机械振动的测量方法
振动测量技术

在评价结构抗振能力时常用动刚度,在共振 区动刚度仅为静刚度的几分之一到十几分之一; 在分析振动对人体感受影响时,常用速度阻抗; 在分析振动引起的结构疲劳损伤时,常用机械惯 性;在分析车厢等振动、噪声时则常用速度导纳。
机械法
利用杠杆原理将振动量放 大后直接记录下来
抗干扰能力强,频率范围及动态、线性 范围窄、测试时会给工件加上一定的负 荷,影响测试结果,用于低频大振幅振 动及扭振的测量
光学法
利用光杠杆原理、读数显 微镜、光波干涉原理,激 光多普勒效应等进行测量
不受电磁场干扰,测量精度高,适于对 质量小及不易安装传感器的试件作非接 触测量。在精密测量和传感器、测振仪 标定中用得较多
周期的
非周期 的
随机的
平稳的
非平稳 的
简谐振 复杂周期
动
振动
准周期振 瞬态和冲 各态历经 非 各 态 历
动
击
的
经
振动信号按时间历程的分类如图5.1所 示,即将振动分为确定性振动和随机振 动两大类。
确定性振动可分为周期性振动和非周 期性振动。周期性振动包括简谐振动和 复杂周期振动。非周期性振动包括准周 期振动和瞬态振动。
随机振动是一种非确定性振动,它只服从 一定的统计规律性。可分为平稳随机振动和非 平稳随机振动。平稳随机振动又包括各态历经 的平稳随机振动和非各态历经的平稳随机振动。
一般来说,仪器设备的振动信号中既包含 有确定性的振动,又包含有随机振动,但对于 一个线性振动系统来说,振动信号可用谱分析 技术化作许多谐振动的叠加。因此简谐振动是 最基本也是最简单的振动。
m d 2z0 dt 2
电机的机械振动的测量、评定及限值

电机的机械振动的测量、评定及限值电机的机械振动是指电机运行时产生的机械振动现象。
电机的机械振动既影响电机的正常运行,也对周围环境产生一定的影响。
因此,对电机的机械振动进行测量、评定及限值的研究具有重要意义。
测量电机的机械振动是了解电机运行状态的重要手段。
通过测量电机振动参数,如振动速度、振动加速度和振动位移等,可以了解电机的振动情况以及振动的频率和幅值。
这些参数可以反映电机内部的机械运动状态,如轴承的磨损情况、不平衡质量、轴承座的松动等。
同时,测量电机的振动还可以帮助判断电机是否存在故障或潜在故障,及时采取维修措施,从而提高电机的可靠性和使用寿命。
评定电机的机械振动是判断振动是否正常的重要依据。
根据电机振动参数的测量结果,可以进行振动评定。
通常采用国际标准ISO10816-1《机械振动评定电动机》中的评定准则,将电机的振动水平分为若干等级,从而判断电机的振动是否在可接受范围内。
评定结果可以指导电机的维护和管理,对于频繁出现振动超标的电机,可以采取相应的措施,如更换轴承、动平衡等,以降低振动水平,确保电机的正常运行。
电机的机械振动还有一定的限值要求。
为了保证电机的正常运行和降低对周围环境的干扰,通常制定了电机振动的限值要求。
这些限值要求通常由生产厂家或行业标准规定,如国际电工委员会(IEC)的标准。
限值要求可以包括振动速度、振动加速度和振动位移等参数。
电机振动超过限值要求,可能会引起电机噪声、机械磨损加剧、轴承寿命缩短等问题,甚至导致电机故障。
因此,严格控制电机的振动水平,确保振动不超过限值要求,对于保证电机的可靠性和安全运行至关重要。
电机的机械振动的测量、评定及限值是保证电机正常运行和提高电机可靠性的重要工作。
通过测量电机振动参数,评定电机振动水平,并控制振动不超过限值要求,可以及时发现电机故障,减少电机的维修次数,延长电机的使用寿命。
因此,加强对电机机械振动的研究和管理,对于提高电机的运行效率和降低故障率具有重要意义。
振动测试方法

第4页/共13页
(5.19电涡流作用原理图 ) (5.21电涡流传感器系统)
第3页/共13页
传感器
传感器是能够感受物体运动并将物体运动转换为模拟电信号的一种灵敏的换能 元件。传感器的种类很多,而且有不同的分类方法,按坐标系的不同可分为绝对式 与相对式传感器;按工作方式的不同可分为接触式和非接触式传感器;按工作原理 的不同可分为惯性式和参数式传感器。按测量参数的不同又可分为位移、速度和加 速度传感器。这里我们仅简单讨论机械振动测量中常用的惯性式(磁电式)速度传 感器、压电式加速度传感器和电涡流位移传感器。 速度传感器
第2页/共13页
振动测试的力学原理
机械系统在外力作用下的运动称为该系统对此作用力的响应,此作用力称为激励力。 如图5.7和图5.10所示的单自由度振动系统,是从复杂振动系统中抽象出 来的一种简单力学模型。该系统的全部质量m〔kg〕集中在一点,并由一 个刚度为k〔N/m〕的弹簧和一个粘性阻尼系统为c〔N/ms-1〕的阻尼器支 撑。讨论中假设系统呈线性,系数m、k和c不随时间变化。
振动幅值是一般振动测量中最感兴趣的测试内容,它一般包括图5.26所示的四种情 况: (1)测量通频带幅值,即总值(Overall),一般早期的测振仪和振动检测仪表就 属于这一类
(2)测量基波频率的幅值,主要采用中心频率可调的带通滤波器,一般手动或自动 扫描式频谱分析仪就属于这一类。
(3)跟踪测量基波,或某一高次谐波频率的幅值,一般动平衡电测系统就是这一类, 主要采用自动跟踪带通滤波器。
机械振动的测量方法

机械振动的测量方法机械振动是指物体在其中一固定点或者固定坐标系中围绕其中一平衡位置作周期性的往复运动。
机械振动测量的目的是为了评估物体的振动特性,找到振动源,分析振动原因,以进一步改进设计和提供振动控制措施。
机械振动的测量方法有很多种,下面就几种常用的机械振动测量方法进行介绍。
1.声学振动测量方法:这种方法是通过采集并分析物体产生的声音来测量机械振动。
它可以通过一个或多个声音传感器将机械振动转化为声音信号,然后借助声学仪器进行分析和处理。
这种方法可以用来确定振动的频率、振幅、振动模式和振动源的位置等。
它适用于非接触式测量,测量范围广,且具有较高的灵敏度。
2.惯性振动测量方法:这种方法是通过安装加速度传感器或振动传感器,直接感知机械振动的加速度或位移,然后根据牛顿运动定律计算出振动的频率、幅值和相位等参数。
这种方法适用于测量低频振动,测量结果更加准确,但需要对传感器进行定期校准。
3.光学振动测量方法:这种方法是通过光学传感器来测量机械振动。
光学传感器可以分为接触式和非接触式两类。
接触式的光学传感器通常是基于拉普拉斯原理,测量物体表面的位移或变形。
非接触式的光学传感器则通常是采用激光干涉或干涉测量的原理,利用激光束来测量物体的位移或振动速度。
光学振动测量方法精度高,分辨率高,适用于测量微小振动。
4.功率谱测量方法:这种方法是通过对机械振动信号进行频谱分析,测量不同频率成分的能量或功率,以评估振动的特性。
功率谱测量方法可以使用FFT(快速傅里叶变换)等算法将时域信号转化为频域信号,进而获取功率谱图。
功率谱图可以提供振动的频率分布、主要振动频率和传递函数等信息。
这种方法适用于复杂的振动分析和频谱分析。
值得注意的是,以上所述的机械振动测量方法仅为常用方法之一,还有一些其他的测量方法,如微机械系统(MEMS)传感器、电容式传感器、压电传感器等,这些传感器可以通过物理效应来感知机械振动。
不同的测量方法有不同的适用范围和测量精度,需要根据具体的测量需求和实际情况选择合适的方法。
机械振动测量

振动的测量方法:机械法、电测法、光测法。
11
三、振动测试系统的构成
➢ 被测对象在激振力的作用下产生受迫振动,测振传感器测出振动力学参量,
通过振动分析(时域中的相关技术,频域中的功率谱分析)以及计算机数
字处理技术,检测出有用的信息。
➢ 工程上,振动的测试主要讨论的是系统励
测量动态特性时,首先要激励被测对象,让其按测试的要求
作受迫振动或自由振动。
激励方式通常3 种:
稳态正弦激振
瞬态激振
随机激振
32
一、振动的激励
1、稳态正弦激振
对被测对象施加一个稳定的单一频率的正弦激振力。
优点:激振功率大、信噪比高,能保证低频响应对象的测试
精度。
缺点:需要很长的测试周期才能得到足够精度的测试数据,
表明传感器的输出正比于被测物体振
动的位移。
一般:
Τ ,
取3~5。
ω/ωn
19
一、绝对式测振传感器原理
1、测振幅
−1
() = tan
2(Τ )
1 − (Τ )2
当>> ,
< 1时,
相位差接近180,相频特性也接近直线。
一般:
取0.6~0.7。
20
一、绝对式测振传感器原理
振动的测试在生产和科研等各方面都十分重要
4
机械振动的测量
振动给料机
水泥回转窑
5
§1 概述
一、振动的类型
1、按振动的规律分类
(1)稳态振动(确定性振动)
一般分为以下几种:
稳态振动
周期振动
非周期振动
振动测量仪检测机械设备振动频率试验方法

振动测量仪检测机械设备振动频率试验方法引言本文档旨在介绍振动测量仪检测机械设备振动频率的试验方法。
振动频率的检测对于评估机械设备的性能和运行状态具有重要意义。
通过使用振动测量仪,我们可以获取准确的振动频率数据,进而判断设备是否正常工作,是否存在故障或其他问题。
检测前准备在进行振动频率的试验前,需要确保以下准备工作已完成:1. 确保振动测量仪已校准,并且其精度符合要求。
2. 选择合适的测点。
通常,振动测量应在设备的关键部位进行,如轴承、驱动装置、连接部件等等。
3. 清洁测点,确保其不受污物或腐蚀物的影响。
4. 确保测试环境稳定,避免外部干扰对测试结果的影响。
测试步骤以下是振动测量仪检测机械设备振动频率的试验步骤:1. 将振动测量仪的传感器安装在所选择的测点上。
确保传感器与设备紧密连接,并且位置正确。
2. 打开振动测量仪,并根据设备的工作状态进行合适的设置。
例如,选择合适的量程和采样频率。
3. 启动机械设备,并确保其处于正常工作状态下。
4. 等待足够的运行时间,以使设备达到稳定状态。
5. 开始记录振动频率数据。
根据测量要求,可以选择不同的记录方式,如实时记录或定时采样。
6. 持续记录一段时间,以确保获得足够的数据样本。
通常建议记录至少10个周期的数据。
7. 分析测得的振动频率数据。
可以使用专业软件进行频谱分析,以获取各个频率分量的幅值和相位信息。
8. 基于分析结果,评估机械设备的振动频率是否处于正常范围内。
根据设备的类型和要求,可以参考相关标准或经验值进行判断。
9. 如果发现振动频率异常或超过允许范围,进一步分析可能的原因,并采取相应的措施修复或调整设备。
结论通过使用振动测量仪进行振动频率的试验,我们可以准确评估机械设备的运行状态和性能。
本文档介绍了振动测量仪检测机械设备振动频率的试验方法,包括准备工作、测试步骤和数据分析。
遵循本文档的指导,可以提高振动频率试验的准确性和可靠性,从而更好地评估机械设备的振动性能。
工程振动测试方法

工程振动测试方法工程振动测试方法在工程振动测试领域中,测试手段与方法多种多样,但是按各种参数的测量方法及测量过程的物理性质来分,可以分成三类。
1、机械式测量方法震动传感器将工程振动的参量转换成机械信号,再经机械系统放大后,进行测量、记录,常用的仪器有杠杆式测振仪和盖格尔测振仪,它能测量的频率较低,精度也较差。
但在现场测试时较为简单方便。
2、光学式测量方法将工程振动的参量转换为光学信号,经光学系统放大后显示和记录。
如读数显微镜和激光测振仪等。
3、电测方法将工程振动的参量转换成电信号,经电子线路放大后显示和记录。
电测法的要点在于先将机械振动量转换为电量(电动势、电荷、及其它电量),然后再对电量进行测量,从而得到所要测量的机械量。
这是目前应用得最广泛的测量方法。
上述三种测量方法的物理性质虽然各不相同,但是,组成的测量系统基本相同,它们都包含拾振、测量放大线路和显示记录三个环节。
1、拾振环节。
把被测的机械振动量转换为机械的、光学的或电的信号,完成这项转换工作的器件叫传感器。
2、测量线路。
测量线路的种类甚多,它们都是针对各种传感器的变换原理而设计的。
比如,专配压电式传感器的测量线路有电压放大器、电荷放大器等;此外,还有积分线路、微分线路、滤波线路、归一化装置等等。
3、信号分析及显示、记录环节。
从测量线路输出的电压信号,可按测量的要求输入给信号分析仪或输送给显示仪器(如电子电压表、示波器、相位计等)、记录设备(如光线示波器、磁带记录仪、X—Y 记录仪等)等。
也可在必要时记录在磁带上,然后再输入到信号分析仪进行各种分析处理,从而得到最终结果。
振动测量方法和标准(一)

振动测量方法和标准(一)振动测量方法和标准概述•振动测量是工程领域中常用的一种测试方法,用于评估物体振动的强度和频率。
通过振动测量,可以帮助我们分析和优化结构的设计,预测设备的寿命以及判断机器运行是否正常。
常用的振动测量方法1.加速度法:通过测量物体在特定点上的加速度来评估振动。
这种方法可以用于结构的动态响应分析和冲击问题。
2.速度法:通过测量物体在特定点上的速度来评估振动。
速度法适用于精密设备和需要高精度的振动测量。
3.位移法:通过测量物体在特定点上的位移来评估振动。
位移法适用于机械系统和结构的频率响应分析。
4.功率谱法:通过将振动信号转换为频谱来评估振动。
功率谱法可以帮助我们了解在不同频率下振动的能量分布情况。
国际标准和规范•ISO 10816:该标准是国际上最常用的用于评估机械设备振动的标准。
它包含了振动级别的分级标准以及对振动测量的方法和仪器的要求。
•ISO 2372:该标准适用于旋转机械的振动测量。
它提供了用于评估旋转机械振动的标准指导,并包含了振动级别的分级标准。
•ISO 7919:该标准适用于机组振动测量和评估。
它为机组振动评估提供了详细的指导,并包含了对测点位置和振动级别的要求。
•DIN 4150:该规范适用于建筑物振动的评估和控制。
它提供了对建筑物振动的测量和评估的标准指导,并包含了对振动限值的要求。
结论•振动测量是一种重要的工程技术方法,可以帮助我们评估和优化结构的设计,预测设备的寿命以及判断机器运行是否正常。
在进行振动测量时,可以选择适合具体应用场景的测量方法,并遵循相应的国际标准和规范进行评估。
通过合理的振动测量,我们可以提高工程项目的质量和可靠性,减少潜在的风险和故障发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振动的测量方法
摘要
本文主要介绍了振动的测量方法与分类,并简要说明了各测量方法的原理及优缺点,以及在测量过程中所使用的传感器。
并且详细的介绍了加速度传感器与磁电式速度传感器的工作原理。
简要介绍了振动量测量系统的原理框图
关键词:加速度传感器、振动、磁电式速度传感器
1引言
机械振动是自然界、工程技术和日常生活中普遍存在的物理现象。
各种机器、仪器和设备在其运行时,由于诸如回转件的不平衡、负载的不均匀、结构刚度的各向异性、润滑状况的不良及间隙等原因而引起力的变化、各部件之间的碰撞和冲击,以及由于使用、运输和外界环境条件下能量的传递、存储和释放等都会诱发或激励机械振动。
2振动概述
2.1振动测量方法分类
振动测量方法按振动信号转换的方式可分为电测法、机械法和光学法。
各测量方法的原理及优缺点见表1.
表1振动测量方法分类
2.2振动测试的内容:
1. 振动基本参数的测量。
测量振动物体上某点的位移、速度、加速度、频率和相位。
其目的是了解被测对象的振动状态、评定振动量级和寻找振源,以及进行监测、诊断和评估。
2. 结构或部件的动态特性测量。
以某种激振力作用在被测件上,对其受迫振动进行测试,以便求得被测对象
的振动力学参量或动态性能,如固有频率、阻尼、阻抗、响应和模态等。
这类测试又可分为振动环境模拟试验、机械阻抗试验和频率响应试验等。
2.3振动测量的基本原理与方法
振动检测按测量原理可分为相对式与绝对式(惯性式)两类。
振动检测按测量方法可分为接触式与非接触式两类。
2.3.1相对式振动测量
相对式振动测量是将振动变换器安装在被测振动体之外的基础上,它的测头与被测振动体采用接触或非接触的测量。
所以它测出的是被测振体相对于参考点的振动量
图1 相对式测振仪的原理
1测量针与笔 2 被测物体 3 走动纸
2.3.2绝对式振动测量
采用弹簧—质量系统的惯性型传感器(或拾振器),把它固定在振动体上进行测量,所以测出的是被测振动体相对于大地或惯性空间的绝对运动。
图2 绝对式测振仪原理
1质量块 2 弹簧 3 阻尼器 4 壳体机座 5 振动体
3 常用传感器
3.1 常用的测振传感器
测振传感器,是将振动量变换成相应电信号的装置。
根据参考坐标的不同,测振传感器分为相对式与绝对式两类。
相对式测振传感器所测出的是被测物体相对于某一参考“静止”坐标物体的振动;绝对式测振传感器所测的则是绝对量,在振动测试中,最常用的是压电式加速度传感器和磁电式速度传感器,它们都是惯性式测振传感器。
3.1.1压电式加速度传感器
压电式加速度计是利用压电效应将与相对位移成正比的弹性力转换成电信号输出的惯性式加速度计。
图3压电式加速度计结构
S 压紧弹簧 M 质量块 P 压电片 B 基座 L 引出线
图 4 压电式加速度计的安装方法及幅频特性曲线
3.1.2压电式加速度计的影响因素
对给定的压电材料而言,灵敏度随质量块的增大或压电元件的增多而增大。
一般来说,加速度计尺寸越大,其固有频率越低。
因此选用加速度计时应当权衡灵敏度和结构尺寸、附加质量的影响和频率响应特性之间的利弊。
横向灵敏度:压电晶体加速度计的横向灵敏度表示它对横向(垂直于加速度计轴线)振动的敏感程度,横向灵敏度常以主灵敏度(即加速度计的电压灵敏度或电荷灵敏度)的百分比表示。
一般在壳体上用小红点标出最小横向灵敏度方向,一个优良的加速度计的横向灵敏度应小于主灵敏度的3%。
因此,压电式加速度计在测试时具有明显的方向性。
3.1.3磁电式速度计
磁电式速度计是利用电磁感应原理将惯性系统中质量块与壳体的相对速度变换成输出电压信号的一种测振传感器。
磁电式速度计的工作原理:当有一线圈在穿过其磁通发生变化时,会产生感应电动势,电动势的输出与线圈的运动速度成正比。
图5 磁电式相对速度传感器
1 顶杆
2 弹簧片
3 磁铁
4 线圈
5 引出线
6 壳
3.2 振动量的测试系统
正弦测量系统:适用于按简谐振动规律的系统。
对机电产品进行动态性能测试及环境考验时,也都是用正弦测量系统测量其响应。
正弦测量系统的优点在于测量比较精确,因而也最为常用。
应用正弦测量系统,除了测量振幅外,有时还要求测量振幅对于激励力的相位差,以及观察振动波形的畸变情况。
典型的正弦测量系统如图6所示。
图6 测试系统框图
总结
随着现代工业技术的发展,对各种机械设备提出了低振动和低噪声的要求,尽管振动的理论研究已经发展到很高的水平,但是实际所遇到的振动问题非常复杂,结构中的许多参数,如阻尼系数、边界条件等要通过实验来确定。
对于现成的机械或结构,为改善其抗震性能,也要测量振动的强度(振级)、频谱甚至动态响应,以了解振动的状况、寻找振源,采取合理的减振措施(如隔振、吸振、阻振等)。
因而振动的测试在生产和科研的许多方面占有重要的地位
参考文献
[1]廖伯偷,机械故障诊断基础.北京:冶金工业出版社.1994.
[2]钟秉林等.机械故障诊断学.机械工业出版社.1997.
[3]平鹏等.机械工程测试与数据处理技术.冶金工业出版社.2001.4
[4]张雄伟.DSP 集成开发与应用实例[M].北京:电子工业出版社, 2002.
[5]卢文祥.机械工程测试·信息·信号分析[M].武汉:华中理工大学出版社,2003.。