大学物理 机械振动与机械波

合集下载

机械振动机械波

机械振动机械波

机械振动机械波1. 引言机械振动和机械波是机械工程中重要的研究领域,它们在各个行业中都有广泛的应用。

机械振动研究的是物体在受到外力激励后产生的周期性运动,而机械波研究的是物体中能量传递的波动现象。

本文将介绍机械振动和机械波的基本概念、传播特性以及相关应用。

2. 机械振动2.1 振动的基本概念振动是物体围绕其平衡位置做周期性往复运动的现象。

物体在振动过程中会存在振幅、周期、频率等基本参数。

振幅表示振动的最大偏离量,周期表示振动一次所经历的时间,频率表示单位时间内振动的次数。

振动的基本参数可以通过物体的振动函数来描述。

2.2 单自由度振动系统单自由度振动系统是指只有一个自由度的振动系统,最简单的例子是弹簧振子。

弹簧振子由一个弹簧和一个质点组成,当质点受到外力激励时,会产生振动。

弹簧振子的振动可以用简谐振动来描述,简谐振动是一种最简单的周期性振动。

2.3 多自由度振动系统多自由度振动系统是指由多个自由度组成的振动系统,例如多个质点通过弹簧相互连接而成的系统。

多自由度振动系统的振动模式较为复杂,可以通过求解振动微分方程得到系统的振动模式和频率。

3. 机械波3.1 波动的基本概念波动是指能量传递在空间中传播的现象。

波动可以分为机械波和电磁波两大类,其中机械波是需要介质传播的波动现象。

机械波可以通过绳子上的波浪、水波以及地震波等来进行形象化理解。

3.2 机械波的分类根据振动方向和能量传播方向的不同,机械波可以分为横波和纵波两种。

横波是指振动方向垂直于能量传播方向的波动,例如绳子上的波浪;纵波是指振动方向和能量传播方向相同的波动,例如声波。

3.3 机械波的传播特性机械波的传播速度和频率有一定的关系,传播速度等于波动频率乘以波长。

波长是波动中一个完整波动周期所占据的距离。

不同介质中的机械波传播速度不同,波动传播过程中会发生折射、反射、衍射等现象。

4. 机械振动和机械波的应用机械振动和机械波在各个行业中都有广泛的应用。

机械振动与机械波 答案

机械振动与机械波 答案

衡水学院 理工科专业《大学物理B 》机械振动 机械波 习题解答命题教师:杜晶晶 试题审核人:杜鹏一、填空题(每空2分)1、一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取坐标原点。

若t =0时质点第一次通过x =-2cm 处且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为23s 。

2、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。

(a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为cos(2//2)x A t T ππ=-。

(b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为cos(2//3)x A t T ππ=+。

3、频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距 0.5 m 。

4、一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是 0.02m ,波长是 2.5m ,频率是 100 Hz 。

5、产生机械波的条件是有 波源 和 连续的介质 。

二、单项选择题(每小题2分)(C )1、一质点作简谐振动的周期是T ,当由平衡位置向x 轴正方向运动时,从1/2最大位移处运动到最大位移处的这段路程所需的时间为( )(A )T /12 (B )T /8 (C )T /6 (D ) T /4( B )2、两个同周期简谐振动曲线如图1所示,振动曲线1的相位比振动曲线2的相位( )图1(A )落后2π (B )超前2π (C )落后π (D )超前π ( C )3、机械波的表达式是0.05cos(60.06)y t x ππ=+,式中y 和x 的单位是m ,t 的单位是s ,则( )(A )波长为5m (B )波速为10m ⋅s -1 (C )周期为13s (D )波沿x 正方向传播( D )4、如图2所示,两列波长为λ的相干波在p 点相遇。

成都大学_大学物理(2)综合练习题及参考答案1(振动波光近代)

成都大学_大学物理(2)综合练习题及参考答案1(振动波光近代)
合振动方程x A cos(t 0 ) 0.05 2 cos(t )( SI ) 2

.一质点同时参与了两 个同方向的简谐振动, 它们的振动 9 0.05 cos(t 1 )( SI ),x2 0.05 cos(t )( SI ), 方程分别为 x1 4 12 其合成运动的运动方程 为x __________ __________ ____ .
8
解法三: 旋转矢量法
由旋转矢量图知, A1 A2 ,
A A1 A2 0.05 2 (m)
2 2
0

4


4


2
合振动方程x A cos(t 0 ) 即x 0.05 2 cos(t )( SI ) 2

光学
一、选择题
1.在双缝干涉实验中,屏幕E上的P点处是明纹.若将缝S 2盖住, 并在S1S 2连线的垂直平分面处放一高折射率介质反射面M,如图所示, 则此时( ).
2 2 3 C. x2 A cos(t ) D. x2 A cos(t ) 2
由题意作两简谐振动的旋转矢量图如下 解:
要写出质点2的振动方程, 应先求出其初相 2
2 ( )
2

x2 A cos(t 2 ) A cos[t ( )] A cos(t ) 2 2 (选B)
t , 解: 由图可知, 2s时 x 0
2 2 v A A 6 3 (cm s 1 ) T 4
答案: 3cm.s 0;
1
7
.一弹簧振子系统具有 1.0 J的振动能量、 0.10 m的振幅和
×1的最大速率,则弹簧的 劲度系数为 _____ ,振子的振动 1.0 m s 频率为 _______ . 1 2 E 2 1.0 解: E kA2 , 得k 2 由 200( N .m 1 ), 2 A 0.12

大学物理 第7章 机械波

大学物理  第7章  机械波
上某点A的简谐运动方程为y =3cos4πt (SI).
(1)以点A为坐标原点,写出波动方程. (2)以距点A为5m处的点B为坐 标原点,写出波动方程; (3)写出传播方向上点C、点D的简谐运动方 程; (4)分别求出BC和CD两点间的相位差.
u • C 8m • B 5m • A 9m

u
解:已知 u=20m/s
频率与周期的关系为:
波速(u) : 振动状态在媒质中的传播速度.
波速与波长、周期和频率的关系为:
1 T
u

T

7.1.4、球面波和平面波
波场--波传播到的空间。
波线(波射线)--代表波的传播方向的射线。
波面--波场中同一时刻振动位相相同的点的轨迹。
波前(波阵面)--某时刻波源最初的振动状态 传到的波面。 各向同性均匀介质中,波线恒与波面垂直.
x ut y( x x , t t ) A cos[ ( t t ) 0 ] u x A cos[ ( t ) 0 ] u
t时刻的波形方程
u
y( x x , t t ) y( x , t )
例题1: 一平面简谐波以速率u = 20m/s沿直线传播. 已知在传播路径
机械振动在介质中的传播称为机械波。 声波、水波 波动是一切微观粒子的属性,
与微观粒子对应的波称为物质波。
各种类型的波有其特殊性,但也有普遍的共性, 有类似的波动方程。
7.1.1 机械波的产生
(1)有作机械振动的物体,即波源
(2)有连续的媒质 y
v x 如果波动中使介质各部分振动的回复力是弹性力, 则称为弹性波。
p I wu S
1 2 2 I A u 2

大学物理-振动和波-PPT

大学物理-振动和波-PPT

t 3T 4
(振动状态 1 2 3 4 5 6 7 8 9 10 11 12 13 传至10 )
所以运动方程为:
x bCos(
g b
t
)
二、谐振动的图线描述法
x
A
0
t1
t
两类问题:
1、已知谐振动方程,描绘谐振动曲线 2、已知谐振动曲线,描绘谐振动方程
三、 简谐振动的旋转矢量表示法
1、旋转矢量
ω
M
旋转矢量的长度:振幅 A
A
旋转矢量旋转的角速度:
圆频率 0
旋转矢量与参考方向x 的夹角: 振动周相
则可得: x ACos(t )
其中: A A12 A22 2 A1A2Cos(2 1)
tg A1Sin1 A2Sin2 A1Cos1 A2Cos2
2、利用旋转矢量合成
A
x ACos(t )
A1
A2
A A12 A22 2 A1A2Cos(2 1)
x
tg A1Sin1 A2Sin2 A1Cos1 A2Cos2
a
v
0
t
问题: 是描述t=0时刻振动物体的状态,当给定计时时刻振动物 体的状态(t=0 时的位置及速度:x0 v0 ),如何求解相对应的 ?
(1)、已知 t = 0 振动物体的状态x(0), v(0)求
x(0) Acos v(0) A sin
可得:
A
x2
(0)
v2 (0) 2
tg v(0) x(0)
X
如果振动物体可表示为一质点,而与之相连接的所有弹簧等效 为一轻弹簧,忽略所有摩擦,可用弹簧振子描述简谐振动。
二、谐振动的特点:
1、动力学特征:

大学物理第15章机械波

大学物理第15章机械波
2222???????????????????22cosyxatxuu???????222cosyxa?ttu?????????????????????222221yyxut?????这就是一维谐波满足的微分关系
第四篇
波动与光学
§15.1
波动
机械波的产生与传播
振动状态(相位)的传播称为波动,简称波。
y ( m)
0.01
y ( m)
0.01
u
x ( m)
0 .2
t (s)
0 .1
a
b
第四篇
波动与光学
直接读出振动特征量:

y ( m)
0.01
t (s)
0 .1
A 0.01m T 0.1 s 20 (rad / s)


2 ya (t ) 0.01 cos( 20t
第四篇
波动与光学
二、波动微分方程
1.一维波动方程的导出 对于一维波动方程:
可分别对自变量x、t求偏导得:
x y x, t A cos t u
2 y 2 x A 2 cos t 2 x u u 2 y x 2 A cos t 2 t u
频率 波速

u
uT
u

讨论
①波的周期、频率与介质无关,由波源确定。 ②不同频率的波在同一介质中波速相同。
③波在不同介质中频率不变(由波源决定)。
第四篇
波动与光学
六、弹性介质与波的传播
在一种弹性介质中能够传播的是横波还是纵波,波速能够有多大, 都与介质的弹性有关。 1.长变变形 应力 单位截面上的受力称为应力。

大学物理第6章机械波

大学物理第6章机械波

则合成振动 的振幅最大

2
r2
l
r1

( 0,1,2,
则合成振动 的振幅最小
)时
波程差为零或为波长的整数倍 时,各质点的振幅最大,干涉相长。
波程差为半波长的奇数倍时, 各质点的振幅最小,干涉相消。
两相干波源 同初相, 2 m 振动方向垂直纸面
到定点 P 的距离 50 m
P
当 满足什么条件时 在 P 点发生相消干涉; 在 P 点发生相长干涉。
A1
P点给定,则 A1
sin( j 1
2r1 )
l
A2 sin( j 2
c恒os定(。j故1 空间2l每r1一)点的A合2 c成os振( j幅2A
2r2 )
l
保2持r恒2 定) 。
l
相长与相消干涉
A
A12 A22
2 A1 A2 cos (j 2
j1
2
r2
l
r1
)

j2
j1
2
r2
l
r1

j2
j1
2
r2


ma x
波 节
min 0
正向行波
反向行波
驻波的形成
在同一坐标系 XOY 中
正向波 反向波 驻波
点击鼠标,观察 在一个周期T 中 不同时刻各波的 波形图。
每点击一次, 时间步进
正向波 反向波
驻波形成图解
ttt====t7353=TTTT0T///82488
4
合成驻波
驻波方程
正向波 由
反向波
为简明起见, 设
并用
改写原式得
驻波方程
注意到三角函数关系

机械振动机械波

机械振动机械波

机械振动机械波机械振动和机械波是物理学中重要的概念,涉及到了物体的振动和波动特性。

机械振动是指物体或系统在受到外界力的作用下发生的周期性或非周期性的振动运动,而机械波是指机械振动在介质中传播的能量传递过程。

机械振动有两个重要的参数,即振动周期和振幅。

振动周期是指一个完整的振动循环所需要的时间,通常用秒(s)表示。

振幅则是指振动的最大位移或最大速度,通常用米(m)来表示。

机械振动分为简谐振动和非简谐振动两种。

简谐振动是指当物体受到恢复力的作用后,其振动状态可以通过正弦或余弦函数来描述。

而非简谐振动则是指物体受到的恢复力不满足线性关系,振动状态无法通过简单的正弦或余弦函数来描述。

机械振动的运动可以通过振动方程来描述。

对于简谐振动而言,振动方程可以表示为x(t) = A * sin(ωt + φ),其中x(t)是物体的位移,A是振幅,ω是角频率,t是时间,φ是相位差。

振动方程可以描述物体振动的位移、速度和加速度的关系,从而提供了对振动状态的全面了解。

机械波是机械振动在介质中传播的能量传递过程。

波动是由于介质中某一点的振动引起附近点的振动,从而传递能量。

机械波有两种主要类型,即横波和纵波。

横波是指波动的振动方向垂直于能量传播方向的波动,例如水波。

纵波则是指波动的振动方向与能量传播方向一致的波动,例如声波。

机械波的传播速度可以通过介质的性质和条件来确定。

对于弹性介质而言,传播速度可以表示为v = √(E/ρ),其中v是波速,E是介质的杨氏模量,ρ是介质的密度。

不同介质的波速是不同的,比如在空气中,声速大约为343m/s,而在水中,水波的波速则约为1480m/s。

机械波的特性还包括波长和频率。

波长是指相邻两个振动峰或波谷之间的距离,通常用λ表示,单位是米。

频率是指在单位时间内波动中的相邻振动周期的个数,通常用赫兹(Hz)表示。

波长和频率之间有一个简单的关系,即v = λ * f,其中v是波速,λ是波长,f 是频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理单元测试 (机械振动与机械波)
姓名: 班级: 学号:
一、选择题 (25分)
1 一质点作周期为T 的简谐运动,质点由平衡位置正方向运动到最大位移一半处所需的最短时间为( D )
(A )T/2 (B )T/4 (C)T/8 (D )T/12
2 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的( E )
(A )7/16 (B )9/16 (C )11/16 (D )13/16 (E )15/16 3
一质点作简谐运动,其振动方程为 )3
2cos(
24.0π
π
+
=t x m,
试用旋转矢量法求出质点由初始状态运动到 x =-0.12 m,v <0的状态所经过的最短时间。

(C )
(A )0.24s (B )
3
1 (C )3
2 (D )2
1
4 一平面简谐波的波动方程为:)(2cos λνπx
t A y -
=,在ν
1
=
t 时刻,4
31λ=
x 与
4

=
x 两处质点速度之比:( B )
(A )1 (B )-1 (C )3 (D )1/3
5 一平面简谐机械波在弹性介质中传播,下述各结论哪个正确?( D ) (A)介质质元的振动动能增大时,其弹性势能减小,总机械能守恒.
(B)介质质元的振动动能和弹性势能都作周期性变化,但两者相位不相同
(C)介质质元的振动动能和弹性势能的相位在任一时刻都相同,但两者数值不同. (D)介质质元在其平衡位置处弹性势能最大.
二、填空题(25分)
1 一弹簧振子,弹簧的劲度系数为0.3
2 N/m ,重物的质量为0.02 kg ,则这个系统的固有频率为____0.64 Hz ____,相应的振动周期为___0.5π s______.
2 两个简谐振动曲线如图所示,两个简谐振动的频率之比 ν1:ν2 = _2:1__ __,加速度最大值之比a 1m :a 2m = __4:1____,初始速率之比 v 10 :v 20 = _2:1__ ___.
三、计算题(每题10分,50分)
1 一质点作简谐振动,速度的最大值 v m =5cm/s ,振幅A =
2 cm .若令速度具有正最大值的那一时刻为t =0,求振动表达式. 解:据题意,设振动表达式为:
)cos(2ϕω+=t x ,则振子速度为:)sin(2ϕωω+-==t dt
dx v
ω2=m v ω=2.5 rad/s
又因:速度正最大值的那个时刻是t=0,即,振子在平衡位置,沿着x 正向运动。

则 1sin -=ϕ,取 2
π
ϕ-=
)2
5.2cos(2π
-
=t x cm
2 一质点同时参与两个同方向的简谐运动,其运动方程分别为:
m t x )3
4cos(10521π+⨯=-; m t x )6
4sin(1032
2π-⨯=-
并求合运动的运动方程. 解: )314cos(1052
1π+⨯=-t x )614sin(1032
2π-⨯=-t x =)2
6
14cos(10
32
π
π-
-
⨯-t
=)3
24cos(10
32
π-
⨯-t
由振动方程知:πϕϕϕ=-=∆21 振动方向相反 则由旋转矢量法得到: 合振动 )3
4cos(1022
21π
+
⨯=+=-t x x x
3 已知波动方程:cm x t y )01.050.2(cos 5-=π,求波长,周期以及波速 解:由题意,设波动方程标准形式为:))(cos(0ϕω+-
=u
x t A y
则,)01.050.2(cos 5x t y -=π可化为:)250
(50.2cos 5x t y -=π
比较得到: T
ππω250.2=
=,T=0.8s
波速 250=u m/s ,或者cm/s 。

依据x 的单位而定 所以,波长 uT =λ=200m 或者200cm
4 如图,A 、B 两点相距30 cm,为同一介质中的两个相干波源,两波源振动的振幅均为0.1 m,频率均为100 Hz, 点A 初位相为零, 点B 位相比点A 超前 π ,波速为 s m u /400=, (1)写出两波源相向传播的波动方程; (2)A 、B 连线上因干涉而静止的点的位置
解:
(1) 以A 点为原点,波沿着AB 传播,为x 方向 A=0.1m, ν=100Hz φA =0 u=400m/s A 点振动方程为:t
y A π200cos 1.0=
向右传播的波动方程为:)5.0200cos(1.0)400
(200cos 1.01x t x t y πππ-=-
=
B 点得振动方程为:)200cos(1.0ππ+=t y B ,比A 点超前π 向左传播的波动方程为:
)145.0200cos(1.0))400
30(200cos(1.02πππππ-+=+--
=x t x t y
A 、B 间,两波干涉叠加,静止点得位相差:πππϕϕϕ)12(1412+=-=-=∆k x 即:x=2k+15 k=0,,.....3,2,1±±± 300≤≤x 得到:x=1,3,5,7 (29)
5 下图中(a)表示t =0时刻的波形图,(b)表示原点(x =0)处质元的振动曲线,试求此波的波动方程,并画出x =2m 处质元的振动曲线.
解: (1)由题(b)图所示振动曲线可知2=T s ,2.0=A m ,且0=t 时,
0,000>=v y ,
故知2

φ-
=,
再结合题(a)图所示波动曲线可知,该列波沿x 轴负向传播, 且4=λm ,若取])(
2cos[0φλ
π++
=x
T
t A y
则波动方程为
]2
)42
(2cos[2.0π
π-
+=x
t
y
(2) 当x=2m, t y m x πsin 2.02-==。

相关文档
最新文档