简单数学建模实例

合集下载

数学建模简单实例

数学建模简单实例
18
一些简单实例
% 用二分法求山崖高度 k = 0.05; g = 9.81; left = 0.0; right = 3.9; eps = 1.0; while (abs(eps) > 0.1) t2 = (left + right) / 2; t1 = 3.9 - t2; h2 = 340 * t2; h1 = g * (t1 + exp(-k * t1) / k) / k - g / k^2; eps = h1 - h2; if (eps > 0) left = t2; 运行结果为: else >> shanyagaodu1 right = t2; t2 = end 0.1871 end h= t2 63.6130 h = 340 * t2
2 2
A(0,b) 航母,速度V1
θ1 θ2
O
B(0,-b) 护卫舰,速度V2
X
令:
a2 1 2ab h 2 b, r 2 a 1 a 1
10
一些简单实例
则上式可简记成 :
x ( y - h) r y (tan 2 ) x b (护卫舰的路线方程) y (tan 1 ) x b (航母的路线方程)
n
25
an=0
一些简单实例
对第二问:假设还贷k个月后,利率发生了
变化。则第k个月后还应还给银行的总金额
为:
ak= a0(1+r)k-x[(1+r)k-1]/[(1+r)-1]
而我们可以将此总金额作为最初的贷款额,
而需还贷的时间则是n-k个月。
26
D L
间内,车辆仍将向前行驶一段距离 L。
4
一些简单实例

数学建模的实例与分析

数学建模的实例与分析

数学建模的实例与分析在现代社会中,数学建模作为一种重要的科学方法,被广泛应用于各个领域。

通过数学模型的构建和分析,我们能够深入了解问题的本质,预测未来的趋势,并为决策提供科学依据。

本文将为大家介绍两个关于数学建模的实例,并对其进行详细分析。

实例一:股票价格预测股票市场一直以来都备受人们的关注,因为其价格的波动会对投资者的财富造成重大影响。

为了帮助投资者更好地预测股票价格,数学建模成为了一种重要的工具。

在股票价格预测的建模过程中,一般使用时间序列分析方法。

首先,我们需要获取一段时间内的历史股票数据,包括每日的股票价格和交易量。

然后,通过统计学方法对这些数据进行分析,例如平均值、标准差等。

接下来,我们可以利用时间序列模型,如ARIMA模型,来对未来的股票价格进行预测。

除了时间序列分析,机器学习算法也可以应用于股票价格的预测。

例如,可以使用支持向量机(SVM)或人工神经网络(ANN)等算法,通过训练模型来捕捉股票价格的变化规律,并进行预测。

这些算法能够根据历史数据中的模式和趋势,预测未来股票价格的走势。

通过数学建模,我们能够更好地理解股票市场的运行规律,并及时预测股票价格的变化,为投资者提供决策参考。

实例二:交通拥堵模拟随着城市化的发展,交通拥堵成为了一个普遍存在的问题。

为了有效地缓解交通拥堵,数学建模可以帮助我们研究交通流的特性,并设计出更好的交通管理策略。

在交通拥堵模拟中,常常使用微观模型和宏观模型相结合的方法。

微观模型关注个体车辆的行为,例如车辆的加速度、减速度以及车头间距等。

而宏观模型则关注整体交通流的特性,例如道路容量、流量以及速度等。

通过对交通流的建模和仿真,我们可以模拟城市道路网络中交通流的变化,以及拥堵的产生和扩散过程。

借助于数学建模,我们可以预测在不同交通管理策略下,拥堵情况的变化以及交通状况的优化效果。

此外,数学建模还可以结合其他领域的知识,如人工智能和大数据分析,来进一步提高交通拥堵模拟的准确性和可靠性。

数学建模实例

数学建模实例

数学建模实例
数学建模是将实际问题转化为数学模型,通过对模型进行分析和求解来解决问题的一种方法。

以下是数学建模的一些实例:
1. 客流热力学模型:在城市轨道交通拥挤情况下,建立客流热力学模型,分析出客流分布的状况,有效提高轨道交通系统的运行性能。

2. 互联网广告投放模型:针对互联网广告投放的问题,建立数学模型,分析各种广告投放策略的影响,提出最佳的广告投放策略。

3. 股票价格预测模型:针对股票市场,建立数学模型,通过对历史数据的分析和预测,预测未来股票价格的走势,为投资决策提供科学依据。

4. 生态系统模型:建立生态系统稳定性数学模型,探究物种间相互作用的影响,预测生态系统发展趋势,为环境保护提供科学依据。

5. 智能交通路网模型:建立智能交通路网数学模型,分析路网拥堵状况,提出最优路径,实现交通系统的智能化管理。

6. 供应链管理模型:建立供应链管理数学模型,分析供应链各环节的影响,优化供应链各环节的质量和效率,提升企业综合效益。

7. 机器学习模型:应用机器学习算法,通过对大量历史数据的分析和学习,预测未来数据的走势,为商业决策提供科学依据。

数学建模简单13个例子

数学建模简单13个例子

出,黄灯起的是警告的作用,意思是马上
要转红灯了,假如你能停住,请立即停车。
停车是需要时间的,在这段时间内,车辆
仍将向前行驶一段距离 L。这就是说,在
离街口距离为 L处存在着一条停车线(尽
管它没被画在地上),见图。对于那些黄
D
灯亮时已过线的车辆,则应当保证它们仍 能穿过马路。
L
马路的宽度D是容易测得的,问题的关键在于L的确
则所提问题变为在自然数集上求解方程
7
(2ki 1) 26
i 1
于是,我们有了该问题的数学语言表达——数学模型
求解: 用反证法容易证明本问题的解不存在。
返回
3、相遇问题
某人平时下班总是按预定时间到达某处,然 然后他妻子开车接他回家。有一天,他比平时提早 了三十分钟到达该处,于是此人就沿着妻子来接他 的方向步行回去并在途中遇到了妻子,这一天,他 比平时提前了十分钟到家,问此人共步行了多长时 间?
1、从包汤圆(饺子)
通常,1公斤面, 1公斤馅,包100个汤圆(饺子)
今天,1公斤面不变,馅比 1公斤多了,问应多包几 个(小一些),还是少包几个(大一些)?
问题
圆面积为S的一个皮,包成体积为V的汤圆。若 分成n个皮,每个圆面积为s,包成体积为v。
S
s s … s (共n个)
vv
v
V
V和 nv 哪个大? 定性分析
4、爬山问题
某人早8时从山下旅店出发沿一条路径上山,下午5 时到达山顶并留宿,次日早8时沿同一路径下山,下午5 时回到旅店,则这人在两天中的同一时刻经过途中的 同—地点,为什么?
解法一: 将两天看作一天,一人两天的运动看作一天两人 同时分别从山下和山顶沿同一路径相反运功,因为两 人同时出发,同时到达目的地,又沿向一路径反向运 动,所以必在中间某一时刻t两人相遇,这说明某人在 两天中的同一时刻经过路途中的同一地点。

生活中的若干建模实例3

生活中的若干建模实例3

p1 p2 这时不公平程度可用 来衡量。 n1 n2 如 p1 120, p2 100, n1 n2 10 p1 p2 则 2 n1 n2
又如 p1 1020, p2 1000, n1 n2 10
pபைடு நூலகம் p2 不妨设 > n1 n2
p1 p2 则 2 n1 n2
显然 p1 - p2 只是衡量的不公平的绝对程度,但是
Q1最大,于是这1席应分给甲系.
Q3最大,于是这1席应分给丙系.
评注
1.席位的分配应对各方都要公平 2.解决问题 的关键在于建立衡量公平程度既合 理又简明的数量指标。 这个模型提出的相对不公平值 它是确定分配方案的前提.
rA , rB
§3 双层玻璃窗的功效问题
我们注意到北方有些建筑物的窗户是双层的,即 窗户装两层玻璃且中间留有一定空隙,如图所示 墙 墙
当总席位增加1席时,计算
Qi p i2 ni ( ni 1) , i =1,2, ,m
则增加的一席应分配给Q值大的一方. 这种席位分配的方法称为Q值法. 下面用Q值法重新讨论本节开始提出的甲乙 丙三系分配21个席位的问题.
先按照比例将整数部分的19 席分配完毕,有
n1 10,n2 6,n3 3
由假设(3),任何位置至少有三只脚着地,所以 对于任意的θ, f ( ), g( ) 至少有一个为0.
当θ=0时,不妨设
g(0) 0, f (0) 0
这样改变椅子的位置使四只脚同时着地就归结 为证明如下的数学命题:
已知f ( )和g ( )都是 的连续函数,对任意 , f ( ) g ( ) 0且g ( 0) 0,f ( 0) 0,则存在 0使 f ( 0 ) g ( 0 ) 0

数学建模小实例

数学建模小实例

1、司乘人员配备问题某昼夜效劳的公交路线每天各时间区段需司机和乘务人员如下:设司机和乘务人员分别在各时间区段一开场上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员?解: 设i x为第i班应报到的人员i,建立线性模型如下:,2,1)6,(∑==61min i i x Z⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥+≥+≥+≥+≥+≥+0,...,,302050607060..621655443322161x x x x x x x x x x x x x x x t s LINGO 程序如下:MODEL:min=x1+x2+x3+x4+x5+x6; x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; END得到的解为:x1=60,x2=10,x3=50,x4=0,x5=30,x6=0;配备的司机和乘务人员最少为150人。

2、铺瓷砖问题要用40块方形瓷砖铺下列图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。

一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。

试问是这人的功夫不到家还是这个问题根本无解呢?解答:3、 棋子颜色问题在任意拿出黑白两种颜色的棋子共n 个,随机排成一个圆圈。

然后在两颗颜色一样的棋子中间放一颗黑色棋子,在两颗颜色不同的棋子中间放一颗白色棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复进展下去各棋子的颜色会怎样变化呢?分析与求解:由于在两颗同色棋子中放一颗黑色棋子,两颗不同色的棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。

这是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色的棋子中间放一颗白色棋子。

简单数学建模100例

简单数学建模100例

“学”以致用-----简单数学建模应用问题100例数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。

但是在生活中又有多少实际问题是可以直接套用公式的呢?理想状态下的公式直接运用,在生产及生活中的实例是少之又少。

为此学生总感到学了数学没有什么实际用处,所以对学习数学少有兴趣。

数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的.数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,经过模型准备、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为可以用数学方法(公式)来解决的,在理想状态下的数学问题,上述的整个流程统称为数学建模如果想解决某个实际问题(也许它和数学没有直接的关系),可以按下面流程对问题进行数学建模。

一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备.由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准备对做好数学建模问题是非常重要的.二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。

模型假设不太可能一蹴而就,可以在模型的不断修改中得到逐步完善.三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等).做模型构成时可以使用各种各样的数学理论和方法,但要注意的是在保证精度的条件下尽量用简单的数学方法是建模时要遵循的一个原则.四.模型解析在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。

数学建模经典案例最优截断切割问题

数学建模经典案例最优截断切割问题

建模案例:最优截断切割问题一、 问 题从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍。

且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少。

二、 假 设1、假设水平切割单位面积的费用为r,垂直切割单位面积费用为1;2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e;3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割.三、 模型的建立与求解设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b 0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M 4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式。

当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工.由此准则,只需考虑 P 6622290!!!⨯⨯=种切割方式.即在求最少加工费用时,只需在90个满足准则的切割序列中考虑.不失一般性,设u 1≥u2,u3≥u 4,u5≥u6,故只考虑M1在M2前、M 3在M 4前、M5在M6前的切割方式。

1、 e=0 的情况为简单起见,先考虑e=0 的情况.构造如图9—13的一个有向赋权网络图G(V,E)。

为了表示切割过程的有向性,在网络图上加上坐标轴x,y,z.图9—13 G(V,E)图G(V,E)的含义为:(1)空间网络图中每个结点Vi(xi,yi,zi)表示被切割石材所处的一个状态.顶点坐标xi、yi、zi分别代表石材在左右、前后、上下方向上已被切割的刀数.例如:V24(2,1,2) 表示石材在左右方向上已被切割两刀,前后方向上已被切一刀,上下方向上已被切两刀,即面M1、M2、M3、M5、M6均已被切割.顶点V1(0,0,0)表示石材的最初待加工状态,顶点V27(2,2,2)表示石材加工完成后的状态.(2)G的弧(Vi,Vj)表示石材被切割的一个过程,若长方体能从状态Vi经一次切割变为状态Vj,即当且仅当xi+yi+zi+1=xj+yj+zj时,Vi(xi,yi,zi)到Vj(xj,yj,zj)有弧(Vi,Vj),相应弧上的权W(Vi,Vj)即为这一切割过程的费用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单数学建模实例
随着社会和科技的发展,数学建模已经越来越成为各个领域的重要手段。

而简单数学建模实例的模拟与实验,也成为了学生学习数学和拓展实际应用的重要方式。

在此,我们将为大家介绍一些简单的数学建模实例。

(一)瓶子里的气体
假设一个恒定体积的瓶子装满的气体,其中含有 x % 的氮气,y % 的氧气和 z % 的二氧化碳。

现在在瓶子中加入一定量的氧气,使得瓶子中氮气的百分比降至 v %。

问原瓶子中氧气的百分比是多少?
这个问题只需要列出守恒方程即可:氧气的质量与氮气和二氧化碳的质量之和等于瓶子中气体的总质量。

再加上一个初始状态的方程,就可以得到两个关于 y 和 z 的一元二次方程,解它们即可。

(二)小球的弹性碰撞
两个小球,一个重量为 m1,在速度为 v1 的情况下运动;另一个球的重量为 m2,在速度为 v2 的情况下静止。

两个小球弹性碰撞后,速度分别为 u1 和 u2。

问 u1 和 u2 在什么情况下相等?
这个问题需要利用动能守恒和动量守恒的规律,分别列出两个守恒方程,然后解方程即可。

其中,动能守恒方程是指碰撞前后的总动能是守恒的;动量守恒方程是指碰撞前后的总动量也是守恒的。

(三)植物生长的模拟
植物的生长是与光、水、温度等因素有关的,而光照强度、水分充足和温度适宜是保证植物生长的基本条件。

因此,我们可以利用数学方法,建立植物生长与光照强度、水分和温度之间的关系模型。

具体地说,我们可以将光照强度、水分和温度三个因素定量化,例如化学计量法,然后建立该物种的生长速度与光照强度、水分和温度之间的函数关系。

最后,可以通过改变各个因素来预测植物的生长速度。

(四)自然灾害预测
自然灾害如洪水、地震、气象灾害等都是由物理或化学规律导致的,因此可以利用数学方法,预测或模拟这些自然灾害。

例如,可以通过建立地震发生的概率模型,分析地震的分布规律和发生的时间等信息,从而预警或预测地震。

在预测洪水方面,我们可以通过搜集洪水历史数据、雨量和地下水位等信息,建立预警模型。

比如,利用水位数据和雨量等因素,建立水位预测模型,以提前预报洪水,及时采取救援措施。

相关文档
最新文档