清华大学《大学物理》习题库试题及答案--04-机械振动习题

合集下载

机械振动试题(含答案)

机械振动试题(含答案)

机械振动试题(含答案)一、机械振动选择题1.如图所示为某物体系统做受迫振动的振幅A随驱动力频率f的变化关系图,则下列说法正确的是A.物体系统的固有频率为f0B.当驱动力频率为f0时,物体系统会发生共振现象C.物体系统振动的频率由驱动力频率和物体系统的固有频率共同决定D.驱动力频率越大,物体系统的振幅越大2.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为()A.T=2πr GMlB.T=2πrlGMC.T=2πGMr lD.T=2πlrGM3.下列叙述中符合物理学史实的是()A.伽利略发现了单摆的周期公式B.奥斯特发现了电流的磁效应C.库仑通过扭秤实验得出了万有引力定律D.牛顿通过斜面理想实验得出了维持运动不需要力的结论4.如图所示,弹簧下面挂一质量为m的物体,物体在竖直方向上做振幅为A的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A.弹簧的弹性势能和物体动能总和不变B.物体在最低点时的加速度大小应为2gC.物体在最低点时所受弹簧的弹力大小应为mgD.弹簧的最大弹性势能等于2mgA5.如图所示是在同一地点甲乙两个单摆的振动图像,下列说法正确的是A .甲乙两个单摆的振幅之比是1:3B .甲乙两个单摆的周期之比是1:2C .甲乙两个单摆的摆长之比是4:1D .甲乙两个单摆的振动的最大加速度之比是1 :46.某质点做简谐运动,其位移随时间变化的关系式为5sin 4x t π=(cm) ,则下列关于质点运动的说法中正确的是( )A .质点做简谐运动的振幅为 10cmB .质点做简谐运动的周期为 4sC .在 t=4s 时质点的加速度最大D .在 t=4s 时质点的速度最大 7.在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议,可行的是( )A .适当加长摆线B .质量相同,体积不同的摆球,应选用体积较大的C .单摆偏离平衡位置的角度要适当大一些D .当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期8.图(甲)所示为以O 点为平衡位置、在A 、B 两点间做简谐运动的弹簧振子,图(乙)为这个弹簧振子的振动图象,由图可知下列说法中正确的是( )A .在t =0.2s 时,弹簧振子可能运动到B 位置B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的速度相同C .从t =0到t =0.2s 的时间内,弹簧振子的动能持续地增加D .在t =0.2s 与t =0.6s 两个时刻,弹簧振子的加速度相同9.甲、乙两单摆的振动图像如图所示,由图像可知A.甲、乙两单摆的周期之比是3:2 B.甲、乙两单摆的摆长之比是2:3C.t b时刻甲、乙两摆球的速度相同D.t a时刻甲、乙两单摆的摆角不等10.如图所示,一轻质弹簧上端固定在天花板上,下端连接一物块,物块沿竖直方向以O 点为中心点,在C、D两点之间做周期为T的简谐运动。

清华大学《大学物理》习题库试题及答案力热电三合一版

清华大学《大学物理》习题库试题及答案力热电三合一版

力学部分一、选择题1.0018:某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向(B) 匀加速直线运动,加速度沿x 轴负方向(C) 变加速直线运动,加速度沿x 轴正方向(D) 变加速直线运动,加速度沿x 轴负方向 [ ] 2.5003:一质点在平面上运动,已知质点位置矢量的表示式为(其中a 、b 为常量),则该质点作(A) 匀速直线运动 (B) 变速直线运动(C) 抛物线运动 (D)一般曲线运动 [ ] 3.0015:一运动质点在某瞬时位于矢径的端点处, 其速度大小为(A) (B) (C) (D) 4.0508:质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈。

在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2p R /T , 2p R/T (B) 0 , 2πR /T (C) 0 , 0 (D) 2πR /T , 0. [ ] 5.0518:以下五种运动形式中,保持不变的运动是(A) 单摆的运动 (B) 匀速率圆周运动(C) 行星的椭圆轨道运动 (D) 抛体运动 (E) 圆锥摆运动 [ ]6.0519:对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A) 切向加速度必不为零(B) 法向加速度必不为零(拐点处除外)(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零(D) 若物体作匀速率运动,其总加速度必为零 (E) 若物体的加速度为恒矢量,它一定作匀变速率运动 [ ] 7.0602:质点作曲线运动,表示位置矢量,表示速度,表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) , (2) , (3) , (4)(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的 [ ]8.0604:某物体的运动规律为,式中的k 为大于零的常量。

清华大学《大学物理》习题库试题及答案

清华大学《大学物理》习题库试题及答案

清华大学《大学物理》习题库试题及答案一、选择题1.3165:在相同的时间内,一束波长为?的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等2.3611:如图,S1、S2是两个相干光源,它们到P点的距离分别为r1和r2。

路径S1P垂直穿过一块厚度为t1,折射率为n1的介质板,路径S2P垂直穿过厚度为t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于t1 r1 (r?nt)?(r?nt)22111 (A) 2P S1 t2 n1 r2 (B) [r2?(n2?1)t2]?[r1?(n1?1)t2] (C) (r2?n2t2)?(r1?n1t1)S2 n2(D) n2t2?n1t13.3664:如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e,并且n1<n2>n3,?1为入射光在折射率为n1 n1 ???的媒质中的波长,则两束反射光在相遇点的相位差为(A) 2?n2e / ( n1 ?1) (B)[4?n1e / ( n2 ?1)] + ?? e n2 (C) [4?n2e / ( n1 ?1) ]+???(D) 4?n2e / ( n1 ?1)n3 4.3169:用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则:(A) 干涉条纹的宽度将发生改变(B) 产生红光和蓝光的两套彩色干涉条纹(C) 干涉条纹的亮度将发生改变(D) 不产生干涉条纹5.3171:在双缝干涉实验中,两条缝的宽度原来是相等的。

若其中一缝的宽度略变窄(缝中心位置不变),则(A) 干涉条纹的间距变宽(B) 干涉条纹的间距变窄(C) 干涉条纹的间距不变,但原极小处的强度不再为零(D) 不再发生干涉现象6.3172:在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝(B) 使两缝的间距变小(C) 把两个缝的宽度稍微调窄(D) 改用波长较小的单色光源7.3498:在双缝干涉实验中,入射光的波长为?,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大?,则屏上原来的明纹处(A) 仍为明条纹(B) 变为暗条纹(C) 既非明纹也非暗纹;S1 (D) 无法确定是明纹,还是暗纹O 8.3612:在双缝干涉实验中,若单色光源S到两缝S1、S2距离S 相等,则观察屏上中央明条纹位于图中O处。

清华大学《大学物理》试题及答案

清华大学《大学物理》试题及答案

热学部分一、选择题1.4251:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值(A)(B) (C) (D) [ ]2.4252:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值(A) (B) (C) (D) 0 [ ]3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能和平均平动动能 有如下关系:(A) 和都相等 (B) 相等,而不相等(C) 相等,而不相等 (D) 和都不相等 [ ]4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3 [ ] 5.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)? (A) 66.7% (B) 50% (C) 25% (D) 0 [ ] 6.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(EK /V ),单位体积内的气体质量,分别有如下关系:(A) n 不同,(EK /V )不同,不同 (B) n 不同,(EK /V )不同,相同(C) n 相同,(EK /V )相同,不同 (D) n 相同,(EK /V )相同,相同 [ ] 7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强 (D) 温度相同,但氦气的压强小于氮气的压强 [ ] 8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。

清华大学《大学物理》习题库试题及答案_力学习题

清华大学《大学物理》习题库试题及答案_力学习题

一、选择题1.0018:某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴向(B) 匀加速直线运动,加速度沿x 轴负方向(C) 变加速直线运动,加速度沿x 轴向(D) 变加速直线运动,加速度沿x 轴负方向[ ] 2.5003:一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22 (其中a 、b 为常量),则该质点作(A) 匀速直线运动 (B) 变速直线运动(C) 抛物线运动 (D)一般曲线运动 [ ] 3.0015:一运动质点在某瞬时位于矢径 y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D)22d d d d t y t x 4.0508:质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈。

在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2p R /T , 2p R/T (B) 0 , 2 R /T (C) 0 , 0 (D) 2 R /T , 0. [ ] 5.0518:以下五种运动形式中,a 保持不变的运动是(A) 单摆的运动 (B) 匀速率圆周运动(C) 行星的椭圆轨道运动 (D) 抛体运动 (E) 圆锥摆运动 [ ]6.0519:对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A) 切向加速度必不为零(B) 法向加速度必不为零(拐点处除外)(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零(D) 若物体作匀速率运动,其总加速度必为零 (E) 若物体的加速度a 为恒矢量,它一定作匀变速率运动 [ ] 7.0602:质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t d /d v , (2) v t r d /d , (3) v t S d /d , (4) ta t d /d v(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的 [ ]8.0604:某物体的运动规律为t k t 2d /d v v ,式中的k 为大于零的常量。

大学物理(第四版)课后习题及答案-机械振动

大学物理(第四版)课后习题及答案-机械振动

13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相=3π/4。

试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。

13-1分析 弹簧振子的振动是简谐运动。

振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量。

求运动方程就要设法确定这三个物理量。

题中除A 、ϕ已知外,ω可通过关系式Tπω2=确定。

振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。

解 因Tπω2=,则运动方程()⎪⎭⎫⎝⎛+=+=ϕπϕωt T t A t A x 2cos cos根据题中给出的数据得]75.0)2cos[()100.2(12ππ+⨯=--t s m x振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+⋅⨯-==---t s s m dt dx vπππ75.0)2cos[()108(/112222+⋅⨯-==---t s s m dt x d ax-t 、v-t 及a-t 图如图13-l 所示13-2 若简谐运动方程为⎥⎦⎤⎢⎣⎡+=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s 时的位移、速度和加速度。

13-2分析 可采用比较法求解。

将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量。

运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。

解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()ϕω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相πϕ25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。

(2)t= 2s 时的位移、速度、加速度分别为mm x 21007.7)25.040cos()10.0(-⨯=+=ππ)25.040sin()2(/1πππ+⋅-==-s m dt dx v )25.040cos()40(/2222πππ+⋅-==-s m dt x d a13-3 设地球是一个半径为R 的均匀球体,密度ρ5.5×103kg •m -3。

4.大学物理机械振动习题解答

4.大学物理机械振动习题解答

习题四4-1 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;(2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).题4-1图解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统 是在 自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用0d d 222=+ξωξt描述时,其所作的运动就是谐振动. (1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线 性回复力.(2)小球在题4-1图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中 ,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题4-1图(b)所示.题中所述,S ∆<<R ,故RS∆=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有θθmg tmR -=22d d令Rg=2ω,则有 0d d 222=+ωθt4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.题4-2图解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k Fx +==串 所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k mT +===ππωπ串 (2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有2211x k x k x k +=并故 21k k k +=并 同上理,其振动周期为212k k mT +='π4-3 如题4-3图所示,物体的质量为m ,放在光滑斜面上,斜面与水平面的夹角为θ,弹簧的倔强系数为k ,滑轮的转动惯量为I ,半径为R .先把物体托住,使弹簧维持原长,然 后由静止释放,试证明物体作简谐振动,并求振动周期.题4-3图解:分别以物体m 和滑轮为对象,其受力如题4-3图(b)所示,以重物在斜面上静平衡时位置为坐标原点,沿斜面向下为x 轴正向,则当重物偏离原点的坐标为x 时,有221d d sin t xm T mg =-θ ①βI R T R T =-21 ②βR t x=22d d )(02x x k T += ③式中k mg x /sin 0θ=,为静平衡时弹簧之伸长量,联立以上三式,有kxR txR I mR -=+22d d )(令 ImR kR +=222ω 则有0d d 222=+x txω 故知该系统是作简谐振动,其振动周期为)/2(22222K R I m kRI mR T +=+==ππωπ4-4 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按20.1cos(8)(SI)3x t ππ=+的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t4-5 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x4-6 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向;(2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=⨯=-T A ∴1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E 4-7 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后 ,给予向上的初速度10s cm 0.5-⋅=v ,求振动周期和振动表达式.解:由题知12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又 s 26.12,51082.03===⨯==-ωπωT m k 即 m102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωφ==⨯⨯⨯=-=--即x v ∴ m )455cos(1022π+⨯=-t x4-8 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x 01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴πω65=故 m t x b )3565cos(1.0ππ+= 4-9 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动.(1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.解:(1)空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大. (2)按(3)所设坐标原点及计时起点,0=t 时,则kmgx -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有 Mm ghm v +=20于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)gm M khx v )(2tan 000+=-=ωφ (第三象限),所以振动方程为 ⎥⎦⎤⎢⎣⎡+++++=g m M kh t M m k gM m khk mg x )(2arctan cos )(214-10 有一单摆,摆长m 0.1=l ,摆球质量kg 10103-⨯=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量14s m kg 100.1--⋅⋅⨯=∆t F ,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程.解:由动量定理,有0-=∆⋅mv t F∴ 1-34s m 01.0100.1100.1⋅=⨯⨯=∆⋅=--m t F v按题设计时起点,并设向右为x 轴正向,则知0=t 时,100s m 01.0,0-⋅==v x >0∴ 2/30πφ=又 1s rad 13.30.18.9-⋅===l g ω∴m 102.313.301.0)(302020-⨯===+=ωωv v x A 故其角振幅rad 102.33-⨯==ΘlA小球的振动方程为rad )2313.3cos(102.33πθ+⨯=-t4-11 有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动的位相差为6π,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差.题4-11图解:由题意可做出旋转矢量图如下. 由图知01.02/32.0173.02)2.0()173.0(30cos 222122122=⨯⨯⨯-+=︒-+=A A A A A ∴ m 1.02=A 设角θ为O AA 1,则θcos 22122212A A A A A -+=即 01.0173.02)02.0()1.0()173.0(2cos 2222122221=⨯⨯-+=-+=A A A A A θ 即2πθ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π. 4-12 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x 解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅cm1021=+=AAA(2)∵,334πππφ=-=∆∴合振幅0=A4-13 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m)62cos(4.021ππtxtx试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。

清华大学大学物理试题及答案

清华大学大学物理试题及答案

清华大学大学物理试题及答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】热学部分 一、选择题 1.4251:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v [ ]2.4252:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值(A)m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0 [ ] 3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等 (B) ε相等,而w 不相等(C) w 相等,而ε不相等 (D) ε和w 都不相等 [ ]4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3 [ ]5.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)(A) % (B) 50% (C) 25% (D) 0 [ ]6.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(EK /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(EK /V )不同,ρ不同 (B) n 不同,(EK /V )不同,ρ相同(C) n 相同,(EK /V )相同,ρ不同 (D) n 相同,(EK /V )相同,ρ相同[ ]7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强 [ ]8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x 1 = A cos(ωt + α)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。

则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。

若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B)ω2 (C) 2/ω (D) ω /2(B) 4.3396:一质点作简谐振动。

其运动速度与时间的曲线如图所示。

若质点的振动规律用余弦函数描述,则其初相应为(A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6(E) -2π/35.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为1T '和2T '。

则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。

从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 31 (E) s 217.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。

当重物通过平衡位置且向规定的正方向运动时,开始计时。

则其振动方程为:(A))21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C))π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取v 213030图作坐标原点。

若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为(A) 1 s (B) (2/3) s (C) (4/3) s (D) 2 s9.5501:一物体作简谐振动,振动方程为)41cos(π+=t A x ω。

在 t = T /4(T 为周期)时刻,物体的加速度为(A)2221ωA -(B) 2221ωA (C) 2321ωA - (D) 2321ωA10.5502:一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A - (B) φωsin A (C) φωcos A -φωcos A 11.3030:两个同周期简谐振动曲线如图所示。

x 1的相位比x 2的相位(A) 落后π/2 (B) 超前π/2 (C) 落后π(D) 超前π12.3042:一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A21,且向x轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]13.3254:一质点作简谐振动,周期为T 。

质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为(A) T /4 (B) T /6 (C) T /8 (D) T /1214.3270:一简谐振动曲线如图所示。

则振动周期是 (A) 2.62 s (B) 2.40 s (C) 2.20 s (D) 2.00 s15.5186:已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。

则此简谐振动的振动方程为:(B) - (D)(A)(C)3270图(A))3232cos(2π+π=t x (B) )3232cos(2π-π=t x (C))3234cos(2π+π=t x (D) )3234cos(2π-π=t x (E))4134cos(2π-π=t x 16.3023放在固定的光滑斜面上,试判断下面哪种情况是正确的:(A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动 (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动 (C) 两种情况都可作简谐振动(D) 两种情况都不能作简谐振动17.3028:一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为(A) E 1/4 (B) E 1/2 (C) 2E 1 (D) 4 E 1 18.3393:当质点以频率ν 作简谐振动时,它的动能的变化频率为(A) 4 ν (B) 2 ν (C) ν (D) ν2119。

3560:弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A) kA 2 (B) 221kA(C) (1/4)kA 2 (D) 020.5182:一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 (A) 1/4 (B) 1/2 (C) 2/1 (D) 3/4 (E) 2/321.5504:一物体作简谐振动,振动方程为)21cos(π+=t A x ω。

则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为:(A) 1:4 (B) 1:2 (C) 1:1 (D) 2:1 (E) 4:122.5505:一质点作简谐振动,其振动方程为)cos(φω+=t A x 。

在求质点的振动动能时,得出下面5个表达式: (1) )(sin 21222φωω+t A m (2) )(cos 21222φωω+t A m(3) )sin(212φω+t kA (4) )(cos 2122φω+t kA (5) )(sin 22222φω+πt mA T其中m 是质点的质量,k 是弹簧的劲度系数,T 是振动的周期。

这些表达式中(A) (1),(4)是对的 (B) (2),(4)是对的 (C) (1),(5)是对的竖直放置放在光滑斜面上O(D) (3),(5)是对的 (E) (2),(5)是对的 23.3008:一长度为l 、劲度系数为k 的均匀轻弹簧分割成长度分别为l 1和l 2的两部分,且l 1 = n l 2,n 为整数. 则相应的劲度系数k 1和k 2为(A) 11+=n kn k , )1(2+=n k k (B) n n k k )1(1+=,12+=n kk (C) n n k k )1(1+=, )1(2+=n k k (D)11+=n kn k , 12+=n k k 24.3562:图中所画的是两个简谐振动的振动曲线。

若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23 (B) π (C) π21(D) 0 二、填空题:1.3009:一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示。

若0=t 时,(1) 振子在负的最大位移处,则初相为______________;(2) 振子在平衡位置向正方向运动,则初相为__________;(3) 振子在位移为A /2处,且向负方向运动,则初相为______。

2.3390:一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm 。

若令速度具有正最大值的那一时刻为t = 0,则振动表达式为_________________________。

3.3557:一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点。

已知周期为T ,振幅为A 。

(1)若t = 0时质点过x = 0处且朝x 轴正方向运动,则振动方程为 x =____________。

(2)若t = 0时质点处于Ax 21=处且向x 轴负方向运动,则振动方程为 x=_______________。

4.3816:一质点沿x 轴以 x = 0 为平衡位置作简谐振动,频率为 0.25 Hz 。

t = 0时,x = -0.37 cm 而速度等于零,则振幅是___________,振动的数值表达式为_____________________。

5.3817:一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A =_____________ ,初相φ =________________。

6.3818:两个弹簧振子的周期都是0.4 s ,设开始时第一个振子从平衡位置向负方向运动,经过0.5 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为____________。

7.3819:两质点沿水平x 轴线作相同频率和相同振幅的简谐振动,平衡位置都在坐标原点。

它们总是沿相反方向经过同一个点,其位移x 的绝对值为振幅的一半,则它们之间的A/2 -Ax 1相位差为___________。

8.3820:将质量为 0.2 kg 的物体,系于劲度系数k = 19 N/m 的竖直悬挂的弹簧的下端。

假定在弹簧不变形的位置将物体由静止释放,然后物体作简谐振动,则振动频率为__________,振幅为____________。

9.3033:一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________;ω =________________;φ =_______________。

10.3041:一简谐振动曲线如图所示,则由图可确定在t = 2s 时刻质点的位移为____________,速度为__________________。

11.3046:一简谐振动的旋转矢量图如图所示,振幅矢量长2cm ,则该简谐振动的初相为__________。

振动方程为______________________________。

12.3398:一质点作简谐振动。

其振动曲线如图所示。

根据此图,它的周期Tφ =_________________。

相关文档
最新文档