第二轮 中考题型专题复习二 解答题专题学习突破 专题复习(十)函数的实际应用题试题
2020年中考二轮复习:反比例函数实际应用题专题复习(含答案解析)

2020年中考二轮复习:实际问题与反比例函数专题复习一.解答题(共20小题)1.已知蓄电池的电压为定值.使用此蓄电池作为电源时,电流Ⅰ(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的电流不能超过8A,那么该用电器的可变电阻至少是多少?2.教室时的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想接不低于50℃的水,在一轮开机到关机过程中,请问有多长时间能满足这位同学的水温需求?3.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)成正比例;1.5小时后(包括1.5小时)y与x成反比例.根据图中提供的信息,解答下列问题:(1)请求出一般成人喝半斤低度白酒后,y与x之间的函数关系式及相应的自变量取值范围;(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”不能驾车上路,参照上述数学模型,假设某驾驶员晚上21:00在家喝完半斤低度白酒,第二天最早几点驾车去上班?请说明理由.4.某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的表达式;(2)当气球内的气压大于150kPa时,气球将会爆炸,为了安全起见,气体的体积应至少是多少?5.蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10Ω时,求电流I(A).6.一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间成反比例函数关系,其图象如图所示.(1)求V与t之间的函数表达式;(2)若要2h排完水池中的水,那么每小时的排水量应该是多少?(3)如果每小时排水量不超过4000m3,那么水池中的水至少要多少小时才能排完?7.夏天,小明家的饮水机将温控器设置为加热时的温度最高为98℃,保温时的温水最低温度为33℃.接通电源后进入自动程序,加热到98℃时停止加热,水温开始下降,直至水温降至33℃,饮水机即刻自动进入加热程序,重复上述自动程序.若在水温为33℃时小明接通了电源,水温y(℃)与时间x(min)的关系(部分图象)如图所示,依据图象回答下列问题:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)接通电源后,若小明准备用不低于91℃的水沏茶,请问他可用水的时间有多长?(不考虑其它因素)8.某闭合电路中,其两端电压恒定,电流I(A)与电阻R(Ω)图象如图所示,回答问题:(1)写出电流I与电阻R之间的函数解析式;(2)若允许的电流不超过4A时,那么电阻R的取值应该控制在什么范围?9.某汽车销售商推出分期付款购车促销活动,交付首付款后,余额要在30个月内结清,不计算利息,王先生在活动期间购买了价格为12万元的汽车,交了首付款后平均每月付款y万元,x个月结清.y与x的函数关系如图所示,根据图象回答下列问题:(1)确定y与x的函数解析式,并求出首付款的数目;(2)王先生若用20个月结清,平均每月应付多少万元?(3)如果打算每月付款不超过4000元,王先生至少要几个月才能结清余额?10.某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)与通电时间x(分)的关系如下图所示,回答下列问题:(1)当0≤x≤8时,求y与x之间的函数关系式;(2)求出图中a的值;(3)某天早上7:20,李优老师将放满水后的饮水机电源打开,若他想在8:00上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?11.某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,(1)写出药物燃烧前后,y与x之间的函数表达式;(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?12.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.13.去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y 与等待时间x(分)之间存在如下的关系:y=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?14.为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例;药物释放结束后,y与x成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?15.小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中水温y(℃)与开机时间x(分)满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降(此过程中水温y(℃)与开机时间x(分)成反比例关系),当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤10时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?16.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)17.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?18.如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.19.六•一儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A、B、C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米).OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?20.月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.2020年中考二轮复习:实际问题与反比例函数专题复习参考答案与试题解析1.已知蓄电池的电压为定值.使用此蓄电池作为电源时,电流Ⅰ(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的电流不能超过8A,那么该用电器的可变电阻至少是多少?【分析】(1)反比例函数经过点(10,4),代入反比例函数式,即可求得函数解析式.(2)I≤8时,根据反比例函数的单调递减性质,求电阻R的范围.【解答】解(1)设反比例函数表达式为I=(k≠0)将点(10,4)代入得4=∴k=40∴反比例函数的表达式为(2)由题可知,当I=8时,R=5,且I随着R的增大而减小,∴当I≤8时,R≥5∴该用电器的可变电阻至少是5Ω.2.教室时的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想接不低于50℃的水,在一轮开机到关机过程中,请问有多长时间能满足这位同学的水温需求?【分析】(1)根据题意和函数图象可以求得a的值;根据函数图象和题意可以求得y关于x的函数关系式,注意函数图象是循环出现的;(2)根据(1)中的函数解析式可以解答本题.【解答】解:(1)观察图象,可知:当x=7(min)时,水温y=100(℃)当0≤x≤7时,设y关于x的函数关系式为:y=kx+b,,得,即当0≤x≤7时,y关于x的函数关系式为y=10x+30,当x>7时,设y=,100=,得a=700,即当x>7时,y关于x的函数关系式为y=,∴y与x的函数关系式为:y=;(2)当y=30时,x=,y与x的函数关系式每分钟重复出现一次,将y=50代入y=10x+30,得x=2,将y=50代入y=,得x=14,∵14﹣2=12,﹣12=(分钟),∴怡萱同学想喝高于50℃的水,她最多需要等待min.3.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)成正比例;1.5小时后(包括1.5小时)y与x成反比例.根据图中提供的信息,解答下列问题:(1)请求出一般成人喝半斤低度白酒后,y与x之间的函数关系式及相应的自变量取值范围;(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”不能驾车上路,参照上述数学模型,假设某驾驶员晚上21:00在家喝完半斤低度白酒,第二天最早几点驾车去上班?请说明理由.【分析】(1)直接利用待定系数法分别求出反比例函数以及一次函数的解析式得出答案;(2)根据题意得出y=20时x的值进而得出答案.【解答】解:(1)由题意可得:当0≤x≤1.5时,设函数关系式为:y=kx,则150=1.5k,解得:k=100,故y=100x,当1.5≤x时,设函数关系式为:y=,则a=150×1.5=225,解得:a=225,故y=(x≥1.5),综上所述:y与x之间的两个函数关系式为:y=;(2)在中令y=20得x=11.25,21+11.25﹣24=8.25(小时),所以第二天最早8点(15分)能驾车去上班.4.某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的表达式;(2)当气球内的气压大于150kPa时,气球将会爆炸,为了安全起见,气体的体积应至少是多少?【分析】(1)根据温度=气体的气压P×气体体积V,求温度,再确定P与V的函数关系式;(2)依题意P≤150,即P=≤150,解不等式即可.【解答】解:(1)设P=,将A(0.5,120)代入求出k=60,∴P=;(2)当P>150KPa时,气球将爆炸,∴P≤150,即P=≤150,解得V≥=0.4(m3).故为了安全起见,气体的体积应不小于0.4(m3).5.蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10Ω时,求电流I(A).【分析】(1)根据电流I(A)是电阻R(Ω)的反比例函数,设出I=(k≠0)后把(4,9)代入求得k值即可;(2)将R=10Ω代入上题求得的函数关系式后求得电流的值与4比较即可.【解答】解:(1)由电流I(A)是电阻R(Ω)的反比例函数,设I=(k≠0),把(4,9)代入得:k=4×9=36,∴.(2)当R=10Ω时,I=3.6A.6.一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间成反比例函数关系,其图象如图所示.(1)求V与t之间的函数表达式;(2)若要2h排完水池中的水,那么每小时的排水量应该是多少?(3)如果每小时排水量不超过4000m3,那么水池中的水至少要多少小时才能排完?【分析】(1)直接利用待定系数法求出反比例函数解析式即可;(2)利用t=2代入进而得出V的值;(3)把V=4 000代入V=,求出答案.【解答】解:(1)设函数表达式为V=,把(6,3000)代入V=,得3000=.解得:k=18000,所以V与t之间的函数表达式为:V=;(2)把t=2代入V=,得V=9000,答:每小时的排水量应该是9 000 m3;(3)把V=4 000代入V=,得t=4.5,根据反比例函数的性质,V随t的增大而减小,因此水池中的水至少要4.5 h才能排完.7.夏天,小明家的饮水机将温控器设置为加热时的温度最高为98℃,保温时的温水最低温度为33℃.接通电源后进入自动程序,加热到98℃时停止加热,水温开始下降,直至水温降至33℃,饮水机即刻自动进入加热程序,重复上述自动程序.若在水温为33℃时小明接通了电源,水温y(℃)与时间x(min)的关系(部分图象)如图所示,依据图象回答下列问题:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)接通电源后,若小明准备用不低于91℃的水沏茶,请问他可用水的时间有多长?(不考虑其它因素)【分析】(1)根据函数图象和题意可以求得y关于x的函数关系式,注意函数图象是循环出现的;(2)根据(1)中的函数解析式可以解答本题;【解答】解:(1)观察图象,可知:当0≤x≤6.5时,设y关于x的函数关系式为:y=kx+b,,得,即当0≤x≤6.5时,y关于x的函数关系式为y=10x+33,当6.5<x<时,设y=,98=,得a=637,∴6.5<x<时,y关于x的函数关系式为y=;(2)将y=91代入y=10x+33,得x=5.8,将y=91代入y=,得x=7,∵7﹣5.8=1.2,∴若小明准备用不低于91℃的水沏茶,请问他可用水的时间有1.2min;8.某闭合电路中,其两端电压恒定,电流I(A)与电阻R(Ω)图象如图所示,回答问题:(1)写出电流I与电阻R之间的函数解析式;(2)若允许的电流不超过4A时,那么电阻R的取值应该控制在什么范围?【分析】(1)可设I=,由于点(3,2)适合这个函数解析式,则可求得k的值,然后代入R=6求得I的值即可.(2)限制的电流不超过4A,把I=4代入函数解析式求得最小电阻值.【解答】解:(1)设I=,由图中曲线过(3,2)点,所以2=,解得k=6,即函数关系式为I=;(2)由I=可知I=4时,R=1.5Ω,所以电阻应至少1.5Ω.9.某汽车销售商推出分期付款购车促销活动,交付首付款后,余额要在30个月内结清,不计算利息,王先生在活动期间购买了价格为12万元的汽车,交了首付款后平均每月付款y万元,x个月结清.y与x的函数关系如图所示,根据图象回答下列问题:(1)确定y与x的函数解析式,并求出首付款的数目;(2)王先生若用20个月结清,平均每月应付多少万元?(3)如果打算每月付款不超过4000元,王先生至少要几个月才能结清余额?【分析】(1)从反比例图象上任意找一点向两坐标轴引垂线,形成的矩形面积等于k的绝对值,由图可知1.8×5=9,即可求出解析式.(2)在(1)的基础上,知道自变量,便可求出函数值.(3)知道了自变量的范围,利用解析式即可求出函数的范围.【解答】解:(1)由图象可知y与x成反比例,设y与x的函数关系式为y=,把(5,1.8)代入关系式得1.8=,∴k=9,∴y=,∴12﹣9=3(万元).答:首付款为3万元;(2)当x=20时,y==0.45(万元),答:每月应付0.45万元;(3)当y=0.4时,0.4=,解得:x=,答:他至少23个月才能结清余款.10.某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)与通电时间x(分)的关系如下图所示,回答下列问题:(1)当0≤x≤8时,求y与x之间的函数关系式;(2)求出图中a的值;(3)某天早上7:20,李优老师将放满水后的饮水机电源打开,若他想在8:00上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?【分析】(1)由函数图象可设函数解析式,再将图中坐标代入解析式,利用待定系数法即可求得y与x的关系式;(2)将y=20代入y=,即可得到a的值;(3)要想喝到不超过40℃的开水,7:30加20分钟即可接水,一直到8:10;【解答】解:(1)当0≤x≤8时,设y与x之间的函数关系式为y=kx+b(k≠0),将(0,20),(8,100)代入y=kx+b,得:,解得:,∴当0≤x≤8时,y与x之间的函数关系式为y=10x+20;(2)当8≤x≤a时,设y与x之间的函数关系式为:y=(k2≠0),将(8,100)代入y=,得:100=解得:k2=800,∴当8≤x≤a时,y与x之间的函数关系式为:y=;将(a,20)代入y=,得:a=40;(3)依题意,得:≤40,解得:x≥20.∵x≤40,∴20≤x≤40.∴他应在7:40~8:00时间段内接水.11.某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,(1)写出药物燃烧前后,y与x之间的函数表达式;(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?【分析】(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(6,4)代入即可,药物燃烧后,设出y与x之间的解析式(k2>0)代入(6,4)即可;(2)把y=1.6代入反比例函数解析式,求出相应的x;(3)把y=2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与9进行比较,≥9就有效.【解答】解:(1)设药物燃烧时y关于x的函数关系式为:y=k1x(k1>0)代入(6,4)为4=6k1∴k1=,设药物燃烧后y关于x的函数关系式为:(k2>0)代入(6,4)为:4=,∴k2=24,∴药物燃烧时y关于x的函数关系式为:y=x(0≤x≤6),药物燃烧后y关于x的函数关系式为:y=(x>6);(2)令y=中y≤1.6,得:x≥15,即从消毒开始,至少需要15分钟后学生才能进入教室;(3)把y=2代入y=x,得:x=3,把y=2代入y=,得:x=12,∵12﹣3=9,所以这次消毒是有效的.12.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.【分析】(1)利用时间t与速度v成反比例可以得到反比例函数的解析式;(2)①由客车的平均速度为每小时v千米,得到货车的平均速度为每小时(v﹣20)千米,根据一辆客车从甲地出发前往乙地,一辆货车同时从乙地出发前往甲地,3小时后两车相遇列出方程,解方程即可;②分两种情况进行讨论:当A加油站在甲地和B加油站之间时;当B加油站在甲地和A加油站之间时;都可以根据甲、乙两地间有两个加油站A、B,它们相距200千米列出方程,解方程即可.【解答】解:(1)设函数关系式为v=,∵t=5,v=120,∴k=120×5=600,∴v与t的函数关系式为v=(5≤t≤10);(2)①依题意,得3(v+v﹣20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v﹣20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A加油站在甲地和B加油站之间时,110t﹣(600﹣90t)=200,解得t=4,此时110t=110×4=440;当B加油站在甲地和A加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B加油站的距离为220或440千米.13.去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y 与等待时间x(分)之间存在如下的关系:y=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?【分析】函数关系式y=中,y代表舒适度指数,x(分)代表等待时间.(1)是已知x=5,代入函数解析式求得y.(2)是已知y≥10,就可以得到关于x的不等式求的x的范围.【解答】解:(1)当x=5时,舒适度y===20;(2)舒适度指数不低于10时,由图象y≥10时,0<x≤10所以作为食堂的管理员,让每个在窗口买菜的同学最多等待10分钟.14.为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例;药物释放结束后,y与x成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?【分析】(1)药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(小时)成正比;药物释放完毕后,含药量y(毫克)与时间x(小时)成反比,用待定系数法可得函数关系式;(2)根据函数值为0.25,利用反比例函数即可得到自变量x的值.【解答】解:(1)药物释放过程中,y与x成正比,设y=kx(k≠0),∵函数图象经过点A(2,1),∴1=2k,即k=,∴y=x;当药物释放结束后,y与x成反比例,设y=(k'≠0),∵函数图象经过点A(2,1),∴k'=2×1=2,∴y=;(2)当y=0.25时,代入反比例函数y=,可得。
专题10 二次函数的实际应用问题(4大考点)-2023年中考数学总复习真题探究与变式训练(解析版)

第三部分函数专题10 二次函数的实际应用问题(4大考点)核心考点一销售、利润问题核心考点二图形面积问题核心考点核心考点三抛物线型问题(拱桥、隧道等)核心考点四其他问题新题速递核心考点一销售、利润问题例1(2021·辽宁沈阳·统考中考真题)某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件.经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为__________元时,才能使每天所获销售利润最大.解:设销售单价定为元,每天所获利润为元,则,所以将销售定价定为故答案为11.元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本).【详解】解:当时,设,把(,解得,∴每天的销售量个)的函数解析式为,设该食品零售店每天销售这款冷饮产品的利润为,∵1<0,当时,故答案为:为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请直接写出p与x之间的函数关系式:(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.【答案】(1)(2)这批农产品的销售价格定为40元,才能使日销售利润最大(3)a的值为2.【分析】(1)首先根据表中的数据,可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w与销售价格x之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润与销售价格x之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a的值.【详解】(1)解:由表格的数据可知:p与x成一次函数关系,设函数关系式为p=kx+b,则,解得:k=-30,b=1500,∴p=-30x+1500,∴所求的函数关系为p=-30x+1500;(2)解:设日销售利润w=p(x-30)=(-30x+1500)(x-30),即,∵-30<0,∴当x=40时,w有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)解:日获利=p(x-30-a)=(-30x+1500)(x-30-a),即,对称轴为,①若a>10,则当x=45时,有最大值,即=2250-150a<2430(不合题意);②若0<a≤10,则当x=40+a时,有最大值,将x=40+a代入,可得,当=2430时,,解得=2,=38(舍去),综上所述,a的值为2.【点睛】本题主要考查了二次函数的综合应用,解题时要利用图表中的信息,学会用待定系数法求解函数解析式,并将实际问题转化为求函数最值问题,从而来解决实际问题.1、常用公式有:利润=售价-成本价,总利润=单个商品的利润×销售量,利润率=利润/进价×100%,通过公式建立函数模型,把利润问题转化为函数的最值问题,从而使问题得到解决。
2020年数学中考重难点突破之函数的实际应用

函数的实际应用1. 某制笔企业欲将200件产品运往A ,B ,C 三地销售,要求运往C 地的件数是运往A 地件数的2倍,各地的运费如图所示.设安排x 件产品运往A 地.(1)①根据信息填表.②若设总运费为y 元,写出y 关于x 的函数关系式;(2)若运往B地的产品数量不超过运往C 地的数量,应怎样安排A ,B ,C 三地的运送数量才能达到运费最少.第1题图解:(1)①根据信息填表:②由题意可得:y=30x+1600-24x+50x=56x+1600.(2)根据题意可得200-3x≤2x,解得x≥40,由总运费y=56x+1600,∵y随x的增大而增大,∴当x=40时,y有最小值为3840,故安排运往A、B、C三地的产品件数分别为40件,80件,80件时,运费最少.2.某公司开发出一款新的节能产品,该产品的成本价为6元/件.该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是______件,日销售利润是_______元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?第2题图解:(1)330,660;【解法提示】从图中可看出线段DE 上存在一点(22,340),由题意,在线段DE 表示的函数关系式中,时间每增加1天,日销售量减少5件,可得到DE 上另一点(23,335),设线段DE 所在直线的解析式为y =kx +b ,则2234022335k b k b +=⎧⎨+=⎩,解得⎩⎨⎧k =-5b =450,∴y =-5x +450,∴当x =24时,y =330,而日销售利润=日单件利润×数量=(8-6)×330=660(元).(2)设线段OD 所表示的y 与x 之间的函数关系式为y =kx .∴函数y =kx 的图象过点(17,340),∴17k =340,解得k =20.∴线段OD 所表示的y 与x 之间的函数关系式为y =20x .根据题意,得线段DE 所表示的y 与x 之间的函数关系式为y =340-5(x -22)=-5x +450.∴D 是线段OD 与线段DE 的交点.联立得:⎩⎨⎧y =20x y =-5x +450,解得⎩⎨⎧x =18y =360. ∴点D 的坐标为(18,360),∴y =20(0)5450(18<)x x x x ⎧⎨-+⎩≤≤18≤30; (3) 当0≤x ≤18时,由题意得(8-6)×20x ≥640,解得x ≥16;当18<x ≤30时,由题意得(8-6)×(-5x +450)≥640,解得x ≤26.∴16≤x≤26.即26-16+1=11(天),∴日销售利润不低于640元共有11天,∴D的坐标为(18,360),∴日最大销售量为360件,(8-6)×360=720(元)∴试销售期间,日销售最大利润为720元.3.某校在学习贯彻十九大精神“我学习,我践行”的活动中,计划组织全校1300名师生到林业部门规划的林区植树,经研究,决定租用当地租车公司提供的A、B两种型号客车共50辆作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量与租金信息:注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式,并直接写出x的取值范围;(2)若要使租车总费用不超过13980元,一共有几种租车方案?哪种租车方案最省钱?解:(1)根据题意得:y=300x+240(50-x)=60x+12000.∴30x+20(50-x)≥1300,∴x≥30,∴y与x的函数解析式为y=60x+12000(x≥30).(2)根据题意得:60x+12000≤13980,解得:x≤33,∴30≤x≤33,∴共有4种租车方案,方案1:租A型号客车30辆,B型号客车20辆;方案2:租A型号客车31辆,B型号客车19辆;方案3:租A型号客车32辆,B型号客车18辆;方案4:租A型号客车33辆,B型号客车17辆.∴60>0,∴y值随x的增大而增大,∴租车方案1最省钱.4.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量是售价的一次函数,且相关信息如下表:已知该运动服的进价为每件60元,设售价为x元.(2)求月销量y与售价x的一次函数关系式:(3)设销售该运动服的月利润为W元,那么售价为多少元时,当月的利润最大?最大利润是多少元?解:(1)销售该运动服每件的利润是:(x -60)元,(2)设月销量y 与x 的关系式为y =kx +b ,由题意得,⎩⎨⎧=+=+180110200100b k b k ,解得⎩⎨⎧=-=4002b k . 则y =-2x +400;(3)由题意得,W =(x -60)(-2x +400)=-2x 2+520x -24000=-2(x -130)2+9800,∴当x =130时,利润最大值为9800元,故售价为130元时,当月的利润最大,最大利润是9800元.5.衡阳市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(0<x <20)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?第5题图解:(1)设y 与x 之间的函数关系式为:y =kx +b ,把(2,120)和(4,140)代入得,⎩⎨⎧=+=+14041202b k b k ,解得⎩⎨⎧==10010b k , ∴y 与x 之间的函数关系式为:y =10x +100;(2)根据题意得,(60-40-x )(10x +100)=2090,解得x =1或x =9,∵为了让顾客得到更大的实惠,∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元时,商贸公司获利最大,最大利润是w 元, 根据题意得,w =(60-40-x )(10x +100)=-10x 2+100x +2000,∴w =-10(x -5)2+2250,故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.6.随着人们生活水平的提高,短途旅行日趋火爆.我市某旅行社推出“衡阳市一日游”项目,团队人均报名费用y (元)与团队报名人数x (人)之间的函数关系如图所示,旅行社规定团队人均报名费用不能低于88元.旅行社收到的团队总报名费用为w (元).(1)直接写出当x ≥20时,y 与x 之间的函数关系式及自变量x 的取值范围;(2)儿童节当天旅行社收到某个团队的总报名费为3000元,报名旅游的人数是多少?(3)当一个团队有多少人报名时,旅行社收到的总报名费最多?最多总报名费是多少元?第6题图解:(1)当x ≥20时,设y 与x 之间的函数关系式为y =kx +b ,把(20,120)和(32,96)代入得⎩⎨⎧=+=+963212020b k b k ,解得⎩⎨⎧=-=1602b k ,∴ y 与x 之间的函数关系式为:y =-2x +160;∵旅行社规定团队人均报名费用不能低于88元,当y ≥88时,-2x +160≥88,解得x ≤36,∴当x ≥20时,y 与x 之间的函数关系式为:y =-2x +160(20≤x ≤36); (2)20×120=2400<3000,由题意得:w =xy =x (-2x +160)=3000,-2x 2+160x -3000=0,x 2-80x +1500=0,解得x =50或x =30,答:报名旅游的人数是30人;(3)w=xy=x(-2x+160)=-2x2+160x=-2(x-40)2+3200,∵-2<0,∴x<40,w随x的增大而增大,∵x=36时,w有最大值为:-2(36-40)2+3200=3168,∴当一个团队有36人报名时,旅行社收到的总报名费最多,最多总报名费是3168元.7.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租一本书,租书金额y(元)与租书时间x(天)之间的关系如图所示:元;(2)分别写出用会员卡和租书卡租书的金额y1、y2与租书时间x之间的函数关系式;(3)如果租书50天,选择哪种租书方式比较划算?如果花费80元租书,选择哪种租书方式比较划算?第7题图解:(1)0.5;0.3;【解法提示】租书卡每天租书花费:50÷100=0.5(元),设会员卡每天租书花费x元,则20+100x=50,得x =0.3;(2)设用租书卡租书的金额y 1与租书时间x 之间的函数关系式为:y 1=kx , 把(100,50)代入得,100k =50,解得:k =0.5,∴用租书卡租书的金额y 1与租书时间x 之间的函数关系式为:y =0.5x , 设用会员卡租书的金额y 2与租书时间x 之间的函数关系式为:y 2=ax +b , 把(0,20),(100,50)代入得,⎩⎨⎧==+2050100b b a ,解得⎩⎨⎧==203.0b a , ∴用会员卡租书的金额y 2与租书时间x 之间的函数关系式为:y 2=0.3x +20;(3)租书50天,租书卡花费0.5×50=25(元),会员卡花费0.3×50+20=35(元),说明使用租书卡比会员卡划算.花费80元租书,租书卡花费0.5x =80(元),解得:x =160,会员卡花费0.3x +20=80(元),解得:x =200,说明使用会员卡比租书卡划算.8.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数).(1)根据题意,填写下表:(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式;(3)当x >70时,顾客在哪家复印店复印花费少?请说明理由. 解:(1)1,3;1.2,3.3;【解法提示】甲复印店:当x =10时,收费为:0.1×10=1(元); 当x =30时,收费为:0.1×30=3(元);乙复印店:当x =10时,收费为:0.12×10=1.2(元);当x =30时,收费为:0.12×20+0.09×(30-20)=3.3(元);(2)由题意得,y 1=0.1x (x ≥0);当0≤x ≤20时,y 2=0.12x ,当x >20时,y 2=0.12×20+0.09(x -20),即y 2=0.09x +0.6,即y 2=⎩⎨⎧>+≤≤)20(6.009.0200(12.0x x x x ); (3)顾客在乙复印店复印花费少,理由如下:当x >70时,y 1=0.1x ,y 2=0.09x +0.6,设y =y 1-y 2,∴y1-y2=0.1x-(0.09x+0.6)=0.01x-0.6,设y=0.01x-0.6,由0.01>0,则y随x的增大而增大,当x=70时,y=0.1,∴x>70时,y>0.1,∴y1>y2,∴当x>70时,顾客在乙复印店复印花费少.9.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)已知某用户四、五月份共用水40m3.①若该用户这两个月共缴纳水费79.8元,且五月份用水量较大,则该用户五月份用水多少m3?②该用户这两个月共需缴纳水费至少多少元?第9题图解:(1)当0≤x≤15时,设y与x的函数关系式为y=kx,把(15,27)代入得15k=27,解得k=1.8,∴当0≤x≤15时,y与x的函数关系式为y=1.8x,当x>15时,设y与x的函数关系式为y=ax+b,把(15,27),(20,39)代入得⎩⎨⎧=+=+39202715b a b a ,解得⎩⎨⎧-==94.2b a , ∴当x >15时,y 与x 的函数关系式为y =2.4x -9.(2)①设四月份用水x m 3,当0≤x ≤15时,1.8x +2.4(40-x )-9=79.8,解得x =12,∴40-x =28,当15<x <20时,∵2.4×40-9=87≠79.8,∴该种情况不存在,答:五月份用水28m 3;②由题意可得,当四月份用水15m 3时,这两个月共需缴纳水费最少,此时水费为:1.8×15+2.4×(40-15)-9=78(元).10.五•一”假期,衡阳火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经k 调查发现,在车站开始检票时,有640人排队检票,5:20检票开始后,仍有旅客继续前来排队检票进站设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a 分钟只开放了两个检票口.某天候车室排队等候检票的人数y (人)与检票时间x (分钟)的关系如图所示.(1)求a 的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?第10题图解:(1)根据题意可得:640+16a -2×14a =520,解得:a =10;(2)设当10≤x ≤30时,y 与x 的函数关系式为y =kx +b由题意可得⎩⎨⎧=+=+03052010b k b k ,解得⎩⎨⎧=-=78026b k . ∴函数解析式为y =-26x +780,当x =20时,y =-26×20+780=260,∴检票到第20分钟时,候车室排队等候检票的旅客人数260人;(3)设至少需要同时开放n 个检票口,根据题意得:14n ×15≥640+16×15,∵n为整数,∴n最小值为5,∴至少需要同时开放5个检票口.。
中考数学核心考点强化突破函数的实际应用问题含解析

中考数学核心考点强化突破:函数的实际应用问题类型1 方案与最值问题1.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.解析:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据题意得:⎩⎪⎨⎪⎧x +3y =1.42x +5y =2.5,解得:⎩⎪⎨⎪⎧x =0.5y =0.3.答:略. (2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10-m)台,根据题意得:w =300×2m+200×2(10-m)=200m +4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴⎩⎪⎨⎪⎧2×0.5m+2×0.3(10-m )≥8200m +4000≤5400解得:5≤m≤7,∴有三种不同方案.∵w=200m +4000中,200>0,∴w 值随m 值的增大而增大,∴当m =5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.2.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m .设饲养室长为x(m ),占地面积为y(m 2).(1)如图1,问饲养室长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2 m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.解:(1)∵y =x ·50-x 2=-12(x -25)2+6252,∴当x =25时,占地面积最大,即饲养室长x 为25 m 时,占地面积y 最大;(2)∵y =x ·50-(x -2)2=-12(x -26)2+338,∴当x =26时,占地面积最大,即饲养室长x 为26 m 时,占地面积y 最大;∵26-25=1≠2,∴小敏的说法不正确.3.(2017·河南)学校“百变魔方”社团准备购买A,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:⎩⎪⎨⎪⎧2x +6y =1303x =4y ,解得:⎩⎪⎨⎪⎧x =20y =15. 答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0≤m≤50),总价格为w 元,则购进B 种魔方(100-m)个,根据题意得:w 活动一=20m×0.8+15(100-m)×0.4=10m +600;w 活动二=20m +15(100-m -m)=-10m +1500.当w 活动一<w 活动二时,有10m +600<-10m +1500,解得:m <45;当w 活动一=w 活动二时,解得:m =45;当w 活动一>w 活动二时,解得:45<m≤50.综上所述:当45<m≤50时,选择活动一购买魔方更实惠;当m =45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.类型2 建立函数模型问题4.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B 和落水点C 恰好在同一直线上,点A 至出水管BD 的距离为12 c m ,洗手盆及水龙头的相关数据如图2所示,现用高10.2 cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E,则点E 到洗手盆内侧的距离EH 为__24-82__cm .解:建立如图的直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ =MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12-8=4,由BQ∥CG可得,△ABQ∽△ACG,∴BQCG=AQAG,即4CG=1236,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=-320x2+95x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=-320x2+95x+24,解得x1=6+82,x2=6-82(舍去),∴点E的横坐标为6+82,又∵ON=30,∴EH=30-(6+82)=24-8 2.5.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000 kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t 天后的质量为m(kg ),销售单价为y 元/ kg .根据以往经验可知:m 与t 的函数关系为m =⎩⎪⎨⎪⎧20000(0≤t≤50)100t +15000(50<t≤100);y 与t 的函数关系如图所示. ①分别求出当0≤t≤50和50<t≤100时,y 与t 的函数关系式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大?并求出最大值.(利润=销售总额-总成本)解:(1)由题意,得:⎩⎪⎨⎪⎧10a +b =30.420a +b =30.8,解得⎩⎪⎨⎪⎧a =0.04b =30. (2)①当0≤t≤50时,设y 与t 的函数解析式为y =k 1t +n 1,将(0,15)、(50,25)代入,可求得y 与t 的函数解析式为:y =15t +15;当50<t≤100时,设y 与t 的函数解析式为y =k 2t +n 2,将点(50,25)、(100,20)代入,可求得y 与t 的函数解析式为:y =-110t +30;②由题意,当0≤t≤50时,W =20000(15t +15)-(400t +300000)=3600t,∵3600>0,∴当t =50时,W 最大=180000(元);当50<t≤100时,W =(100t +15000)(-110t +30)-(400t +300000)=-10(t -55)2+180250,∵-10<0,∴当t =55时,W 最大=180250(元).综上所述,放养55天时,W 最大,最大值为180250元.。
备考2021年中考数学复习专题:函数_二次函数_二次函数的实际应用-几何问题,解答题专训及答案

个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M,N同时停止运动,问点M,N运动到何处时,△MNB面
积最大,试求出最大面积. 8、
(2017德州.中考模拟) 要用12米长的木条,做一个有一条横挡的矩形窗户(如图),怎样设计窗口的高和宽的长度,才
能使这个窗户透进的光线最多.
9、 (2017滨州.中考真卷) 如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y= ﹣x2+2x+1与y轴交于点C. (Ⅰ)求直线y=kx+b的函数解析式; (Ⅱ)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并 求d取最小值时点P的坐标; (Ⅲ)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.
(2)如图2,将抛物线C1的顶点沿射线DA的方向平移得抛物线C2 , 抛物线C2交y轴于C,顶点为E,若CE⊥AB,求 抛物线C2的解析式;
(3)如图3,将直线AB沿y轴正方向平移t(t>0)个单位得直线l,抛物线C1的顶点在直线AB上平移得抛物线C3 , 直 线l和抛物线C3相交于P、Q,求当t为何值时,PQ=3 ?
(1)
试求抛物线的解析式;
(2) 如图2,当动点P只在第一象限的抛物线上运动时,过点P作PF⊥BC于点F,试问△PFD的周长是否有最大值?如果有 ,请求出最大值;如果没有,请说明理由. (3) 当点P在抛物线上运动时,将△CPD沿直线CP翻折,点D的对应点为点Q,试问,四 边形CDPQ能否成为菱形?如果能,请求 此时点P的坐标;如果不能,请说明理由. 15、 (2012内江.中考真卷) 如图,已知点A(﹣1,0),B(4,0),点C在y轴的正半轴上,且∠ACB=90°,抛物线y=ax2+ bx+c经过A、B、C三点,其顶点为M.
2025年中考数学复习专题+ 二次函数的实际应用课件

本题主要考查商品利润的计算方法,把实际问题转化为二次
函数,列出二次函数解析式,根据题意分情况建立二次函数模型并利用
最值问题是解决问题的关键.
1.(2024·贵州第24题12分)某超市购入一批进价为10元/盒的糖果进行销售,
经市场调查发现:销售单价不低于进价时,日销售量y (单位:盒)与销售单
价x(单位:元)是一次函数关系,下表是y与x的几组对应值.
∴当x=25时,w有最大值为450,
∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元.
(3)设日销售利润为w元,根据题意,得
w=(x-10-m)·y=(x-10-m)(-2x+80)
=-2x2+(100+2m)x-800-80m,
100+2 50+
∴当x=-
=
2× −2
2
w有最大值为-2
问题:
Ⅰ)修建一个“”型栅栏,如图②,点P2,P3在抛物线AED上.设点P1的横坐标
为m(0<m≤6),求栅栏总长l与m之间的函数解析式和l的最大值;
Ⅱ)现修建一个总长为18 m的栅栏,有如图③所示的“
”型和“
”型两种
设计方案,请从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及
取最大值时点P1的横坐标的取值范围(点P1在点P4右侧).
【分层分析】用含x的代数式表示矩形的长、宽,根据矩形的面积公式列
方程求解即可.
解:Ⅰ)由题知EF=14-2x-(x-1)=(15-3x)m.
∵AB=3,∴EF≤3,即15-3x≤3,解得x≥4.
Ⅱ)根据题意,得x(15-3x)=12,
解得x1=4,x2=1(不符合题意,舍去).
答:此时DF的长为4 m.
2024年中考数学二轮复习专题《函数的实际应用》课件
∴抛物线的函数解析式为y=- (x-8)2+8=- x2+2x .
题型二 函数的实际应用 (2)探究隧道限高方案:为使车辆按素材2的要求安全通过,求该隧道限高 多少米?
解:设该隧道限高h米. 由题意得OA=16,AB=2,则OB=14, ∴当x=14时,y=- ×(14-8)2+8= , 此时,车辆顶部与隧道的最小空隙为 -h,
,
则小朱本次投掷实心球的成绩为(
)
C
A、7m
B、7.5m
C、8m. D、8.5m
题型二 函数的实际应用
类型一 构建函数关系解决实际问题 (2023.25、北部湾经济区6年4考:2022.23,2018~2020.24)
3. 近年来,广西草莓产业发展迅速,某商家以每盒20元的价格购进一批盒 装草莓,经调查发现,在一段时间内,草莓的日销售量y(盒)与每盒售价 x(元)的函数关系如图所示. (1)求y与x之间的函数解析式;
∵ - <0
∴当x=60时,y有最大值是1 200,
故
=20 .
答:当平行于墙的篱笆长为60米,垂直于墙的篱笆长为20米时,
花园面积最大,且最大面积为1 200平方米;
题型二 函数的实际应用 解:(2)设购买牡丹a 株,则购买芍药(1200×2-a )株,由题意得
25a+15×(1 200×2-a) ≤ 50 000, 解得a ≤ 1400 答:最多可以购买1 400株牡丹
题型二
函数的实际应用
课前热身
1、某同学最近5年内的学习费用 y (千元)与时间 x (年)的关系
如图所示,则可选择的函数模型是(
)
B
A.
B.
C.
中考数学总复习课件: 二轮专题复习 函数的应用 (共40张PPT)
月份n/月 成本y/(万元/件)
1 11
2 12
需求量x/(件/月)
120
100
b 【思路引导】设 y=a+x,将表中相关数据代入可求得 a,b, 600 根据 12=18-(6+ x ),可作出判断.
b 解:根据题意,设 y 与 x 满足的解析式为 y=a+x,
11=a+ b , 120 a=6, 600 由表中数据可得 解得 ∴y=6+ x , b b=600, 12=a+100,
600 600 由题意,若 12=18-(6+ x ),则 x =0, 600 ∵x>0,∴ x >0.∴一件产品的利润不可能为 12 万元.
(2)求 k,并推断是否存在某个月既无盈利也不亏损; 【思路引导】将 n=1,x=120 代入 x=2n2-2kn+9(k+3)可求得 k 的值, 600 先由 18=6+ x 求得 x=50,根据 50=2n2-26n+144 可判断.
(1)求该二次函数的解析式; (2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:
元/千克)最大?最大平均利润是多少?(注:平均利润=销售价-平均成本)
【思路引导】(1)将x=4,y=2和x=6,y=1分别代入y=ax2+bx+10,求 得a,b即可.(2)根据“平均利润=销售价-平均成本 ”列出函数解析式 , 配方成顶点式,利用二次函数的性质求解可得.
(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.
【思路引导】第m个月的利润W=x(18-y)=24(m2-13m+47),第(m+1) 个月的利润为W′=24[(m+1)2-13(m+1)+47]=24(m2-11m+35),分情况作
差结合m的范围,由一次函数性质可得.
备考2021年中考数学二轮复习:函数_一次函数_一次函数的实际应用
备考2021年中考数学二轮复习:函数_一次函数_一次函数的实际应用备考2021中考数学二轮复习:函数_一次函数_一次函数的实际应用,专项训练单选题:1、(2018路北.中考模拟) 甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟 h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A . 1B . 2C . 3D . 42、(2017长安.中考模拟) 某圆形零件的制作成本y(元)与它的面积成正比例,设半径为r(cm),当r=2cm时,y=20元,那么当制作成本为125元时,半径是()A . 5cmB . cmC . 10cmD . 25cm3、(2019松北.中考模拟) (2019·松北模拟) 甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x (h)之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有()A . 1个B . 2个C . 3个D . 4个4、(2017南岗.中考模拟) 甲、乙两车从同地沿同一路线去600km外的某地取货,甲比乙先出发,他们去时所走的路程S(k m)与时间t(h)之间的函数图象如图所示,则以下说法中正确的有()①甲比乙早出发8h;②相遇前,乙的速度是甲的速度的5倍;③相遇后甲提速了,乙降速了;④乙出发2h后追上甲;⑤甲比原计划(按初始速度行驶)晚到目的地4h.A . 2个B . 3个C . 4个D . 5个5、(2017平房.中考模拟) 随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A . 一次性购买数量不超过10本时,销售价格为20元/本B . a=520C . 一次性购买10本以上时,超过10本的那部分书的价格打八折D . 一次性购买20本比分两次购买且每次购买10本少花80元6、(2017滨江.中考模拟) 某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()A . 18(42﹣x)=12xB . 2×18(42﹣x)=12xC . 18(42﹣x)=2×12xD . 18(21﹣x)=12x7、(2016十堰.中考模拟) 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A . 甲B . 乙C . 丙D . 丁8、(2019柳州.中考真卷) 己知A,B两地相距3千米,小黄从A地到B地,平均速度为4千米/小时,若用x表示行走的时间(小时),y表示余下的路程(千米),则y关于x的函数解析式是( )A . y=4x(x≥0)B . y=4x-3(x≥ )C . y=3-4x(x≥0)D . y=3-4x(0≤x≤ )9、(2017五华.中考模拟) 如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线A B组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A . 6B . 8C . 9D . 1210、(2020石家庄.中考模拟) 如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的,分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是()A . 甲的速度为20km/hB . 甲和乙同时出发C . 甲出发1.4h时与乙相遇D . 乙出发3.5h时到达A地填空题:11、(2018阜新.中考真卷) 甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是________km/h.12、(2012淮安.中考真卷) 如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差________ km/h.13、(2016滨湖.中考模拟) 甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有________.(在横线上填写正确的序号)14、(2018衢州.中考真卷) 星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y (千米)与时间t (分钟)的关系如图所示,则上午8:45小明离家的距离是________千米。
函数的实际应用题是中考的重难点,请查看这份宝贵的学习资料.doc
函数的实际应用题是中考的重难点,请查看
这份宝贵的学习资料
中考数学函数专题突破一、重点、难点:
重点:一次函数,反比例函数,二次函数
难点:函数的实际应用题是中考的重点又是难点。
二、重要考点:
以生活实际为背景的考题.题目提供了一个与现实生活密切联系的问题情境,以考查学生对有关知识的理解和应用所学知识解决问题的能力,同时为学生构思留下了空间.通常是一道代数几何综合题,把几何与函数的知识有机的结合在一起,能很好地考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题复习(十) 函数的实际应用题1.(2016·合肥蜀山区二模)为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭用水量划分为两个阶梯,一、二级阶梯用水的单价之比等于1∶2.如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m 3)之间的函数关系.其中射线AB 表示第二阶梯时y 与x 之间的函数关系. (1)写出点B 的实际意义;(2)求射线AB 所在直线的表达式.解:(1)图中B 点的实际意义表示当用水量为25 m 3时,所交水费为70元.(2)设第一阶梯用水的单价为m 元/m 3,则第二阶梯用水单价为2m 元/m 3,设A(a ,30),则⎩⎪⎨⎪⎧am =30,am +2m (25-a )=70.解得⎩⎪⎨⎪⎧a =15,m =2. ∴A(15,30),B(25,70).设线段AB 所在直线的表达式为y =kx +b ,则⎩⎪⎨⎪⎧15k +b =30,25k +b =70.解得⎩⎪⎨⎪⎧k =4,b =-30.∴线段AB 所在直线的表达式为y =4x -30.2.(2016·芜湖南陵县一模)某电子商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y =-2x +100.(1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式(利润=售价-制造成本);(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少? 解:(1)z =(x -18)y =(x -18)(-2x +100)=-2x 2+136x -1 800.∴z 与x 之间的函数解析式为z =-2x 2+136x -1 800(18≤x≤50).(2)由z =350,得350=-2x 2+136x -1 800, 解得x 1=25,x 2=43.将z =-2x 2+136x -1 800配方,得z =-2(x -34)2+512(18≤x≤50). ∴当x =34时,z 最大=512.答:销售单价定为25元或43元时,厂商每月能获得350万元的利润;当销售单价为34元时,每月能获得最大利润,最大利润是512万元.3.(2016·合肥十校联考)某企业生产一种节能产品,投放市场供不应求.若该企业每月的产量保持在一定的范围,每套产品的售价不低于120万元.已知这种产品的月产量x(套)与每套的售价y 1(万元)之间满足关系式y 1=190—2x ,月产量x(套)与生产总成本y 2(万元)存在如图所示的函数关系. (1)直接写出y 2与x 之间的函数关系式; (2)求月产量x 的取值范围;(3)当月产量x(套)为多少时,这种产品的利润W(万元)最大?最大利润是多少?解:(1)y 2=30x +500.(2)由题意,得190-2x≥120,解得x≤35. 又x >0,∴月产量x 的范围是0<x≤35 . (3)由题意,得W =(190-2x)x -(30x +500)=-2x 2+160x -500=-2(x -40)2+2 700.∵-2<0,且对称轴为直线x =40, ∴当0<x≤35时,W 随x 的增大而增大. ∴当x =35时,W 有最大值,最大值是2 650.故当月产量为35套时,这种产品的利润最大,最大利润是2 650万元. 4.(2016·晋江模拟)如图,把一张长15 cm ,宽12 cm 的矩形硬纸板的四个角各剪去一个同样大小的小正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).设剪去的小正方形的边长为x cm . (1)请用含x 的代数式表示长方体盒子的底面积;(2)当剪去的小正方形的边长为多少时,其底面积130 cm 2?(3)试判断折合而成的长方体盒子的侧面积是否有最大值?若有,试求出最大值和此时剪去的小正方形的边长;若没有,试说明理由.解:(1)(15-2x)(12-2x)cm 2.(2)依题意,得(15-2x)(12-2x)=130,即2x 2-27x +25=0, 解得x 1=1,x 2=252(不合题意,舍去).答:当剪去的小正方形的边长为1 cm 时,其底面积是130 cm 2.(3)设长方体盒子的侧面积S ,则S =2[(15-2x)x +(12-2x)x],即S =54x -8x 2=-8⎝⎛⎭⎪⎫x -2782+7298(0<x<6).当x =278时,S 最大值=7298.即当剪去的小正方形的边长为278 cm 时,长方体盒子的侧面积有最大值7298cm 2.5.(2016·安徽十校联考四模)某科技开发公司研制出一种新型产品,每件产品的成本为2 400元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3 000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2 600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2 600元?(2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y(元)与x(件)之间的函数关系式,并写出自变量x 的取值范围;(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元(其他销售条件不变)? 解:(1)设件数为x ,根据题意,得 3 000-10(x -10)=2 600. 解得x =50.答:商家一次购买这种产品50件时,销售单价恰好为2 600元. (2)由题意,得3 000-10(x -10)≥2 600.解得x≤50. 当0≤x≤10时,y =(3 000-2 400)x =600x ;当10<x≤50时,y =[3 000-2 400-10(x -10)]x =-10x 2+700x ; 当x >50时,y =(2 600-2 400)x =200x.(3)由y =-10x 2+700x 可知抛物线开口向下.∴当x =-7002×(-10)=35时,利润y 有最大值,此时销售单价为3 000-10×(35-10)=2 750(元).答:公司应将最低销售单价调整为2 750元.6.(2016·临朐县一模)家用电灭蚊器的发热部分使用了PTC 发热材料,它的电阻R(k Ω)随温度t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10 ℃上升到30 ℃的过程中,电阻与温度成反比例关系,且在温度达到30 ℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1 ℃,电阻增加415k Ω.(1)求当10≤t≤30时,R 和t 之间的关系式;(2)求温度在30 ℃时电阻R 的值;并求出t≥30时,R 和t 之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6 k Ω?解:(1)∵温度在由室温10 ℃上升到30 ℃的过程中,电阻与温度成反比例关系, ∴设R 和t 之间的关系式为R =kt .将(10,6)代入上式中得6=k10,解得k =60. ∴当10≤t≤30时,R =60t.(2)将t =30代入上式中,得R =6030,解得R =2.∴温度在30 ℃时,电阻R =2 k Ω.∵在温度达到30 ℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1 ℃,电阻增加415 k Ω,∴当t≥30时,R =2+415(t -30),即R =415t -6.(3)把R =6代入R =415t -6,得t =45.∴温度在10~45 ℃时,电阻不超过6 k Ω.7.(2016·合肥高新区一模)音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化,某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18 m ,音乐变化时,抛物线的顶点在直线y =kx 上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y =ax 2+bx.(1)若已知k =1,且喷出的抛物线水线最大高度达3 m ,求此时a ,b 的值;(2)若k =1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少m? (3)若k =2,且要求喷出的抛物线水线不能到岸边,求a 的取值范围.解:(1)当k =1时,y =x.由题意,得抛物线的顶点坐标为(3,3).∴设抛物线的解析式为y =a(x -3)2+3. 又∵抛物线过原点(0,0).∴a ×(-3)2+3=0, 解得a =-13.∴y =-13(x -3)2+3,即y =-13x 2+2x.∴a =-13,b =2.(2)∵k=1,喷出的水恰好达到岸边,出水口离岸边18 m ,抛物线的顶点在直线y =kx 上, ∴此时抛物线的对称轴为x =9,y =x =9,即顶点坐标为(9,9). 故此时喷出的抛物线水线最大高度是9 m .(3)∵y=ax 2+bx 的顶点为⎝ ⎛⎭⎪⎫-b2a,-b 24a ,抛物线的顶点在直线y =2x 上,∴-b 2a ·2=-b24a,解得b =4.∵喷出的抛物线水线不能到岸边,出水口离岸边18 m , ∴-b 2a <9,即-42a <9.又∵a<0,∴a <-29.8.(2016·芜湖繁昌县一模)某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x 个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y =a(x -h)2+k ,二次函数y =a(x -h)2+k 的一部分图象如图所示,点A 为抛物线的顶点,且点A ,B ,C 的横坐标分别为4,10,12,点A ,B 的纵坐标分别为-16,20.(1)试确定函数关系式y =a(x -h)2+k ;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最大?最大利润是多少万元?解:(1)根据题意可设y =a(x -4)2-16.当x =10时,y =20.∴a(10-4)2-16=20,解得a =1.∴所求函数关系式为y =(x -4)2-16.(2)当x =9时,y =(9-4)2-16=9,∴前9个月公司累计获得的利润为9万元. 当x =10时,y =20,而20-9=11.答:10月份一个月内所获得的利润为11万元.(3)设在前12个月中,第n 个月该公司一个月内所获得的利润为s(万元),则有s =(n -4)2-16-[(n -1-4)2-16]=2n -9. ∵s 是关于n 的一次函数,且2>0, ∴s 随着n 的增大而增大.又∵1≤n≤12,∴当n =12时,s 最大=15.答:12月份该公司一个月内所获得的利润最大,最大利润是15万元.9.(2016·安庆二模)某玩具店试销售一种进价为20元的新型玩具,根据物价部门规定:该玩具售价不得超过90元. .(1)运用所学过的函数知识,试判断y 与x 之间的函数关系,并求y 与x 的函数关系式; (2)该玩具店若想每天获得2 400元的利润,应将售价定为多少元?(3)这种新型玩具的售价定为多少元时,玩具店每天能够获得的利润w(元)最大?此时的最大利润为多少元? 解:(1)建立平面直角坐标系,并将表格中的数据看成点的坐标,并在坐标系中描出各点,根据点的排列趋势,可判断y 与x 之间满足一次函数关系,故设y =kx +b(k≠0),分别将(30,100)和(40,90)代入,可得⎩⎪⎨⎪⎧30k +b =100,40k +b =90.解得⎩⎪⎨⎪⎧k =-1,b =130.∴y 与x 的函数关系式为y =-x +130 .(2)根据题意,得(x -20)(-x +130)=2 400. 解得x 1=50,x 2=100. ∵x 2=100>90,故x =50. 答:应将售价定为50元.(3)根据题意,得w =(x -20)(-x +130)=-x 2+150x -2 600=-(x -75)2+3 025. ∵a =-1<0,∴当x =75时,w 最大=3 025.答:当售价定为75元时,能够获得最大利润为3 025元.10.(2016·阜阳二模)某市决定对欲引进种植的A ,B 两种绿色蔬果实行政府补贴,分析得到以下两条信息: 信息一:对于A 种蔬果,所获收益y A (万元)与补贴金额x(万元)之间满足正比例函数关系:y A =kx ;信息二:对于B 种蔬果,所获收益y B (万元)与补贴金额x(万元)之间满足二次函数关系:y B =ax 2+bx.其中,y A ,y B (万元)与补贴金额x(万元)的部分对应值如上表所示:(1)填空:y A =0.6x ;y B =-0.2x 2+2.6x ;(2)如果政府对两种蔬果种植补贴总额共15万元,设总收益为W(万元),对种植B 种蔬果的补贴金额为x(万元),试求出W 与x 之间的函数关系式,并求出W 的最大值;(3)如果政府对两种蔬果种植补贴的总额在10~16万元(含10,16万元),那么补贴总额是多少万元时才能获得最大收益率?(收益率=收益(万元)补贴金额(万元)×100%)解:(2)W =y A +y B=0.6(15-x)+(-0.2x 2+2.6x)=-0.2x 2+2x +9.∵-0.2<0,∴当x =-22×(-0.2)=5时,W 最大=14.(3)设政府对两种蔬果种植补贴总额为n 万元,其中对于种植B 种蔬果的补贴金额为x 万元,总收益为W 万元.则W =y A +y B =0.6(n -x)+(-0.2x 2+2.6x)=-0.2x 2+2x +0.6n=-0.2(x -5)2+5+0.6n. ∴x =5时,W 最大=5+0.6n∴收益率为5+0.6n n =5n +0.6,显然n 越小,收益率越大.∴当补贴总额为10万元时,能获得最大收益率.。