化了线面垂直的判断.要证明判定定理,只能用定义,若,,要证,在平面内任选一条直线,去证,结合右图,通过全等三角形的证明可得到,从而得到判定定理,具体的证法略.线面垂直的性质定理,可以用同一法证明,如图:直线,若直线不平行,则过直线与平面的交点作直线,从而有.又相交直线可以确定一个平面,记,则因为都垂直于平面,故都垂直于交线.这与在一个平面内,过直线上一点有且只有一条直线与已知直线垂直相矛盾.故重合,,性质定理得证.由同一法还可以证明:过一点与已知平面垂直的直线只有一条.三.平面与平面垂直1.面面垂直如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,则称这两个平面互相垂直.2.平面垂直的判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(1)两个平面垂直的判定定理可简述成“线面垂直,面面垂直”,它说明了线面垂直与面面垂直的密切关系.(2)该判定定理揭示了如何去证明面面垂直的一种途径,即只要在一个平面内找到一条直线垂直于另一个平面即可.3.两平面垂直的性质(1)两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.符号表示为:且则定理可简记为:面面垂直线面垂直(2)定理:两相交平面同时垂直于第三个平面,那么两相交平面的交线垂直于第三个平面.三点剖析 一.方法点拨1.线面垂直的判定方法(1)利用定义.要证明一条直线平面,转化为证明直线垂直于平面内的任意一条直线(2)利用判定定理.如果一条直线和一个平面内的两条相交的直线垂直,那么这条直线就和这个平面垂直,即:,简言之,线线垂直线面垂直. 要证,只需在内找两条相交直线,证明,从而可得.(3)作定理用的推论.如果两条平行线中的一条直线垂直于一个平面,那么另一条也垂直于这个平面.(4)用面面垂直的性质定理.如果两个平面垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面.(5)作定理用的正确命题.如果一条直线垂直于两个平行平面中的一个平面,那么也垂直于另一个平面.(1)证明两个平面垂直,主要途径是:①利用面面垂直的定义,即如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.②面面垂直的判定定理,即如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(2)利用面面垂直的判定定理证明面面垂直的一般方法:先从现有的直线中寻找平面的垂线,若途中存在这样的直线,则可通过线面垂直来证明面面垂直.若途中不存在这样的直线,则可通过作辅助线来解决,而作辅助线则应该有理依据并有利于证明,不能随意添加.(3)证明两个平面垂直,通常是通过证明线线垂直线面垂直面面垂直来实现的;因此,在关于垂直问题的论证中,要注意线线垂直、线面垂直、面面垂直的相互转化.每一垂直的判定都是从某一垂直开始转向另一垂直,最终达到目的,其转化关系如图解题思路:分析线面关系问题的证明思路应养成“看到结论想判定,看到条件想性质”的习惯,并结合对图形、模型的深入观察寻求证题思路,必要时注意添加辅助平面,从而构成判定定理的条件;另外对于题中涉及到线段长度的证明题时结合平面几何知识进行证明,如勾股定理逆定理证明垂直等.题模精讲题模一直线与平面垂直例1.1、设是两条不同的直线,是三个不同的平面.给出下列四个命题,其中正确命题的序号是()①若,,则②若,则③若,则④若,则A、①②B、②③C、③④D、①④例1.2、如图,ABCD—A1B1C1D1是正四棱柱,求证:BD⊥平面ACC1A1.例1.3、已知四棱锥的底面是边长为的正方形,分别为棱的中点,底面,且直线与直线所成的角为.(Ⅰ)求证:平面;(Ⅱ)求四棱锥的体积.(Ⅲ)在线段上是否存在点,使得面?请说明理由.题模二平面与平面垂直例2.1、如图,为正三角形,EC ⊥平面ABC,BD ∥CE ,CE=CA=2BD,M是EA的中点,求证:(1)DE =DA ;(2)平面BDM ⊥平面ECA ;(3)平面DEA ⊥平面ECA.如图,已知:在菱形中,,底面,,分别是与的中点.(1)求证:;(2)求证:平面;(3)在线段上是否存在一点,使平面PDM?若存在,指出点的位置;若不存在,说明理由.题模三射影问题例3.1、如图,正方形所在平面,过作与垂直的平面分别交、、于、K、,求证:、分别是点在直线和上的射影.如图,在棱长为的正方体中,是侧棱上的一点,.(1)试确定,使直线与平面所成角的正切值为;(2)在线段上是否存在一个定点,使得对任意的,在平面上的射影垂直于,并证明你的结论.随堂练习随练1.1、下列命题中错误的是()A、如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB、如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC、如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD、如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β随练1.2、如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱EF BC.(I)证明FO∥平面CDE;(II)设BC=CD,证明EO⊥平面CDF.随练1.3、如图,直三棱柱ABC—A1B1C1中,AC =BC =1,∠ACB =90°,AA1=,D 是A1B1中点.(1)求证C1D ⊥平面A1B ;(2)当点F 在BB1上什么位置时,会使得AB1⊥平面C1DF ?并证明你的结论.随练1.4、如图,在梯形中,,,,四边形为矩形,平面平面,.求证:平面自我总结课后作业作业1、在长方体中,,点为上的点,且.求证:平面.作业2、给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A、①和②B、②和③C、③和④D、②和④作业3、已知:三棱锥,平面平面,平面平面,平面,为垂足.(1)求证:平面;(2)当为的垂心时,求证:是直角三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】直线与直线、直线与平面、平面与平面垂直的判定与性质【教学目标】知识目标:(1)了解空间两条直线垂直的概念;(2)掌握与平面垂直的判定方法与性质,平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与平面、平面与平面垂直的判定方法与性质.【教学难点】判定空间直线与直线、直线与平面、平面与平面垂直.【教学设计】在平面内,过一点可以作一条且只能作一条直线与已知直线垂直;在空间中,过一点作与已知直线垂直的直线,能作无数条.例1是判断异面直线垂直的巩固性题目,根据异面直线垂直的定义,只要判断它们所成的角为90o即可.在判定直线与平面垂直时,要特别注意“平面内两条相交的直线”的条件.可举一些实例,以加深学生对条件的理解.两个平面互相垂直是两个平面相交的特殊情况.在日常生活和工农业生产中,两个平面互相垂直的例子非常多,教学时可以多结合一些实例,以引起学生的兴趣.例4是判断平面与平面垂直的巩固性题目,关键是在平面B AC内找到一条直线AC与平面B1BDD11垂直.例5是巩固平面与平面垂直的性质的题目.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为行为意图间*巩固知识 典型例题【知识巩固】例1 如图9-43,长方体ABCD -A 1B 1C 1D 1中,判断直线AB 和DD 1是否垂直.解 AB 和DD 1是异面直线,而BB 1∥DD 1,AB ⊥BB 1,根据异面直线所成的角的定义,可知AB 与DD 1成直角.因此1AB DD .图9-43说明强调引领 讲解 说明观察 思考 主动 求解 通过例题进一步领会10 *运用知识 强化练习1.垂直于同一条直线的两条直线是否平行?2.在图9?43所示的正方体中,找出与直线AB 垂直的棱,并指出它们与直线1AA 的位置关系. 提问 指导 思考 解答了解 知识 掌握 情况14 *创设情境 兴趣导入【问题】前面我们学过直线与平面垂直的概念.根据定义判断直线与平面垂直,需要判定直线与平面内的任意一条直线都垂直,这是比较困难的.那么,如何判定直线和平面垂直呢? 【观察】我们来看看实践中工人师傅是如何做的. 如图9?44所示,检验一根圆木柱和板面是否垂直.工人师傅的做法是,把直角尺的一条直角边放在板面上,看曲尺的另一条直角边是否和圆木柱吻合,然后把直角尺换个位置,照样再检查一次(应当注意,直角尺与板面的交线,在两次检查中不能为同一条直线).如果两次检查,圆木柱都能和直角尺的直角边完全吻合,就判定圆木柱和板面垂直.质疑 引导 分析思考带领 学生 分析17 *动脑思考 探索新知【新知识】从大量的实践与观察中,归纳出直线与平面垂直的判定方法:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线与这个平面垂直.讲解 说明理解带领 学生 分析图9?44*巩固知识典型例题【知识巩固】例2长方体ABCD-A1B1C1D1中(如图9?45),直线AA1与平面ABCD垂直吗?为什么?图9?45解因为长方体ABCD-A1B1C1D1中,侧面ABB1A1、AA1D1D都是长方形,所以AA1⊥AB,AA1⊥AD.且AB和AD是平面ABCD内的两条相交直线.由直线与平面垂直的判定定理知,直线AA1⊥平面ABCD.图9?46[小提示]在实际生活中,我们采用如图9?46所示的“合页型折纸”检验直线与平面垂直,就是直线与平面垂直方法的应用.【做一做】如果只给一个卷尺,你能否判断操场中立的旗杆与底面垂直吗?过 程行为行为意图间两条直线互相平行.如图9?47所示,设m α⊥,n α⊥,则 m ∥n .[想一想]如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面吗?为什么? 说明引领 分析 理解带领 学生 分析 32 *巩固知识 典型例题【知识巩固】例3 如图9?48,AB 和CD 都是平面α的垂线,垂足分别为B 、D ,A 、C 分别在平面α的两侧,AB =4 cm ,CD =8 cm ,BD =5 cm ,求AC 的长.图9?48解 因为AB ⊥α,CD ⊥α,所以 AB ∥CD .因为BD 在平面α内,AB ⊥BD ,CD ⊥BD .设AB 与CD 确定平面β,在平面β内,过点A 作AE ∥BD ,直线AE 与CD交于点E .在直角三角形ACE 中,因为AE =BD =5 cm ,CE =CD +DE =CD +AB =8 + 4 =12(cm ),所以 AC =22AE CE + = 22512+ =13(cm ).说明 强调 引领讲解说明 观察 思考 主动 求解 通过例题进一步领会 注意 观察 学生 是否 理解 知识 点 37 *运用知识 强化练习1.一根旗杆AB 高8 m ,它的顶端A 挂两条10 m 的绳子,拉紧绳子并把它们的两个下端固定在地面上的C 、D 两点,并使点C 、D 与旗杆脚B 不共线,如果C 、D 与B 的距离都是6 m ,那么是否可以判定旗杆AB 与地面垂直,为什么?2.如图所示,ABC ∆在平面α内,90BAC ∠=︒,且PA α⊥于A ,那么AC 与PB 是否垂直?为什么?提问 巡视 指导思考 解答及时 了解 学生 知识 掌握 情况α图9?47mn过程行为行为意图间42 *创设情境兴趣导入【知识回顾】两个平面相交,如果所成的二面角是直二面角,那么称这两个平面互相垂直.平面α与平面β垂直,记作βα⊥.画表示两个互相垂直平面的图形时,一般将两个平行四边形的一组对边画成垂直的位置,可以把直立的平面画成矩形(图9?49(1)),也可以把直立的平面画成平行四边形(图9?49(2)).【做一做】请动手画出图9?50中的两个图形.[实例]建筑工人在砌墙时,把线的一端系一个铅锤,另一端用砖压在墙壁面上(图9?50),观察系有铅锤的线与墙面是否紧贴(在铅锤处应有一空隙),即判断所砌墙面是否经过地面的垂线,以此保证所砌的墙面与地面垂直.图9?50质疑引导分析观察思考带领学生分析48*动脑思考探索新知【新知识】这种做法的依据是平面与平面垂直的判定方法:一个平面经过另一个平面的垂线则两个平面垂直.如图9?51所示,如果ABβ⊥,AB在α内,那么αβ⊥.讲解说明引领分析理解带领学生分析β(2)α图9?49过 程行为行为意图间52*巩固知识 典型例题【知识巩固】例4 在正方体ABCD -A 1B 1C 1D 1(如图9?52)中,判断平面B 1AC 与平面B 1BDD 1是否垂直.图9?52解 在正方体ABCD -A 1B 1C 1D 1中,B 1B ⊥平面ABCD ,所以BB 1⊥AC ,在底面正方形ABCD 中,BD ⊥AC ,因此AC ⊥平面BB 1D 1D ,因为AC 在平面B 1AC 内,所以平面B 1AC 与平面B 1BDD 1垂直.说明 强调 引领 讲解 说明 观察 思考 主动 求解通过例题进一步领会57 *创设情境 兴趣导入 【实验】如图9?53所示,在正方体1A C 的侧面11A ABB 中,作1EE AB ,观察1EE 与底面ABCD 的关系.质疑 引导 分析思考带领 学生 分析601A 1D 1C 1B A DCB图9?53E 1E图9?51过 程行为行为意图间*动脑思考 探索新知 【新知识】可以看到,由于1EE AB ⊥,故11EE BB ∥,又1BB BC ⊥,因此1EE BC ⊥.这样,1EE 就与底面ABCD 中的两条相交直线AB BC 、都垂直,所以1EE 与底面ABCD 垂直.由大量的观察与实践,归纳出平面与平面垂直的性质:如果两个平面垂直,那么一个平面内垂直于交线的直线与另一个平面垂直.讲解 说明引领分析理解 记忆带领 学生 分析64 *巩固知识 典型例题【知识巩固】例5 如图9?54所示,平面α⊥平面β, AC 在平面α内,且AC ⊥AB ,BD 在平面β内,且BD ⊥AB ,AC =12 cm ,AB =3 cm ,BD =4 cm .求CD 的长.图9?54解 在平面β内,连结AD .又由于BD ⊥AB ,所以在直角三角形ABD 中,222223425=+=+=AD AB BD ,故 AD =5(cm ).因为αβ⊥,AC 在平面α内,且AC ⊥AB ,AB 为平面α与β的交线,所以AC ⊥β.因此CA ⊥AD .在直角三角形ACD 中,22222125169=+=+=CD AC AD ,故 CD =13(cm ).说明 强调 引领 讲解 说明观察 思考 主动 求解通过例题进一步领会 注意 观察 学生 是否 理解 知识 点69 *运用知识 强化练习1.如图所示,在长方体1111ABCD A B C D -中,与平面1AB 垂直的平面有个,与平面1AB 垂直的棱有 条.提问思考及时 了解 学生A C D DABC【教师教学后记】。

相关文档
最新文档