液力变矩器组成
液力变矩器的组成及各部分的作用

液力变矩器的组成及各部分的作用液力变矩器的组成及各部分的作用:
液力变矩器是一种常见的自动变速器,它由三个主要部分组成:泵轮、涡轮和液体。
这些部分共同工作,使得变矩器能够将发动机产生的动力传递到车辆的传动系统中。
泵轮是液力变矩器的主要驱动部分,它连接着引擎的曲轴,当发动机运转时,泵轮开始旋转。
液体从泵轮中流出,被引导到涡轮中,从而使涡轮开始旋转。
液体的流动速度决定了液力变矩器的传动比。
涡轮是液力变矩器的输出部分,它连接着车辆的传动系统。
当液体从泵轮流入涡轮时,涡轮开始旋转,将液体的动能转化为机械能,从而将动力传递到传动系统中。
涡轮的形状和大小可以影响液力变矩器的传动比,通常可以通过更换涡轮来调整传动比。
液体是液力变矩器中起关键作用的部分。
液体被压入泵轮,然后流向涡轮,从而传递动力。
液体还起到润滑和冷却液力变矩器的作用,这有助于延长液力变矩器的使用寿命。
液体的粘度和流速可以影响液力变矩器的传动比,因此,在液力变矩器的设计中,需要仔细选择液体的性质。
此外,液力变矩器还包括一些其他部分,如液压阀和扭矩转换器等。
这些部件可以帮助液力变矩器在不同的工作条件下实现最佳的传动效果。
液力变矩器组成

液力变矩器组成
液力变矩器是由液力偶合器和液力制动器两个主要部分组成。
液力偶合器是液力变矩器的核心部分,由泵轮、涡轮、导向器和液力传递装置组成。
泵轮和涡轮都是由叶片组成的转子,它们之间通过液体(通常是液压油)传递动力。
当液体从泵轮逸出,并冲击到涡轮上时,液体的动能被转化为机械能,从而使涡轮产生扭矩,从而驱动机械设备。
液力制动器用于控制液力变矩器的输出扭矩。
它由液力制动器壳体、制动器泵轮和制动器导向器组成。
制动器壳体可以固定或转动,它与液力偶合器的泵轮连接,通过控制液体的流量和压力,来实现对输出扭矩的调节。
液力变矩器同时还包括一些辅助部件,例如液力变矩器油泵和油液冷却系统。
油泵用于提供液体供给,以维持液力变矩器正常的工作。
油液冷却系统用于冷却液压油,以防止液体温度过高引起液力变矩器过热。
总的来说,液力变矩器的组成包括液力偶合器、液力制动器和一些辅助部件,它们共同工作,实现对动力的传递和调节。
液力变矩器广泛应用于各种需要传递扭矩的机械设备中,例如汽车、船舶和工业机械等。
液力变矩器作用

液力变矩器作用液力变矩器是一种机械传动装置,由泵轮、涡轮和导向叶片组成。
它的作用是将发动机产生的转矩通过液体传递到车辆的传动系统中,从而实现车辆的运动。
一、液力变矩器的构成1.泵轮泵轮是液力变矩器中的一个重要部件,它由几十个弯曲叶片组成。
当发动机启动时,泵轮开始旋转,并通过离合器与发动机相连。
当泵轮旋转时,它会将油液吸入并向外喷出,从而形成一个液体环流。
2.涡轮涡轮是另一个重要部件,它与泵轮相对应。
当泵轮旋转时,它会使油液流过导向叶片并进入涡轮中心。
这时,油液会被旋转起来,并带着能量向外喷出。
3.导向叶片导向叶片是用于控制油流方向和速度的零件。
它们位于泵轮和涡轮之间,并通过调整其位置来改变油流方向和速度。
二、液力变矩器的工作原理液力变矩器的工作原理非常简单。
当发动机启动时,泵轮开始旋转,并将油液吸入。
这时,导向叶片会将油液引导到涡轮中心,并使其旋转起来。
涡轮旋转时,它会带着能量向外喷出,并通过传动轴将能量传递到车辆的传动系统中。
同时,由于油液的粘性和泵轮和涡轮之间存在一定的距离,因此在传输能量的过程中会产生一定的滑动损失。
这种滑动损失可以通过调整导向叶片的位置来减小。
三、液力变矩器的优点1.平稳性好由于液力变矩器采用了流体传输能量的方式,因此它具有非常好的平稳性。
无论是启动还是行驶过程中,都可以保证车辆运行平稳。
2.起步顺畅由于泵轮和涡轮之间存在一定距离和滑动损失,因此在起步阶段可以提供更大的扭矩输出。
这使得车辆可以更快地加速并顺畅地起步。
3.适应性强由于液力变矩器可以通过调整导向叶片的位置来改变油流方向和速度,因此它可以适应不同的工作条件和驾驶习惯。
这使得车辆可以在不同的路况下更加灵活地运行。
四、液力变矩器的缺点1.能量损失大由于液力变矩器采用了流体传输能量的方式,并且存在一定的滑动损失,因此它的能量损失比较大。
这使得车辆在行驶过程中需要消耗更多的燃料。
2.效率低由于液力变矩器存在一定的滑动损失和能量损失,因此它的效率比较低。
液力变矩器的组成及作用

液力变矩器的组成及作用《液力变矩器的奇妙世界》嘿,朋友们!今天咱来聊聊液力变矩器这个神奇的玩意儿。
你看啊,这液力变矩器就像是汽车传动系统里的一位大力士。
它主要是由泵轮、涡轮和导轮这几个部分组成的。
先说这泵轮,那可是劲头十足啊,就像个大力水手,拼命地把液体搅动起来,让能量在里面欢快地流转。
然后是涡轮,它就像是个乖巧的接收者,被泵轮搅动的液体冲击着,然后就跟着转动起来,带着动力往前冲。
还有那导轮,虽然看起来不怎么起眼,可作用也不小呢,它就像个智慧的军师,调节着液体的流向和力量,让整个过程更加顺畅高效。
那液力变矩器有啥用呢?这用处可大啦!它就像是个缓冲垫,让汽车在起步的时候更加平稳柔和,不会猛地一冲一冲的,让咱坐车的人感觉可舒服啦。
而且啊,它还能根据不同的情况自动调整,比如遇到大的阻力时,它能发挥出更大的力量,帮助汽车轻松地克服困难。
我记得有一次,我开着车去一个很陡的坡,刚开始还真有点担心上不去。
但没想到,液力变矩器发挥了大作用,车子稳稳地就上去了,那感觉就像是有一双有力的大手在推着车走。
它还能保护汽车的其他部件呢。
就像一个温柔的守护者,把那些冲击力都给化解掉了,让变速箱啊、发动机啊这些重要的家伙都能安安稳稳地工作。
想象一下,如果没有液力变矩器,汽车开起来会是啥样?起步的时候可能会猛地一抖,坐车的人估计会被吓一跳。
而且遇到难走的路,车子可能就没那么容易过去了,说不定还会对车子造成损害呢。
所以啊,液力变矩器虽然平时不太起眼,但它可是汽车里不可或缺的重要角色呢。
它就像一个默默奉献的幕后英雄,为我们的行车安全和舒适保驾护航。
总之,液力变矩器就是这么厉害,这么重要!咱可得好好感谢它为我们的出行带来的便利呀!。
液力变矩器的组成

液力变矩器的组成:常见的两级三元件综合式液力变矩器由泵轮总成、涡轮总成、导轮总成、闭锁离合器总成和后盖组成,导轮通过单向离合器与变速箱壳体固定连接。
泵轮与后盖焊接成一个整体里面充满了传动油,并与发动机连接,起主动作用。
涡轮与变速箱输入轴连接,起动力输出作用。
变矩器工作时,泵轮在发动机带动下将传动油冲入涡轮,从而带动涡轮转动,实现了动力由发动机向传动系统的传递。
导轮总成中,如果单向离合器工作,液力变矩器则起变矩器作用,从而增加扭矩的输出;如果单向离合器不工作(导轮反转),此时变矩器起到了偶合器的作用。
液力变矩器的作用:1、液力变矩器能够自动无级的根据负载变化改变涡轮的转速,提高车辆的通过能力;2、液力变矩器通过液体连接泵轮和涡轮,减少发动机对传动系统的冲击载荷,提高传动系统的寿命;3、液力变矩器在起步时,能够提高车辆的起动变矩比,从而提高车辆的动力性能;4、起步平稳柔和,提高乘坐舒适性。
•液力变矩器的组成结构液力变矩器由泵轮,涡轮,导轮组成。
安装在发动机和变速器之间,以液压油为工作介质,起传递转矩,变矩,变速及离合的作用。
以液体为工作介质的一种非刚性扭矩变换器,是液力传动的型式之一。
YJH340变矩器,它有一个密闭工作腔,液体在腔内循环流动,其中泵轮、涡轮和导轮分别与输入轴、输出轴和壳体相联。
动力机带动输入轴旋转时,液体从离心式泵轮流出,顺次经过涡轮、导轮再返回泵轮,周而复始地循环流动。
泵轮将输入轴的机械能传递给液体。
高速液体推动涡轮旋转,将能量传给输出轴。
液力YJH340变矩器靠液体与叶片相互作用产生动量矩的变化来传递扭矩。
液力变矩器不同于液力耦合器的主要特征是它具有固定的导轮。
导轮对液体的导流作用使液力变矩器的输出扭矩可高于或低于输入扭矩,因而称为变矩器。
输出扭矩与输入扭矩的比值称变矩系数,输出转速为零时的零速变矩系数通常约2~6。
变矩系数随输出转速的上升而下降。
液力YJH340变矩器的输入轴与输出轴间靠液体联系,工作构件间没有刚性联接。
液力变矩器书集

液力变矩器书集
液力变矩器是一种广泛应用于现代汽车和工业传动系统中的流体传动元件。
它利用液体动力学原理,通过液体的流动来传递扭矩和改变转速,具有平滑传动、减震缓冲、过载保护等优点。
液力变矩器主要由泵轮、涡轮和导轮三部分组成。
泵轮与发动机相连,通过旋转将液体带入变矩器内部。
液体在泵轮的作用下形成一定的压力和流速,然后进入涡轮,推动涡轮旋转。
涡轮与输出轴相连,从而驱动汽车或工业设备。
导轮则位于泵轮和涡轮之间,通过改变液体的流动方向,调节传动比和传递扭矩。
液力变矩器的工作原理基于动量守恒和能量守恒定律。
当泵轮旋转时,液体受到离心力的作用,从泵轮叶片间流出并进入涡轮。
在涡轮中,液体与涡轮叶片相互作用,使涡轮旋转。
同时,部分液体在导轮的作用下改变流向,返回泵轮,形成循环流动。
这种循环流动使得液力变矩器能够在一定范围内自动调整传动比,以适应不同工况下的需求。
液力变矩器在现代汽车传动系统中发挥着重要作用。
它不仅能够实现发动机的平稳启动和加速,还能减小传动系统的冲击和振动,提高乘坐舒适性。
此外,液力变矩器还具有过载保护功能,当传动系统受到过大负载时,能够自动减小传动比,保护发动机和传动系统免受损坏。
总之,液力变矩器是一种重要的流体传动元件,具有广泛的应用前景。
随着汽车和工业技术的不断发展,液力变矩器的性能和应用范围也将不断提升和拓展。
简述液力变矩器的组成及工作原理

简述液力变矩器的组成及工作原理液力变矩器(torque converter)是一种广泛应用于自动变速器中的液压传动装置。
它利用液体传递动力,起到变速和传递转矩的作用。
液力变矩器通过流体(通常是液压油)的流动来实现动力传递,其主要组成部分包括泵轮、涡轮和液力变矩器壳体。
液力变矩器具有结构简单、传动平稳、无级变速和自动调节功率输出等特点,因此在汽车、工程机械、船舶等领域得到广泛应用。
液力变矩器的主要组成包括泵轮、涡轮、锁止装置和液力变矩器壳体。
泵轮是液力变矩器的动力输入装置,它通常安装在发动机的曲轴上。
当发动机工作时,驱动泵轮旋转,泵轮的转动产生液体流入液力变矩器。
涡轮是液力变矩器的动力输出装置。
它紧密连接在变速器输入轴上,通过泵轮传递来的流体驱动涡轮旋转,从而实现动力输出。
液力变矩器还包括了一个液力变矩器壳体,它起到承载和固定泵轮和涡轮的作用,并且通过内部构造使液体能够流动,从而实现动力传递。
液力变矩器通常还配备了一个锁止装置,用来提高传输效率和防止内部滑动损失。
在高速行驶或特定工况下,锁止装置可以将泵轮和涡轮固定在一起,形成一个刚性连接,而不再依靠液体的流动传递动力。
液力变矩器的工作原理是基于液体的动力传递。
当发动机工作时,驱动泵轮旋转,泵轮内的液体随之旋转,并通过转动的液体来传递动力。
涡轮与泵轮相连,涡轮受到液体流动带来的动力,从而实现输出动力,驱动车辆或机械的运动。
在这个过程中,液体的流动和压力变化起到了关键作用,使得动力能够顺利地传递。
液力变矩器的工作过程可以简单描述为:发动机驱动泵轮旋转,形成液体的流动,液体的动能被传递到涡轮上,从而实现动力输出。
根据流体动力学原理,液体的流动和转动会产生动能和动量的转换,从而实现了液力变矩器的功率传递。
液力变矩器是一种利用液体传递动力的装置,通过泵轮和涡轮的结构设计和液体流动的原理,实现了对动力的变速和传递。
它的结构简单、传动平稳、无级变速和自动调节功率输出的特点,使其在汽车、工程机械、船舶等领域得到广泛应用。
简述液力变矩器的工作原理

简述液力变矩器的工作原理液力变矩器是一种常用于传动系统中的液压机构,其主要功能是将发动机的动力传输给变速器,以实现车辆的行驶。
液力变矩器的工作原理是利用液体的动能来进行动力传递,并调节转速和变矩。
液力变矩器由泵轮、涡轮和液力偶合器组成。
泵轮由发动机通过传动轴带动转动,而涡轮与变速器相连,用于输出动力。
液力偶合器充当了泵轮与涡轮之间的传递介质,使其能够通过液体的动能将动力传递下去。
在液力变矩器中,液体的动能传递是通过涡轮和泵轮之间相互作用的过程实现的。
当发动机启动时,液力变矩器的泵轮开始旋转,并将液体抛出,形成一个液体环流。
这个液体环流通过涡轮,使涡轮开始旋转。
涡轮上有许多扇叶,当液体环流经过涡轮上的扇叶时,液体的动能被吸收,从而转动涡轮。
液力变矩器中的液体环流不仅由泵轮驱动,同时也通过通过涡轮的转动产生的动力传递回泵轮,形成一个闭合的循环。
这种液体环流的闭合和动能的传递,使得发动机的动力通过液体传递到变速器,实现车辆的运动。
液力变矩器不仅可以传递动力,还能够调节转速和变矩。
当汽车需要快速起步或加速时,液力变矩器的工作原理通过液体环流的作用,能够增加输出动力和转矩,从而实现高速传动。
当车辆需要减速或停止时,液力变矩器通过减少液体环流的作用,降低输出动力和转矩,从而实现减速和停止。
液力变矩器的调速和变矩功能是通过调节液力偶合器的结构和液体的流量来实现的。
液力偶合器的结构和扇叶的形状可以调节液体环流的速度和方向,从而实现转速和转矩的调节。
同时,液体的流量也可以通过液力偶合器的结构来调节,进一步实现对转速和转矩的控制。
总结一下,液力变矩器通过液体的动能来实现动力传递,并通过液力偶合器的结构和液体的流量来调节转速和变矩。
其工作原理包括液体环流的形成和闭合、液体环流的动能传递以及液力偶合器的结构和液体流量的调节。
液力变矩器在传动系统中具有重要的作用,能够实现高效的动力传递和精确的转速调节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液力变矩器组成
液力变矩器(Fluid Coupling)是一种基于液体动力传递的装置,广泛应用于各类机械设备中。
它的作用是通过液体的转动来传递动力,实现动力的平稳传递和扭矩的调节。
液力变矩器由驱动轮、驱动轴、液力轮和液力轮轴组成。
驱动轮连接着发动机的输出轴,而液力轮则连接着传动轴。
液力轮内部充满了液体,通常是油。
当发动机驱动轮转动时,液体也会随之转动,产生离心力。
这个离心力会使液体在液力轮内部形成旋涡流动,从而实现动力的传递。
液力变矩器的工作原理是基于液体的黏性和离心力的作用。
液体具有黏性,当液体受到外力作用时会产生阻力,这种阻力会使液体产生转动。
同时,液体也具有流动性,当液体受到离心力作用时,会形成旋涡流动。
液力变矩器利用这两种性质,使得动力可以通过液体的转动来传递。
液力变矩器具有一些独特的优点。
首先,它可以实现动力的平稳传递。
传统的机械传动方式(如齿轮传动)存在着震动和冲击的问题,而液力变矩器通过液体的转动传递动力,可以使传动过程更加平稳,减少了震动和冲击。
其次,液力变矩器还具有扭矩调节的功能。
通过控制液体的流动情况,可以实现对扭矩的调节,使得传动系统可以根据需要进行动力输出的调整。
液力变矩器在实际应用中有着广泛的用途。
它常常被应用在汽车的自动变速器中,通过液力变矩器可以实现发动机与车轮之间的动力传递。
此外,液力变矩器还常用于工程机械、船舶、风力发电机组等领域。
它的平稳传动和扭矩调节的特性使得这些设备具有更好的性能和可靠性。
然而,液力变矩器也存在一些局限性。
其中一个问题是效率较低。
液力变矩器在传递动力时会有一定的能量损失,这导致了传动效率的降低。
另外,液力变矩器在启动时需要一定的时间来形成旋涡流动,从而实现动力传递。
这使得液力变矩器在一些需要快速启动的应用中不太适用。
为了克服液力变矩器的一些局限性,人们还开发了一种改进型的液力变矩器,称为液力耦合器(Fluid Coupling)。
液力耦合器在液力变矩器的基础上引入了一个可以调整液体流动情况的装置,使得液体的流动可以更加灵活和高效。
液力耦合器在一些高速应用中具有更好的性能表现。
总的来说,液力变矩器是一种基于液体动力传递的装置,通过液体的转动来实现动力的传递和扭矩的调节。
它在各类机械设备中有广泛的应用,具有平稳传动和扭矩调节的优点。
然而,液力变矩器也存在一些局限性,如效率较低和启动时间较长。
为了改进这些问题,液力耦合器被引入并得到了广泛应用。
液力变矩器和液力耦合器的
发展为机械传动领域带来了更多的选择和发展空间。