大学物理机械振动ppt

合集下载

大学物理机械振动和机械波ppt课件

大学物理机械振动和机械波ppt课件

2024/1/26
12
03
驻波形成条件及其性质分析
Chapter
2024/1/26
13
驻波产生条件及特点描述
产生条件
两列沿相反方向传播、振幅相同、频 率相同的波叠加。
特点描述
波形不传播,能量在波节和波腹之间 来回传递,形成稳定的振动形态。
2024/1/26
14
驻波能量分布规律探讨
能量分布
驻波的能量主要集中在波腹处,波节处能量为零。
2024/1/26
16
04
多普勒效应原理及应用举例
Chapter
2024/1/26
17
多普勒效应定义及公式推导
2024/1/26
定义
当波源与观察者之间存在相对运动时,观察者接收到的波的频率会发生变化,这种现象 称为多普勒效应。
公式推导
设波源发射频率为f0,波速为v,观察者与波源相对运动速度为vr,则观察者接收到的 频率为f=(v±vr)/v×f0,其中“+”号表示观察者向波源靠近,“-”号表示观察者远离
Chapter
2024/1/26
25
非线性振动概念引入和分类
非线性振动定义
描述系统振动特性不满足叠加原理的振动现象。
分类
根据振动性质可分为自治、非自治、周期激励和 随机激励等类型。
与线性振动的区别
线性振动满足叠加原理,而非线性振动则不满足 。
2024/1/26
26Biblioteka 混沌理论基本概念阐述混沌定义
确定性系统中出现的内在随 机性现象。
受迫振动
物体在周期性外力作用下所发生的振动。
共振现象
当外力的频率与物体的固有频率相等时,物体的振幅达到最大的现象。

大学物理 振动

大学物理 振动
第二象限
P
A
M
第三象限
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
P
A
第三象限 M
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
P
A
第三象限
M
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
P
第三象限
A
M
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
第三象限
第一象限
P
A
x
M
第四象限
注意:旋转矢量在第4象限 速度V〉0
第二象限
第三象限
第一象限
P
A
x
M
第四象限
注意:旋转矢量在第4象限 速度V〉0
第二象限
第三象限
第一象限
A
M Px
第四象限
注意:旋转矢量在第4象限 速度V〉0
第二象限
第三象限
第一象限
A
M Px
第四象限
第二象限 第三象限
t=t
51
一、同方向同频率的简谐振动的合成
1、解析法
x1=A1cos( t+ 1) x2=A2cos( t+ 2)
合振动 :
x x1 x2 A1 cos( t 1) A2 cos( t 2 )
(A1 cos1 A2 cos2) cos t (A1 sin1 A2 sin2)sin t
Acos
d 2t l
令 g l 2 则有:
d 2 2 0

大学物理 机械振动课件

大学物理 机械振动课件
当 = (2k+1) , k=0,±1,±2...
两振动步调相反,称反相
当0
2 超前于1 或 1 滞后于 2
位相差反映了两个振动不同程度的参差错落
三、简谐振动的旋转矢量表示法
t=t A
t+0
0
A t=0
o
x
x
x Acos(t 0 )
旋转矢量—— 确定 和研究振动合成很方便
t
A
t=0
k J
R2
T 2 2 m J R2
k
例:已知某简谐振动的 速度与时间的关系曲线如图所
示,试求其振动方程。 解:设振动方程为
v(cms 1)
31.4
x Acos(t 0 )
15.7
v0 Asin0 15.7
0 15.7
1
t(s)
x0 Acos0 0
31.4
Q A vm 31.4
sin2 (
t
0 )
1 kA2 2
cos2 (t
0 )
谐振动的动能和势能是时间的周期性函数
动 能
Ek
1 2
mv 2
1 2
kA2
sin2 (
t
0
)
Ek max
1 2
kA2
Ekmin 0
1
Ek T
t T t
Ek dt
1 4
kA2

Ep
1 2
kx 2

1 2
kA2
cos 2 ( t
0
)
E pmax , E pmin , E p
J
mgh
例4.1 证明竖直弹簧振子的振动是简谐振动(自学)
§4.2 简谐振动的运动学

大学物理知识点总结(振动及波动)省公开课获奖课件市赛课比赛一等奖课件

大学物理知识点总结(振动及波动)省公开课获奖课件市赛课比赛一等奖课件
2、波旳干涉(含驻波)。 3、波旳能量旳求法。 4、多普勒效应。
相位、相位差和初相位旳求法: 解析法和旋转矢量法。
1、由已知旳初条件求初相位:
①已知初位置旳大小、正负以及初速度旳正负。
[例1]已知某质点振动旳初位置
y0
A 2
且v0
0

y A cos(t ) y Acos(t )
3
3
2
1
2
r2 r1
干涉加强: 2k (k 0,1,2,...)
若1 2 r2 r1 k
干涉减弱: (2k 1) (k 0,1,2,...)
若1 2
(2k 1)
2
3)驻波(干涉特例) 能量不传播
波节:振幅为零旳点 波腹:振幅最大旳点
多普勒效应: (以媒质为参照系)
所以y
2cos(πt 2
π3 );
(2)u
T
1,y
2cos[π(t 2
-
x)π3 ]
t(s)
[例2] 一平面简谐波在 t = 0 时刻旳波形图,设此简谐波旳频率
为250Hz,且此时质点P 旳运动方向向下 , 200m 。
求:1)该波旳波动方程;
2)在距O点为100m处质点旳振动方程与振动速度体现式。
动能势能相互转化
简谐振动旳描述
一、描述简谐振动旳物理量
① 振幅A:
A
x02
v02
2
② 角频率 : k
ห้องสมุดไป่ตู้
2
m
T
③ 相位( t + ) 和 初相 :
tg v0 x0
旳拟定!!
④相位差 : (2t 2 ) (1t 1 )
⑤周期 T 和频率 ν : T 2

大学物理-机械振动

大学物理-机械振动
交通工具的不舒适
机械振动也会影响交通工具的舒适 度,如火车、汽车等在行驶过程中 产生的振动,会让乘客感到不适。
机械振动在工程中的应用
振动输送
利用振动原理实现物料的输送,如振动筛、振动输送机等。
振动破碎
利用振动产生的冲击力破碎硬物,如破碎机、振动磨等。
振动减震
在建筑、桥梁等工程中,采用减震措施来减小机械振动对结构的影 响,提高结构的稳定性和安全性。
感谢您的观看
THANKS
机械振动理论的发展可以追溯到 古代,如中国的编钟和古代乐器 的制作。
近代发展
随着物理学和工程学的发展,人 们对机械振动的认识不断深入, 应用范围也不断扩大。
未来展望
随着科技的不断进步,机械振动 在新能源、新材料、航空航天等 领域的应用前景将更加广阔。
02
机械振动的类型与模型
简谐振动
总结词
简谐振动是最基本的振动类型,其运动规律可以用正弦函数或余弦函数描述。
机械振动在科研中的应用
振动谱分析
01
通过对物质在不同频率下的振动响应进行分析,可以研究物质
的分子结构和性质。
振动控制
02
通过控制机械振动的参数,实现对机械系统性能的优化和控制,
如振动减震、振动隔离等。
振动实验
03
利用振动实验来研究机械系统的动态特性和响应,如振动台实
验、共振实验等。
05
机械振动的实验与测量
根据实验需求设定振动频率、幅度和波形等 参数。
启动实验
启动振动台和数据采集器,开始记录数据。
数据处理
将采集到的数据导入计算机,进行滤波、去 噪和整理,以便后续分析。
绘制图表
将处理后的数据绘制成图表,如时域波形图、 频谱图等,以便观察和分析。

大学物理机械振动ppt资料

大学物理机械振动ppt资料
x
o
to
o
t
t
上一页 下一页
x Acost
A为位移振幅
v
dx dt
Asint
vm
cos(t
2
)
vm A为速度振幅
a
d2x dt 2
2 Acost
am
cos(t
)
am 2 A为加速度振幅
a 2x
上一页 下一页
x (a)o
v (b)o
T
t1 t2
t1
t2
a (c)o
t1 t2
t3 t
(2)







为d 2x dt 2
2
x
0的



如 果 能 化 为 这 种 形 式 ,也 就 证 明 了 振 动 为 简 谐振 动 。
(3)由动力学方程写出, 求出周期T或频率。
上一页 下一页
例 . 确定单摆固有角频率 及周期T。
解:根据牛顿第二定律
Ft mg sin
当很小时,sin
d 2
dt 2
g
l
0
ml
d 2
dt 2
mg
ml
l
et
d 2
m
dt2 Ft mg
单摆的小角摆
g
l
T 2 l
g
动是简谐振动
微分方程的解为 0 cost
上一页 下一页
上一页 下一页
例: 确定复摆 ( 5 )的固有周期T。
M mgl sin mgl
mgl
J
d 2
dt 2
o
d 2
dt 2

上海交通大学大学物理课件-机械振动

上海交通大学大学物理课件-机械振动

y A
y
F [(V0 yS)]g mg
A
O
(V0g mg) ySg
m
ySg
m
m
d2 y dt 2
ySg
d2 dt
y
2

Sg
m
y

0
Sg
m
[例7-4]质量为m的刚体可绕固定水平轴o摆动。设刚体重心
C到轴o的距离为b,刚体对轴o的转动惯量为J。试证刚体
T 2π
T 2π 2π m

k
T 2π
-由振子性质确定-固有周期
= 1/T (Hz) -谐振动的频率
T 2π 2π m

k
T 2π
-由振子性质确定-固有周期
= 1/T (Hz) -谐振动的频率
而 2π k
Tm
-谐振动的角频率
—2秒内的振动次数
t =1s时x =-2cm且向x正向运动, 写出振动表达式。
A t=0
解:由题意,T = 2 s
t=1s 时的振动矢量如图所示。
t=0s 时的振动矢量方向应为

x
A1 矢量前1s时的旋转矢量。
(即半个周期前)
t = 1s
A1
与 A1 矢量夹角为 ,如图。 时矢量位置
由图, = /3
x
=
4cos(t
第 7 章 机械振动
物理系统受到外界扰动时,系统状态在平衡态附 近往复变化-周期运动或称振动。
物理量(如位移、电流等) 在某一数值附近反复变化。
振动有各种不同的形式:
•机械振动
L
•电磁振动
•微观振动(如晶格点阵

2024版大学物理PPT完整全套教学课件pptx

2024版大学物理PPT完整全套教学课件pptx

大学物理的研究对象和任务研究物质的基本结构、相互作用和物质最基本最普遍的运动形式及其相互转化规律的学科。

作为自然科学的带头学科,物理学研究大至宇宙、小至基本粒子等一切物质最基本的运动形式和规律。

它的理论结构充分地运用数学作为自己的工作语言,以实验作为检验理论正确性的唯一标准,它是当今最精密的一门自然科学学科。

03物理学是一门以实验为基础的自然科学,观察和实验是物理学的基本研究方法,通过实验可以验证物理假说和理论,发现新的物理现象和规律。

观察和实验理想模型是物理学中经常采用的一种研究方法,它忽略了次要因素,突出了主要因素,使物理问题得到简化。

建立理想模型数学是物理学的重要工具,通过数学方法可以精确地描述物理现象和规律,推导物理公式和定理。

数学方法大学物理的研究方法学习大学物理首先要掌握基本概念和基本规律,理解它们的物理意义和适用范围。

掌握基本概念和基本规律大学物理实验是学习物理学的重要环节,通过实验可以加深对物理概念和规律的理解,培养实验技能和动手能力。

注重实验和实践学习大学物理要注重培养物理思维,即运用物理学的方法和观点去分析和解决问题的能力。

培养物理思维大学物理涉及的知识面很广,包括力学、热学、电磁学、光学、原子物理学等,因此要拓宽知识面,掌握不同领域的知识。

拓宽知识面大学物理的学习方法和要求01位置矢量与位移02位置矢量的定义和性质03位移的计算方法和物理意义010203速度的定义、种类和计算加速度的定义、种类和计算速度与加速度质点运动的描述01运动学方程与运动图像02运动学方程的建立和求解03运动图像的绘制和分析圆周运动的描述圆周运动的定义和分类圆周运动的物理量描述1 2 3匀速圆周运动匀速圆周运动的特点和性质匀速圆周运动的实例分析01变速圆周运动02变速圆周运动的特点和性质03变速圆周运动的实例分析01 02 03参考系与坐标系参考系的选择和建立坐标系的种类和应用相对速度与牵连速度相对速度的定义和计算牵连速度的定义和计算01加速度合成定理与科里奥利力02加速度合成定理的内容和应用03科里奥利力的定义、性质和应用01牛顿第一定律物体在不受外力作用时,保持静止或匀速直线运动状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k1 k2
两弹簧并联 k k1 k2
kx1x1
x1
k2 x2 x2
x2
k1
k1 k2
x
d2x dt 2
k m
x
0
若k1
k 2, 则k
k1 2
若k1 k2,则k 2k1
上一页 下一页
k,
m
k串 k,串 ,
k并 k,并
上一页 下一页
t : 相位,或位相,或相(rad) 相位决定谐振子某
上一页 下一页
Fm
ox
x
弹簧原长时小球所在处(平衡位置)为坐标原点.
d2x F kx m dt2
令 k 2
m
d2x dt 2
k m
x
0
d2x dt 2
2
x
0
x Acost 振动方程
由系统本身性质决定,与外界无关。
上一页 下一页
要定义或证明一个运动是简谐振动,可以从 是否满足下面三个方程之一为依据。
mgl J
0
转动正向
l
*C
令 2 mgl , mgl
J
J
T 2 2 π
J mgl
mg
( C点为质心)
m cos(t )
上一页 下一页
讨论:已知k1和k2,求两弹簧串联后的等效劲度系数。
k1
P
k2 F m
ox
x
F
k2 x2
m
d2x dt 2
k1k2 k1 k2
x
m
d2 dt
x
2
两弹簧串联 k k1k2
d 2
dt 2
g
l
0
ml
d 2
dt 2
mg
ml
l
et
d 2
m
dt2 Ft mg
单摆的小角摆
g
l
T 2 l
g
动是简谐振动
微分方程的解为 0 cost
上一页 下一页
上一页 下一页
例: 确定复摆 ( 5 )的固有周期T。
M mgl sin mgl
mgl
J
d 2
dt 2
o
d 2
dt 2
T 2
T 2
2)频率:单位时间内完成全振动的次数(Hz)
1 , 2 2
T
T
上一页 下一页
3)角频率:2秒内完成全振动的次数(s-1)
2 2 (频率决定谐振动的频繁程度)
T
对于弹簧振子: k , T 2 m , 1 k
m
k
2 m
☆ 确定振动系统周期的方法:
(1)分析受力情况,由F ma或M J,写出动力学方程
2
(3)
cos
sin
x0
A v0
A
(4) ( tan v0 ) x0
注 :1.由(4)确定的值在 ~ 或0 ~ 2范围内
2.振幅不仅与振子的固有性质有关,还与初始条件有关。
上一页 下一页
例. 一轻弹簧的下端挂一重物,上端固定在支架上,
弹簧伸长量l=9.8cm。如果给物体一个向下的瞬时冲击
周期T 矢量旋转一圈所需时间T 2
频率 矢量单位时间内旋转的圈数 相位(t ) t时刻矢量与x轴的夹角
P
P
t P0
初相 t 0时矢量与x轴的夹角 A
o
Ax
相位差 两矢量A1, A2的夹角
t
上一页 下一页
A1 A2
同相
A2 A1
k g 10(rad s1)
ml
初始条件:t 0时,x0 0,v0 1m s1
A
x02
v0
2
0
1
2
0.1m
10
cos x0 0
A
sin v0 0
2
A
物体的振动方程为:x 0.1cos10t m
2
上一页 下一页
振幅A 矢量A的长
角频率 矢量逆时针匀速旋转的角速度
F kx
d2x dt 2
2
x
0
动力学特点
x Acost
运动学特点
某物理量如果满足后两个方程,那么这个物理量 是简谐振动量。
上一页 下一页
A (振幅决定谐振子运动的范围)
振子偏离平衡位置的最大位移的绝对值(m)
1)周期 T :完成一次全振动所需时间 (s)
Acos( t ) Acos[(t T ) ]
第二篇 机械振动和机械波
第四章 机械振动
(6.5.1)
上一页 下一页
一、机械振动——物体在平衡位置附近的往复运动
m o
(a)单摆
m o
(b)扭摆
(d)浮体
上一页 下一页
(1)、周期性 (2)、有一个平衡位置
(1)、回复力 (2)、惯性
振动——某物理量在定值上下往复变化 二、研究简谐振动的意义 (1)简谐振动是一种最简单的振动,容易研究。 (2)复杂的振动是由简谐振动合成的。
落后
x
o
to
o
t
t
上一页 下一页
x Acost
A为位移振幅
v
dx dt
Asint
vm
cos(t
2
)
vm A为速度振幅
a
d2x dt 2
2 Acost
am
cos(t
)
am 2 A为加速度振幅
a 2x
上一页 下一页
x (a)o
v (b)o
T
t1 t2
t1
t2
a (c)o
t1 t2
t3 t
2
2
t3
t
T
t
T
t3 t
4
1, 将x t图左移T 便得v t图,再左移T 便得a t图。
4
4
上一页 下一页
三、由初始条件确定振动的振幅和初相。
x Acost ,
v Asint
设t 0时,x x0,v v0

有v0x0AAcossin
(1) (2)
A
x02
v02
力,使它具有 1m s1的向下的速度,它就上下振动起
来。试证明物体是作简谐振动,并写出其振动方程式。
解 : 取物体的平衡位置为原点o,
向下为x轴正方g
k
x
l
m
d2 dt
x
2
整理可得
d2x dt 2
k m
x
0
由此可知物体作简谐振动。
v0 m
o
m
x
上一页 下一页
当2 1时, 2 1
上一页 下一页
若 2k , k 0,1, 2, 3 时, 称两个振动同相。
若 2k 1 , k 0,1, 2, 3 时, 称两个振动反相。
若t 2 t 1,称振动2超前于振动1。
若t 2 t 1,称振动2落后于振动1。
0同相 x
π 反相
x
超前
为其它
: t 0时的相位, 称为初相. 一瞬时的运动状态
: 相位差,即两个相位之差。
1)对同一简谐运动,相位差可以给出两运动状
态间变化所需的时间. (t2 ) (t1 )
t
t2
t1
2)对于两个同频率的简谐运动,相位差表示它
们间步调上的差异.(解决振动合成问题)
2t 2 1t 1 2 1t 2 1
(2)







为d 2x dt 2
2
x
0的



如 果 能 化 为 这 种 形 式 ,也 就 证 明 了 振 动 为 简 谐振 动 。
(3)由动力学方程写出, 求出周期T或频率。
上一页 下一页
例 . 确定单摆固有角频率 及周期T。
解:根据牛顿第二定律
Ft mg sin
当很小时,sin
相关文档
最新文档