线性代数考研公式大全
2024考研数学常必背公式汇总

2024考研数学常必背公式汇总在准备2024考研数学的过程中,掌握一些常用的公式是非常重要的。
这些公式不仅可以帮助我们更快地解题,还能提高我们的答题准确性。
下面是2024考研数学一、数学二、数学三需要背诵的常用公式的汇总:一、基本数学公式:1.平方差公式:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab+ b^22.二次方程的求根公式:若ax^2+bx+c=0(a≠0),则x = (-b ± √(b^2-4ac))/2a3.数列的通项公式:递推公式:a(n+1)=a(n)+d通项公式:a(n)=a(1)+(n-1)d二、高等数学公式:1.常用三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ2.常用反三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ3.常用指数函数公式:a^m*a^n=a^(m+n)(a^m)^n = a^(mn)a^(-m)=1/a^m4.常用对数函数公式:log_a(m * n) = log_a(m) + log_a(n)log_a(m^n) = n * log_a(m)log_a(m/n) = log_a(m) - log_a(n)log_a(1) = 05.常用复数公式:i²=-1复数的共轭:若z = a + bi,则z的共轭为a - bi三、线性代数公式:1.行列式的加减法:A±B,=,A,±,B2.行列式的乘法:A*B,=,A,*,B3.矩阵的逆:若,A,≠0,则A存在逆矩阵A^(-1),且AA^(-1)=A^(-1)A=I4.特征值与特征向量:设A是n阶矩阵,若存在数λ和非零向量x,使得Ax=λx,则λ称为矩阵A的特征值,x称为λ对应的特征向量5.向量的内积:a ·b = ,a,,b,cosθ其中,a、b分别为向量,θ为a、b之间的夹角四、概率与统计公式:1.事件的概率公式:对于一个随机事件A,其概率满足0≤P(A)≤12.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)3.乘法公式:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)4.全概率公式:P(A)=P(An)P(A,An)+P(A2)P(A,A2)+...+P(Am)P(A,Am)其中,A1,A2,...,Am为一组互斥且全体之并为样本空间Ω的事件5.贝叶斯公式:P(A,B)=P(AnB)/P(B)=P(An)P(B,An)/[P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)]其中,A1,A2,...,An与前述全概率公式的条件相同。
考研数学(高等数学-线性代数-概率论)公式

目录一.高等数学公式1导数公式 12.基本积分表 13..三角函数的有理式积分 14.一些初等函数. 25.两个重要极限 26.三角函数公式: 27.高阶导数公式——莱布尼兹(Leibniz)公式: 38. 中值定理与导数应用: 39.曲率 3910.定积分的近似计算 411.定积分应用相关公式 412.空间解析几何和向量代数 413.多元函数微分法及应用514.微分法在几何上的应用: 615.方向导数与梯度 616.多元函数的极值及其求法 617.重积分及其应用 718.柱面坐标和球面坐标 719.曲线积分 720.曲面积分 821.高斯公式 922.斯托克斯公式——曲线积分与曲面积分的关系 923.常数项级数 924.级数审敛法 3225.绝对收敛与条件收敛 1026.幂级数 1027.函数展开成幂级数 1128.一些函数展开成幂级数 1130.三角级数 1231.傅立叶级数 1232微分方程的相关概念. 132二.概率公式整理1.随机事件及其概率 142.概率的定义及其计算 143.条件概率 154随机变量及其分布 155.离散型随机变量 156.连续性随机变量 167.多维性随机变量及其分布 178.连续型二维随机变量 179.二维随机变量的条件分布 1810.随机变量的数字特征 18三.线性代数部分1.基本运算 202.有关乘法的基本运算 213.可逆矩阵的性质 224.伴随矩阵的基本性质 235.伴随矩阵的其他性质 236.线性表示 247.线性相关 248.各性质的逆否形式 259.极大无关组 2610.矩阵的秩的简单性质 2611.矩阵在运算中秩的变化 2712.解的性质 2713.解的情况判断 2814.特征值特征向量 2915.特征值的性质 2916.特征值的应用 2917.正定二次型与正定矩阵性质与判别 3018.基本概念 3120.范德蒙行列式 3221.乘机矩阵的列向量与行向量 3322.初等矩阵及其在乘法中的作用 3423.乘法的分块法则 3424矩阵方程与可逆矩阵 3525可逆矩阵及其逆矩阵 3526.伴随矩阵 3527.线性表示 3528.线性相交性 3629..极大无关组和秩 3630.有相同线性关系的向量组 3631.矩阵的秩 3732.方程组的表达形式 3833.基础解系和通解 3834.通解 3835.特征向量与特征值 3936.特征向量与特征值计算 3937.n阶段矩阵的相似关系 3938.n阶段矩阵的对用化 3939判别法则 4040.二次型(实二次型) 4041.可逆线性变量替换 4142.实对称矩阵的合同 4143.二次型的标准化和规范化 4144.正二次型与正定矩阵 42附录一内积,正交矩阵,实对称矩阵的对角化1.向量的内积 452.正交矩阵 463.施密特正交化方法 474.实对称矩阵的对角化 47附录二向量空间1.n维向量空间及其子空间 492.基,维数,坐标 493.过渡矩阵,坐标变化公式 504.规范正交积..................................................................... .. (51)一.高等数学公式1.导数公式:2.基本积分表:3.三角函数的有理式积分:4.一些初等函数:5. 两个重要极限:6.三角函数公式:·诱导公式:函数sin cos tg ctg角A-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α -sinα-cosαtgαctgα270°-α -cosα-sinαctgαtgα270°+α -cosαsinα-ctgα-tgα360°-α -sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:7.高阶导数公式——莱布尼兹(Leibniz)公式:8.中值定理与导数应用:9.曲率:10.定积分的近似计算:11.定积分应用相关公式:12.空间解析几何和向量代数:13.多元函数微分法及应用14.微分法在几何上的应用:15.方向导数与梯度:16.多元函数的极值及其求法:17.重积分及其应用:18.柱面坐标和球面坐标:19.曲线积分:20.:曲面积分:21.高斯公式:22.斯托克斯公式——曲线积分与曲面积分的关系:23.常数项级数:24.级数审敛法:25.绝对收敛与条件收敛:26.幂级数:27.函数展开成幂级数:28.一些函数展开成幂级数:29.欧拉公式:30.三角级数:31.傅立叶级数:周期为的周期函数的傅立叶级数:32.微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程二.概率公式整理1.随机事件及其概率吸收律:反演律:2.概率的定义及其计算若对任意两个事件A, B, 有加法公式:对任意两个事件A, B, 有3.条件概率乘法公式全概率公式Bayes公式4.随机变量及其分布分布函数计算5.离散型随机变量(1) 0 – 1 分布(2) 二项分布若P ( A ) = p*Possion定理有(3) Poisson 分布6.连续型随机变量(1) 均匀分布(2) 指数分布(3) 正态分布N ( , 2 )*N (0,1) —标准正态分布7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数边缘分布函数与边缘密度函数8.连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )(2)二维正态分布9.二维随机变量的条件分布10.随机变量的数字特征数学期望随机变量函数的数学期望X 的k阶原点矩X 的k阶绝对原点矩X 的k阶中心矩X 的方差X ,Y 的k + l阶混合原点矩X ,Y 的k + l阶混合中心矩X ,Y 的二阶混合原点矩X ,Y 的二阶混合中心矩X ,Y 的协方差X ,Y 的相关系数X 的方差D (X ) =E ((X - E(X))2)协方差相关系数三.线性代数部分梳理:条理化,给出一个系统的,有内在有机结构的理论体系。
考研数学线代定理公式汇总

考研数学线代定理公式汇总1.行列式定理:(1) 行列式的值不变性: 对于可逆矩阵A,有det(AB) =det(A)det(B)。
(2)若存在行(列)线性相关,则行列式为0。
(3)拉普拉斯定理:对于n阶行列式,可以通过余子式展开得到。
2.线性方程组定理:(1)线性方程组存在唯一解的充要条件是系数矩阵的秩等于方程组的未知数个数,并且扩展矩阵的秩等于系数矩阵的秩。
(2)齐次线性方程组存在非零解的充要条件是系数矩阵的秩小于方程组的未知数个数。
(3)利用矩阵的逆可以求解非齐次线性方程组。
3.矩阵定理:(1)矩阵的秩等于其非零特征值的个数。
(2)若矩阵A可对角化,则A与其相似矩阵具有相同的特征值。
(3)奇异值分解定理:对于任意矩阵A,都可以分解成奇异值分解形式:A=UΣV^T,其中U和V是正交矩阵,Σ是对角矩阵。
4.向量空间定理:(1)向量组的线性相关性可以通过列向量组的秩判断,如果秩小于向量个数,则线性相关。
(2)向量组的秩等于向量组的极大线性无关组的向量个数。
(3) rank(A^T) = rank(A),其中A是矩阵。
(4)若A和B是可逆矩阵,则(A^T)^-1=(A^-1)^T。
5.特征值与特征向量定理:(1)特征值方程的根为矩阵的特征值。
(2)若特征值λ是矩阵A的特征值,对应的特征向量组成的集合是由矩阵A-λI的零空间生成的。
(3)矩阵A相似于对角矩阵的充要条件是A有n个线性无关的特征向量。
以上是一些常见的数学线性代数定理和公式的汇总,希望对您的学习有所帮助。
当然,线性代数的内容还是比较广泛的,还有很多其他的定理和公式,如矩阵行列式的性质、特征值与特征向量的性质、矩阵的幂等性等。
如果您对这个话题有更深入的了解需求,可以提出具体的问题,我将尽力回答。
考研数学线性代数常用公式

考研数学线性代数常用公式数学考研考前必背常考公式集锦。
希望对考生在暑期的复习中有所帮助。
本文内容为线性代数的常考公式汇总。
1、行列式的展开定理行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之和,即A= a i1 A i1+ a i2 A i2+...+ a in A in( i =1, 2,..., n)= a1j A1j+ a 2j A2j+...+ a nj A nj( j =1, 2,..., n)推论:行列式的一行(或列)所有元素与另一行(或列)对应元素的代数余子式的乘积之和为零,即n∑a ij A kj= a i1 A k1+ a i2 A k2+...+ a in A kn=0,(i≠k )j=1n∑a ji A jk= a1i A1k+ a2i A2k+...+ a ni A nk=0(i≠k )j=12、设 A =(a ij)m⨯n,B =(b ij)n⨯k(注意 A 的列数和 B 的行数相等),定义矩阵nC =(c ij)m⨯k,其中c ij=a i1b1j+a i2b2j+...+a in b nj=∑a ik b kj,称为矩阵 A 与矩阵 B 的k =1的乘积,记作 C = AB .如果矩阵A为方阵,则定义An=A⋅A...A为矩阵 A 的 n 次幂.n个A不成立的运算法则AB≠BAAB=O≠>A =O或B=O3、设 A 为n阶方阵,A*为它的伴随矩阵则有 AA *= A * A = A E .设 A 为n阶方阵,那么当 AB = E 或 BA = E 时,有 B -1 = A4、对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种:第一种:交换单位矩阵的第 i 行和第 j 行得到的初等矩阵记作E ij,该矩阵也⎛ 0 0 1 ⎫ 可以看做交换单位矩阵的第 i 列和第 j 列得到的.如 E 1,3 0 1 0 ⎪= ⎪ .1 0 0 ⎪⎝ ⎭第二种:将一个非零数 k 乘到单位矩阵的第 i 行得到的初等矩阵记作 E i ( k ) ;该矩 阵 也 可 以 看 做 将 单 位 矩 阵 第 i 列 乘 以 非 零 数 k 得 到 的 . 如⎛ 1 0 0 ⎫E 2 (-5) 0 -5 0 ⎪ = ⎪ .0 0 1 ⎪⎝ ⎭第三种:将单位矩阵的第 i 行的 k 倍加到第 j 行上得到的初等矩阵记作 E ij ( k ) ;该矩阵也可以看做将单位矩阵的第 j 列的 k 倍加到第 i 列上得到的.如⎛ 1 0 0 ⎫ E 3,2 (-2) 0 1 -2 ⎪= ⎪ .0 0 1 ⎪⎝ ⎭注:1)初等矩阵都只能是单位矩阵一次初等变换之后得到的.2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵 E ij ( k ) 看做列变换是将单位矩阵第 j 列的k 倍加到第 i 列,这一点考生比较容易犯错.5、矩阵 A 最高阶非零子式的阶数称之为矩阵 A 的秩,记为 r ( A ) .1) r ( A ) = r ( A T ) = r ( k A ), k ≠ 0 ;2) A ≠ O ⇔ r (A ) ≥ 1;3) r ( A ) = 1 ⇔ A ≠ O 且 A 各行元素成比例;4)设 A 为 n 阶矩阵,则 r ( A ) = n ⇔ A ≠ 0 . 6、线性表出设 α1 , α 2 ,...,αm 是 m 个 n 维 向 量 , k 1 , k 2 ,...k m 是 m 个 常 数 , 则 称k 1α1 + k 2α 2 + ... + k m αm 为向量组α1 , α 2 ,...,αm 的一个线性组合.设 α1,α2 ,...,αm 是 m 个 n 维向量, β 是一个 n 维向量,如果 β 为向量组α1 , α2 ,...,αm的一个线性组合,则称向量β可以由向量组α1 , α2 ,...,αm线性表出.线性相关设α1 , α2 ,...,αm是m个n维向量,如果存在不全为零的实数k1 , k2 ,..., k m,使得k1α1+ k 2α2+...+ k mαm=0,则称向量组α1,α2,...,αm线性相关.如果向量组α1 , α2 ,...,αm不是线性相关的,则称该向量组线性无关.与线性表出与线性相关性有关的基本定理定理1:向量组α1 , α2 ,...αm线性相关当且仅当α1 , α2 ,...αm中至少有一个是其余m-1 个向量的线性组合.定理2:若向量组α1 , α2 ,...αm线性相关,则向量组α1 , α2 ,..., αm ,αm+1也线性相关.注:本定理也可以概括为“部分相关⇒整体相关”或等价地“整体无关⇒部分无关”.定理3:若向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm的延伸组⎛α⎫ ⎛α⎫⎛α⎫也线性无关.1⎪ , 2⎪,..., m⎪⎝β1⎭ ⎝β2 ⎭⎝βm ⎭定理4:已知向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm , β线性相关当且仅当β可以由向量组α1,α2 ,...αm线性表出.定理 5:阶梯型向量组线性无关.定理6:若向量组α1 , α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且α1 , α2 ,...,αs线性无关,则有s≤t.注:本定理在理论上有很重要的意义,是讨论秩和极大线性无关组的基础.定理内容也可以等价的描述为:若向量组α1 ,α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且 s > t ,则α1,α2,...,αs线性相关.对于这种描述方式,我们可以把定理内容简单地记为:“多数被少数线性表出,则必相关.”定理7:n +1个n维向量必然线性相关.7、线性方程组解的存在性设 A =(α1,α2,...,αn),其中α1,α2,...,αn为 A 的列向量,则线性方程组 Ax = b 有解⇔向量 b 能由向量组α1,α2,...,αn线性表出;⇔r (α1,α2,...,αn)= r (α1,α2,...,αn,b );⇔r ( A )= r ( A, b)线性方程组解的唯一性当线性方程组 Ax = b 有解时, Ax = b 的解不唯一(有无穷多解)⇔线性方程组的导出组 Ax =0有非零解;⇔向量组α1 , α2 ,...,αn线性相关;⇔r (α1,α2,...,αn)< n ;⇔r ( A )< n .注:1)注意该定理成立的前提条件是线性方程组有解;也就是说,仅告知r (A )< n 是不能得到 Ax = b 有无穷多解的,也有可能无解.2)定理 2是按照 Ax = b 有无穷多解的等价条件来总结的,请考生据此自行写出 Ax = b 有唯一解的条件.8、特征值和特征向量:设 A 为 n 阶矩阵,λ是一个数,若存在一个 n 维的非零列向量α使得关系式 Aα = λα成立.则称λ是矩阵 A 的特征值,α是属于特征值λ的特征向量.称为矩阵 A 的特征多项式.设 E 为 n 阶单位矩阵,则行列式λE - A注:1)要注意:特征向量必须是非零向量;2)等式 Aα = λα也可以写成(A - λE)α =0,因此α是齐次线性方程组( A - λE ) x =0的解,由于α ≠0,可知( A - λE ) x =0是有非零解的,故A - λE =0;反之,若 A - λE =0,那么齐次线性方程组( A - λE ) x =0有非零解,可知存在α ≠ 0 使得(A-λE)α = 0,也即Aα = λα.由上述讨论过程可知:λ是矩阵 A 的特征值的充要条件是 A - λE =0(或λE- A =0),而特征值λ的特征向量都是齐次线性方程组( A - λE ) x =0的非零 解.3)由于λE - A 是 n 次多项式,可知 A - λE =0有 n 个根(包括虚根),也即 n 阶矩阵有 n 个特征值;任一特征值都有无穷多特征向量9、矩阵的相似对角化定理1: n 阶矩阵 A 可相似对角化的充要条件是矩阵 A 存在 n 个线性无关的特征向量.同时,在等式 A = P ΛP-1中,对角矩阵Λ的元素为 A 的 n 个特征值,可逆矩阵 P 的列向量为矩阵 A 的 n 个线性无关的特征向量,并且 P 中特征向量的排列顺序与Λ中特征值的排列顺序一致.推论:设矩阵 A 有 n 个互不相同的特征值,则矩阵 A 可相似对角化.定理2: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,λ线性无关的特征向量个数都等于λ的重数.推论: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,n - r (λE - A)=λ的重数.10、设 A 为实对称矩阵( A T= A ),则关于 A 的特征值与特征向量,我们有如下的结论:定理1: A 的所有特征值均为实数,且 A 的的所有特征向量均为实数.定理2: A 属于不同特征值的特征向量必正交.定理3:A 一定有 n 个线性无关的特征向量,即 A 可以对角化.且存在正交矩阵 Q ,使得 Q -1 AQ = Q T AQ = diag (λ1,λ2,...,λn),其中λ1,λ2,...,λn为矩阵 A 的特征值.我们称实对称矩阵可以正交相似于对角矩阵.n n11、如果二次型∑∑a i j x i x j中,只含有平方项,所有混合项 x i x j(i ≠ j)的系i=1j =1数全为零,也即形如 d1 x12+ d 2 x22+...+ d n x n2,则称该二次型为标准形。
(整理)考研必备考研数学公式(高数,线性代数)全收录

高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-co tαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
考研数学线代定理公式总结

考研数学线代定理公式总结2概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确(),nT A r A n A A Ax x Ax A Ax A A A E οοοββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或○注:全体n 维实向量构成的集合nR 叫做n 维向量空间.()A r A n A A A Ax A ολ<=⇔==不可逆 0的列(行)向量线性相关0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量○注()()a b r aE bA n aE bA aE bA x οολ+<⎧⎪+=⇔+=⎨⎪⎩有非零解=-3⎫⎪≅⎪−−−→⎬⎪⎪⎭具有向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同()√ 关于12,,,ne e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量87p 教材;②12,,,ne e e ⋅⋅⋅线性无关;③12,,,1ne e e⋅⋅⋅=;④tr =E n ;⑤任意一个n 维向量都可以用12,,,ne e e ⋅⋅⋅线性表示.1212121112121222()1212()n nnn n j j j nj j nj j j j n n nna a a a a a Da a a a a a τ==-∑1√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和4等于零.②若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a O a O ---*==-1 (即:所有取自不同行不同列的n 个元素的乘积的代数和) ⑤范德蒙德行列式:()1222212111112n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭称为m n ⨯矩阵.记作:()ij m nA a ⨯=或m nA ⨯5()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ijA 为A 中各个元素的代数余子式.√ 逆矩阵的求法: ① 1A AA*-=○注:1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号②1()()A E EA -−−−−→初等行变换③1231111213a a a a a a -⎛⎫⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 方阵的幂的性质:mn m nA A A += ()()m nmnAA =√ 设,,m nn s AB ⨯⨯A的列向量为12,,,nααα⋅⋅⋅,B 的列向量为12,,,sβββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i iA c β= ,(,,)i s =1,2⇔iβ为iAx c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅=⇔12,,,sc c c 可由12,,,nααα⋅⋅⋅线性表示.即:C 的列向量能由A的列向量线性表示,B 为系数矩阵.6同理:C 的行向量能由B 的行向量线性表示,TA 为系数矩阵.即:1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔111122*********22211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩√ 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. √ 分块矩阵的转置矩阵:TTT T T A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A O A O CB B CA B ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122n n n A A A ⎛⎫=⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭*(1)(1)mn mn A A B BB A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)7A B EX −−−−→初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材.⑥ 向量组12,,,nααα⋅⋅⋅中任一向量iα(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,nααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示.向量组12,,,nααα⋅⋅⋅线性无关⇔向量组中每一个向量iα都不能由其余n -1个向量线性表示.⑧ m 维列向量组12,,,nααα⋅⋅⋅线性相关()r A n ⇔<;m 维列向量组12,,,nααα⋅⋅⋅线性无关()r A n ⇔=.⑨ 若12,,,nααα⋅⋅⋅线性无关,而12,,,,nαααβ⋅⋅⋅线性相关,则β可由12,,,nααα⋅⋅⋅线性表示,且表示法唯一.⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行8的个数.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0⑪ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系; 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r.记作()r A r =向量组12,,,nααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)nr αααA 经过有限次初等变换化为B . 记作:A B =912,,,nααα⋅⋅⋅和12,,,nβββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n nαααβββ⋅⋅⋅=⋅⋅⋅⑫ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),,,r A r B A B A B =≠>为同型矩阵作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)nnr r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)nnr αααβββ⋅⋅⋅⋅⋅⋅⇒矩阵A 与B 等价.⑬ 向量组12,,,sβββ⋅⋅⋅可由向量组12,,,nααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)nr ααα⋅⋅⋅.⑭ 向量组12,,,sβββ⋅⋅⋅可由向量组12,,,nααα⋅⋅⋅线性表示,且s n >,则12,,,sβββ⋅⋅⋅线性相关. 向量组12,,,sβββ⋅⋅⋅线性无关,且可由12,,,nααα⋅⋅⋅线性表示,则s ≤n .⑮ 向量组12,,,sβββ⋅⋅⋅可由向量组12,,,nααα⋅⋅⋅线性表示,且12(,,,)sr βββ⋅⋅⋅12(,,,)nr ααα=⋅⋅⋅,则两向量组等价;p教材94,例10⑯ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑰ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑱ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑲ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关;10若()r A n =,A 的列向量线性无关,即:12,,,nααα⋅⋅⋅线性无关.√ 矩阵的秩的性质: ①()A O r A ≠⇔若≥1()0A O r A =⇔=若 0≤()m n r A ⨯≤min(,)m n②()()()TTr A r A r A A == p 教材101,例15③()()r kA r A k =≠ 若0 ④()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB ≤{}min (),()r A r B⑥()()()()A r AB r B B r AB r A ⇒=⇒=若可逆若可逆 即:可逆矩阵不影响矩阵的秩.⑦若()()()m n Ax r AB r B r A n AB O B OA AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()rrEO E O r A r A A OO OO ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型.11⑨()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70⑩()()A O O A r r A r B OB B O ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭()()AC r r A r B OB ⎛⎫≠+⎪⎝⎭121212,,,0,,,()(),,,A n n A n Ax A n Ax Ax r A r A Ax A n βαααβαααβββααα⇔=−−−−−→=<⇔⇒⇔=⇔=⇔=⇔=−−−−−→≠⇒=⇔⇒当为方阵时当为方阵时有无穷多解0 表示法不唯一线性相关有非零解 可由线性表示有解有唯一组解0克莱姆法则表示法唯一 线127()(),,,()()()1()n Ax r A r A Ax r A r A r A r A οββαααβββ⎧⎪⎪⎪⎪⎨⎪⎪⎪⇔=⎪⎩⎧⇔≠⎪⇔=⇔<⎨⎪⇔+=⎩教材72讲义8性无关只有零解 不可由线性表示无解○注:Ax Ax ββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解Ax β=1122n n x x x αααβ+++=121112111212222212,,n n m m mn n m a a a x b a a a x bA x a a a x b β⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12,,2,,j jj mj j nαααα⎛⎫⎪ ⎪== ⎪ ⎪ ⎪⎝⎭11212(,,,)n n x xx αααβ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =⇒()()r A r A β=⇒Ax β=一定有解,当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β和的上限. √ 判断12,,,sηηη是Ax ο=的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,sηηη都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数.√ 一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,sξξξ是Ax ο=的一个解⇒1,,,,s ξξξη*线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性;③ 它们有相同的内在线性关系.√ 两个齐次线性线性方程组Ax ο=与Bx ο=同解⇔()()A r r A r B B⎛⎫== ⎪⎝⎭. √ 两个非齐次线性方程组Ax β=与Bx γ=都有解,并且同解⇔()()A r r A rB B βγ⎛⎫== ⎪⎝⎭.√ 矩阵m nA ⨯与l nB ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B=(左乘可逆矩阵P );101p教材矩阵m nA ⨯与l nB ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ). √ 关于公共解的三中处理办法:① 把(I)与(II)联立起来求解;② 通过(I)与(II)各自的通解,找出公共解;当(I)与(II)都是齐次线性方程组时,设123,,ηηη是(I)的基础解系, 45,ηη是(II)的基础解系,则 (I)与(II)有公共解⇔基础解系个数少的通解可由另一个方程组的基础解系线性表示.即:1231231425(,,)(,,)r r c c ηηηηηηηη=+当(I)与(II)都是非齐次线性方程组时,设是(I)的通解,233c ξη+是(II)的通解,两方程组有公共解⇔2331c ξηξ+-可由12,ηη线性表示. 即:12122331(,)(,)r r c ηηηηξηξ=+-③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。
考研数学线代定理公式汇总

考研数学线代定理公式汇总————————————————————————————————作者:————————————————————————————————日期:23概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确(),nT A r A n A A Ax x Ax A Ax A A A E οοοββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或 ○注:全体n 维实向量构成的集合nR 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=⇔==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量○注 ()()a b r aE bA n aE bA aE bA x οολ+<⎧⎪+=⇔+=⎨⎪⎩有非零解=-4⎫⎪≅⎪−−−→⎬⎪⎪⎭:;具有向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ⋅⋅⋅:①称为n¡的标准基,n¡中的自然基,单位坐标向量87p 教材;②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr =E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.行列式的定义 1212121112121222()1212()n n nn nj j j n j j nj j j j n n nna a a a a a D a a a a a a τ==-∑LL LLL M M M L1√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.5②若A B 与都是方阵(不必同阶),则==()mn A O A A OA B O B O B B O A AA B B O B O*==**=-1(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-K NN 1 (即:所有取自不同行不同列的n 个元素的乘积的代数和)⑤范德蒙德行列式:()1222212111112nijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏L L LM MML111矩阵的定义 由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭L LM M M L 称为m n ⨯矩阵.记作:()ij m n A a ⨯=或m n A ⨯伴随矩阵 ()1121112222*12n Tn ijn n nn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪⎪⎝⎭L L M M M L ,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法:6① 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 L L 主换位副变号 ②1()()A E E A -−−−−→MM 初等行变换③1231111213a a a a a a -⎛⎫⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 方阵的幂的性质:m n m n A A A += ()()m nmnA A =√ 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫⎪ ⎪⋅⋅⋅=⎪⎪⎝⎭L L L M M M L ⇔i iA c β= ,(,,)i s =L 1,2⇔iβ为iAx c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅=L ⇔12,,,s c c c L 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵.同理:C 的行向量能由B 的行向量线性表示,TA 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M M M M L⇔11112212121122222211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L7√ 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.√ 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B B A---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 1111A O A O C B B CAB ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭ 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B BB A **⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)A B E X −−−−→MM 初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得① 零向量是任何向量的线性组合,零向量与任何同维实向量正交.8② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余n -1个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=.⑨ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一. ⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.行阶梯形矩阵 可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时,称为行最简形矩阵 ⑪ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系; 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.9即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .矩阵的秩 如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()r A r = 向量组的秩 向量组12,,,n αααL 的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααL 矩阵等价 A 经过有限次初等变换化为B . 记作:A B =%向量组等价 12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅%⑫ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),,,r A r B A B A B =≠>为同型矩阵作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑬ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;p 教材94,例1010⑯ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑰ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑱ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑲ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关;若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关. √ 矩阵的秩的性质:①()A O r A ≠⇔若≥1 ()0A O r A =⇔=若 0≤()m n r A ⨯≤min(,)m n ②()()()TTr A r A r A A == p 教材101,例15③()()r kA r A k =≠ 若0④()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB ≤{}min (),()r A r B⑥()()()()A r AB r B B r AB r A ⇒=⇒=若可逆若可逆 即:可逆矩阵不影响矩阵的秩.⑦若()()()m n Ax r AB r B r A n AB O B O A AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;11若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()rrE O E O r A r A A O O O O ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型. ⑨()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70⑩()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭ ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭121212,,,0,,,()(),,,A n n A n Ax A n Ax Ax r A r A Ax A n βαααβαααβββααα⇔=−−−−−→=<⇔⇒⇔=⇔=⇔=⇔=−−−−−→≠⇒=⇔⇒L L M L 当为方阵时当为方阵时有无穷多解0 表示法不唯一线性相关有非零解 可由线性表示有解有唯一组解0克莱姆法则表示法唯一 线127()(),,,()()()1()n Ax r A r A Ax r A r A r A r A οββαααβββ⎧⎪⎪⎪⎪⎨⎪⎪⎪⇔=⎪⎩⎧⇔≠⎪⇔=⇔<⎨⎪⇔+=⎩M L M M 教材72讲义8性无关只有零解 不可由线性表示无解 ○注:Ax Ax ββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解12线性方程组的矩阵式 Ax β= 向量式 1122n n x x x αααβ+++=L1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M M M ML 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭L M 11212(,,,)n n x x x αααβ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭L M矩阵转置的性质: ()T T A A = ()T T T AB B A = ()T T kA kA = T A A = ()T T T A B A B ±=± 11()()T T A A --= ()()T T A A **=矩阵可逆的性质: 11()A A --=111()AB B A ---= 111()kA k A ---= 11A A --=111()A B A B ---±≠± 11()()k k k A A A ---==伴随矩阵的性质:2()n A AA -**= ()AB B A ***= 1()n kA k A *-*= 1n A A-*=***()A B A B ±≠±11()()A AA A -**-==()()k k A A **=() () 1 ()10 () 1 n r A n r A r A n r A n *=⎧⎪==-⎨⎪<-⎩若若若AB A B =n kA k A = kk A A =A B A B ±≠±AA A A A E **==(无条件恒成立)线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-=L L 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩L 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =⇒()()r A r A β=M⇒Ax β=一定有解, 当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A βM和的上限. √ 判断12,,,s ηηηL 是Ax ο=的基础解系的条件: ① 12,,,s ηηηL 线性无关; ② 12,,,s ηηηL 都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数.√ 一个齐次线性方程组的基础解系不唯一.√ 若η*是Ax β=的一个解,1,,,s ξξξL 是Ax ο=的一个解⇒1,,,,s ξξξη*L 线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 两个齐次线性线性方程组Ax ο=与Bx ο=同解⇔()()A r r A r B B ⎛⎫== ⎪⎝⎭.√ 两个非齐次线性方程组Ax β=与Bx γ=都有解,并且同解⇔()()A r r A r B B βγ⎛⎫== ⎪⎝⎭MM .√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P );101p 教材 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ). √ 关于公共解的三中处理办法:① 把(I)与(II)联立起来求解;② 通过(I)与(II)各自的通解,找出公共解;当(I)与(II)都是齐次线性方程组时,设123,,ηηη是(I)的基础解系, 45,ηη是(II)的基础解系,则 (I)与(II)有公共解⇔基础解系个数少的通解可由另一个方程组的基础解系线性表示.即:1231231425(,,)(,,)r r c c ηηηηηηηη=+M当(I)与(II)都是非齐次线性方程组时,设11122c c ξηη++是(I)的通解,233c ξη+是(II)的通解,两方程组有公共解⇔2331c ξηξ+-可由12,ηη线性表示. 即:12122331(,)(,)r r c ηηηηξηξ=+-M③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。
线性代数公式总结大全

线性代数公式总结大全在线性代数中,有许多重要的公式被广泛应用于向量、矩阵和线性方程组的求解。
下面将对这些公式进行一个全面的总结,并说明它们的应用。
1. 向量的加法和减法- 向量加法:给定两个向量A和B,其加法可以表示为A + B = C,其中C的每个分量等于A和B对应分量的和。
- 向量减法:给定两个向量A和B,其减法可以表示为A - B = C,其中C的每个分量等于A和B对应分量的差。
2. 向量的数量积和向量积- 数量积:给定两个向量A和B,其数量积可以表示为A · B = |A| |B| cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角。
- 向量积:给定两个向量A和B,其向量积可以表示为A × B = |A| |B| sinθ * n,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角,n是垂直于A和B所在平面的单位向量。
3. 矩阵的基本运算- 矩阵加法:给定两个矩阵A和B,其加法可以表示为A + B = C,其中C的每个元素等于A和B对应元素的和。
- 矩阵减法:给定两个矩阵A和B,其减法可以表示为A - B = C,其中C的每个元素等于A和B对应元素的差。
- 矩阵数乘:给定一个矩阵A和一个标量k,其数乘可以表示为kA = B,其中B的每个元素等于A对应元素乘以k。
4. 矩阵的乘法- 矩阵乘法:给定两个矩阵A和B,其乘法可以表示为AB = C,其中矩阵C的元素等于A的行向量与B的列向量的数量积。
- 矩阵转置:给定一个矩阵A,其转置可以表示为A^T,其中A^T的第i行第j列元素等于A的第j行第i列元素。
- 矩阵的逆:给定一个可逆矩阵A,其逆可以表示为A^−1,其中AA^−1 = I,I是单位矩阵。
5. 线性方程组的解法- 列主元消去法:通过消去矩阵A的部分元素,将其转化为上三角矩阵,然后通过回代法求解线性方程组的解。
- 伴随矩阵法:利用矩阵的伴随矩阵和行列式的性质求解线性方程组的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数考研公式大全线性代数考研公式大全(最新整理收集)线性代数部分基本运算①A B B A②A B C A B C③c A B cA cB c d A cA dA④cdA cd A⑤cA 0 c 0或A 0。
ATTAA B T AT BTcA Tc AT。
AB TBTATn n 1 21 C2n n 1 n2D a21A21 a22A22 a2nA2n转置值不变AT A逆值变A 11Acn, 1 2, , 1, , 2,A 1, 2, 3 ,3阶矩阵B 1, 2, 3A B A BA B 1 1, 2 2, 3 3A B 1 1, 2 2, 3 3A 0B A0BABE i,j c 1有关乘法的基本运算线性代数考研公式大全(最新整理收集) Cij ai1b1j ai2b2j ainbnj线性性质A1 A2 B A1B A2B,A B1 B2 AB1 AB2cA B c AB A cB 结合律AB C A BCAB TBTATABAkAl Ak lAklAklAB kAkBk不一定成立!AE A,EA AA kE kA,kE A kAAB E BA E与数的乘法的不同之处AB kAkBk不一定成立!无交换律因式分解障碍是交换性一个矩阵A的每个多项式可以因式分解,例如A2 2A 3E A 3E A E无消去律(矩阵和矩阵相乘)当AB 0时A 0或B 0由A 0和AB 0 B 0由A 0时AB AC B C(无左消去律)特别的设A可逆,则A有消去律。
左消去律:AB AC B C。
右消去律:BA CA B C。
如果A列满秩,则A有左消去律,即①AB 0 B 0 ②AB AC B C可逆矩阵的性质i)当A可逆时,AT也可逆,且AT1A 1T。
线性代数考研公式大全(最新整理收集)Ak也可逆,且Ak1A 1k 1数c0,cA也可逆,cA1 1A。
cii)A,B是两个n阶可逆矩阵AB也可逆,且AB 1 B 1A 1。
推论:设A,B是两个n阶矩阵,则AB E BA E命题:初等矩阵都可逆,且E i,j 1 E i,jE i c 1 E i 1 cE i,j c 1 E i,j c命题:准对角矩阵A11000A __A0A22022年00 0可逆每个A0A 122ii都可逆,记A 1Akk0A 1kk伴随矩阵的基本性质:AA* A*A AE当A可逆时,AA*A E(求逆矩阵的伴随矩阵法)A 1 * A 1 A 1 1A A伴随矩阵的其他性质A* AA 1② AT* A* T,④AB * B*A*,⑤Akk,线性代数考研公式大全(最新整理收集)n 2时,A* * A A* a bcd关于矩阵右上肩记号:T,k,1,* i) 任何两个的次序可交换,如AT* A*T,A* 1 A 1 *等ii)ABTBTAT, AB 1B 1A 1,AB * B*A*线性表示0 1, 2, , si 1, 2, , s1, 2, , s x1 1 x2 2 xs s 有解1, 2, , s x 有解x x1, ,xs TAx 有解,即可用A的列向量组表示AB C r1,r2, ,rs ,A 1, 2, , n ,则r1,r2, ,rs 1, 2, , n。
1, 2, , t1, 2, , s,则存在矩阵C,使得1, 2, , t 1, 2, , s C线性表示关系有传递性当1, 2, , t 1, 2, , s r1,r2, ,rp,则1, 2, , tr1,r2, ,rp。
等价关系:如果1, 2, , s与1, 2, , t互相可表示1, 2, , s1, 2, , t 记作1, 2, , s 1, 2, , t。
线性相关s1,单个向量,x 0 相关0线性代数考研公式大全(最新整理收集)s2,1, 2相关对应分量成比例1, 2相关a1:b1 a2:b2 an:bnA 1, 2, , n ,Ax 0有非零解A 0如果sn,则1, 2, , s一定相关Ax 0的方程个数n 未知数个数s②如果1, 2, , s无关,则它的每一个部分组都无关③如果1, 2, , s无关,而1, 2, , s, 相关,则1, 2, , s 证明:设c1, ,cs,c不全为0,使得c1 1 cs s c 0c1 1 cs s 0则其中c 0,否则c1, ,cs不全为0,,与条件1, , s无关矛盾。
于是cc11 s s。
cc④当1, , s时,表示方式唯一1 s无关(表示方式不唯一1 s相关)⑤若1, , t 1, , s,并且t s,则1, , t一定线性相关。
证明:记A 1, , s ,B 1, , t ,AC。
则存在s t矩阵C,使得BCx0有s个方程,t个未知数,s t,有非零解,C 0。
则BAC 0,即也是Bx 0的非零解,从而1, , t线性相关。
各性质的逆否形式①如果1, 2, , s无关,则sn。
线性代数考研公式大全(最新整理收集)②如果1, 2, , s有相关的部分组,则它自己一定也相关。
③如果1 s无关,而1, , s,则1, , s无关。
⑤如果1 t 1 s,1 t无关,则t s。
推论:若两个无关向量组1 s与1 t等价,则s t。
极大无关组一个线性无关部分组I ,若# I 等于秩1, 2, 4, 6 I ,I 就一定是极大无关组① 1, 2, , s无关1, 2, , s s②1, 2, , s 1, 2, , s, 1, , s另一种说法:取1, 2, , s的一个极大无关组II 也是1, 2, , s, 的极大无关组I , 相关。
证明:1, , s I I , 相关。
③ 可用1, , s唯一表示1, , s, 1, , s s④ 1, , t1, , s 1, , s, 1, , t 1, , s1, , t 1, , s⑤ 1, , s 1, , t 1, , s 1 s, 1 t 1, , t矩阵的秩的简单性质0 r A min m,nr A 0 A 0A行满秩:r A mA列满秩:r A nn阶矩阵A满秩:r A nA满秩A的行(列)向量组线性无关线性代数考研公式大全(最新整理收集) A 0A可逆Ax 0只有零解,Ax唯一解。
矩阵在运算中秩的变化初等变换保持矩阵的秩①r ATr A②c 0时,r cA r A③r A B r A r B ④rAB min r A ,r B⑤A可逆时,r AB r B弱化条件:如果A列满秩,则AB B证:下面证ABx 0与Bx 0同解。
是ABx 0的解AB 0B 0 是Bx 0的解B可逆时,r AB r A⑥若AB 0,则r A r B n(A的列数,B的行数)⑦A列满秩时r AB r BB行满秩时rAB r A⑧r AB n r A r B解的性质1.Ax 0的解的性质。
如果1, 2, , e是一组解,则它们的任意线性组合c1 1 c2 2 ce e一定也是解。
i,A i 0 A c1 1 c2 2 ce e 02.Ax 0①如果1, 2, , e是Ax的一组解,则c1 1c2 2 ce e也是Ax 的解c1c2 ce 1线性代数考研公式大全(最新整理收集)c1 1 c2 2 ce e是Ax 0的解c1 c2 ce 0A i iA c1 1 c2 2 ce e c1A 1 c2A 2 ceA ec1 c2 ce特别的:当1, 2是Ax的两个解时,12是Ax 0的解②如果0是Ax 的解,则n维向量也是Ax的解0是Ax 0的解。
解的情况判别方程:Ax ,即x1 1 x2 2 xn n1, 2, , nA| A1, 2, , n, 1, 2, , nA| AA| A nA| A n方程个数m:A| m, A m①当A m时,A| m,有解②当m n时,A n,不会是唯一解对于齐次线性方程组Ax 0,只有零解A n(即A列满秩)(有非零解A n)特征值特征向量两种特殊情形:(1)A是上(下)三角矩阵,对角矩阵时,特征值即对角线上的元素。
** A2003线性代数考研公式大全(最新整理收集)x 1* *xE A0x 2x 1 x 2 x 3 0x 3(2)rA 1时:A的特征值为0,0, ,0,tr A特征值的性质命题:n阶矩阵A的特征值的重数n r E A 命题:设A的特征值为1, 2, , n,则命题:设是A的特征向量,特征值为,即A,则①对于A的每个多项式f A ,f A f xA可逆时,A 11,A*|A|命题:设A的特征值为1, 2, , n,则①f A 的特征值为f 1 ,f 2 , ,f n ②A可逆时,A 1的特征值为111 , , ,1 2nA*的特征值为|A| ,|A|, ,|A|1 2 n③AT的特征值也是1, 2, , n 特征值的应用①求行列式|A| 1, 2, , n②判别可逆性A E可逆不是A的特征值。
当f A 0时,如果f c 0,则A cE可逆若是A的特征值,则f 是f A 的特征值f 0。
f c 0 c不是A的特征值AcE可逆。
n阶矩阵的相似关系当AUUA时,B A,而AU UA时,B A。
线性代数考研公式大全(最新整理收集)相似关系有i)对称性:A~B B~AU1AU B,则A UBU 1ii)有传递性:A~B,B~C,则A~CU 1AU B,V 1BV C,则UV 1A UV V 1U 1AUV V 1BV C命题当A~B时,A和B有许多相同的性质①A B② A B③A,B的特征多项式相同,从而特征值完全一致。
A与B的特征向量的关系:是A的属于的特征向量U 1 是B的属于的特征向量。
A B U 1 U 1U 1A U 1 U 1AUU 1 U 1正定二次型与正定矩阵性质与判别可逆线性变换替换保持正定性f x1,x2, ,xn 变为g y1,y2, ,yn ,则它们同时正定或同时不正定A~ B,则A,B同时正定,同时不正定。
例如B CTAC。
如果A正定,则对每个x 0xTBx xTCTACx Cx TACx 0(C可逆,x 0,Cx 0!)我们给出关于正定的以下性质A正定A~ E存在实可逆矩阵C,A CTC。
A的正惯性指数n。
A的特征值全大于0。
A的每个顺序主子式全大于0。
判断A正定的三种方法:①顺序主子式法。
②特征值法。
③定义法。
基本概念线性代数考研公式大全(最新整理收集)对称矩阵AT A。
反对称矩阵AT A。
简单阶梯形矩阵:台角位置的元素都为1 ,台角正上方的元素都为0。
如果A是一个n阶矩阵,A是阶梯形矩阵A是上三角矩阵,反之不一定矩阵消元法:(解的情况)①写出增广矩阵A ,用初等行变换化 A 为阶梯形矩阵 B 。
②用B 判别解的情况。
i)如果B 最下面的非零行为0, ,0d ,则无解,否则有解。
ii)如果有解,记是B 的非零行数,则n时唯一解。