铁磁材料居里点的测量

合集下载

铁磁材料的居里点的测定

铁磁材料的居里点的测定

铁磁材料的居里点的测定铁磁材料居里点的测定铁磁材料(又称铁氧体)是铁和其它一种或多种适当的金属元素的复合氧化物。

按磁滞回线的形状来分,有软磁材料,硬磁(又叫永久磁性)材料。

铁磁材料在工业上,尤其在电力工业上应用最为广泛,如制造发电机、电动机及电力输送变压器上的永久磁铁和硅钢片。

我们日常用的家电里有收音机中的天线棒,中周变压器,电视机中的回扫变压器,录象机中的磁头、磁鼓。

计算机中的记忆元件、逻辑元件、扬声器以及电话机中都有磁性材料。

铁磁材料在尖端技术和国防科技中应用也很多,如雷达、微波多路通讯、自动控制、射电天文望远镜、远程操纵等。

图1铁磁材料居里点(又称居里温度)是铁磁材料的一个重要的物理性质。

根据电磁学,我们知道:xm?M (1)HB (2)H????(1?xm)?0 (3)上面三式里的xm是磁化率,M为磁化强度,H为磁场强度,B为磁感应强度,μ为磁导率,μ0为真空中磁导率。

磁介质大体可以分为顺磁质、抗磁质和铁磁质三类。

但对于不同类型的磁介质,xm和μ的情况很不一样。

对于顺磁质,xm>0,μ>μ0;对于抗磁质,xm<0,μ<μ0。

这两类磁介质的磁性都很弱,它们的|xm|<<1,μ??μ0,而且都是与H无关的常数。

而铁磁质的情况要复杂一些,一般说来M与H不成比例,甚至没有单值关系,即M的值不能由H的值唯一确定,它还与磁化的历史有关,所以xm和μ不再为常数。

而是H的函数,即xm=xm(H),μ=μ(H)。

铁磁质的xm和μ一般都很大,所以铁磁质属于强磁性介质。

以铁为代表的一类磁性很强的物质叫铁磁质。

在纯化学元素中,除铁之外,还有过渡族中的其它元素,如钴、镍和某些稀土族元素如钆、镝、钬都具有铁磁性。

但常用的铁磁质多数是铁和其它金属或非金属组成的合金,以及某些包含铁的氧化物(铁氧体)。

当磁化场H=0的时候处于未磁化状态。

这相当于坐标原点。

在逐渐增加磁化场H的过程中,B随之增加。

开始B增加得较慢一些,然后经过一段急剧增加的过程,又慢下来,再继续增大磁化场时。

实验二十 居里点测定

实验二十  居里点测定

实验二十居里点的测定测量铁磁材料居里温度的方法很多,例如磁称法、感应法、电桥法和差值补偿法等。

它们都是利用铁磁物质磁矩随温度变化的特性,测量自发磁化消失时的温度。

本实验采用感应法。

测量感应电动势随温度变化的规律,从而得到居里点T C。

【实验目的】1.通过实验,对感应电动势随温度升高而下降的现象进行观察,初步了解铁磁材料在居里温度点由铁磁性变为顺磁性的微观机理。

2.用感应法测定磁性材料的曲线ε~T并求出其居里温度。

3.用示波器观测铁磁性材料的磁滞回线和居里温度。

【实验仪器】居里点测定仪附件盒双踪示波器【仪器简介】仪器由加热装置、待测样品、测温部分、加热电源和示波器接口等组成,加热装置由耐高温的石英玻璃罩、瓷柱和镍鉻丝组成,用AD590温度传感器来测量其内的温度,用3位半数字表来显示温度。

测试样品为五种不同居里温度的环形铁氧体件,铁氧体上绕有两组线圈,感应电动势用1999mV的交流数字电压表来显示。

样品的磁滞回线用示波器来形象的显示。

面板上示波器显示框内的X轴接磁场强度H,Y轴接磁感应强度B,X调节用来调节磁场强度H的大小。

面板图见下图。

面板示意图【实验原理】1.基本原理科学实践证明,铁磁物质的磁性主要来源于电子自旋磁矩。

在没有外磁场的条件下,铁磁物质中相邻原子的电子磁矩具有非常强的交换耦合作用,这种相互作用促使相邻原子的电子自旋磁矩平行排列起来,形成一个个自发磁化达到饱和状态的区域,称为磁畴。

磁畴的几何线度可以从微米量级到毫米量级,形状一般很不规则,在不同材料或同一材料的不同区域有很大的不同。

在没有外磁场作用时,不同磁畴的自发磁化方向各不相同,如图(1)所示。

因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。

当有外磁场作用时,不同磁畴的磁矩方向趋于外磁场的方向,宏观区域的平均磁矩不再为零,这时铁磁物质显示出宏观的磁性,这一过程通常称为技术磁化。

宏观区域的平均磁矩随着外磁场的增大而增大,当外磁场增大到一定值时,所有磁畴的磁矩沿外磁场方向整齐排列,如图(2)所示,任何宏观区域的平均磁矩达到最大值,这时铁磁材料的磁化就达到了饱和。

大学物理实验 居里温度的测量

大学物理实验 居里温度的测量

实验十一 居里温度的测量居里温度是表征磁性材料性质和特征的重要参量,测量磁导率和居里温度的仪器很多,例如磁天平、振动样品磁强计、磁化强度和居里温度测试仪等,测量方法有感应法、谐振法、电桥法等.【实验目的】1. 初步了解铁磁性物质由铁磁性转变为顺磁性的微观机理.2. 学习JZB-1型居里温度测试仪测定居里温度的原理和方法.3. 学会测量不同铁磁样品居里点的方法.【实验原理】磁性是物质的一种基本属性,从微观粒子到宏观物体,以至宇宙天体,无不具有某种程度的磁性,只是其强弱程度不同而已,这里说的磁性是指物质在磁场中可以受到力或力矩作用的一种物理性质。

使物质具有磁性的物理过程叫做磁化,一切可以被磁化的物质都叫做磁介质.磁介质的磁化规律可用磁感应强度B 、磁化强度M 、磁场强度H 来描述,当介质为各向同性时,它们满足下列关系:()()H H H M H B r m μμμχμμ==+=+=0001 (1)其中m r χμ+=1,r μ称为相对磁导率,是个无量纲的量.为了简便,常把r μ简称为介质磁导率,m χ称为磁化率,m H /10470-⨯=πμ称为真空磁导率,r μμμ0=称为绝对磁导率.H M m χ=.在真空中时0=M ,H 和B 中只需一个便可完全描述场的性质.但在介质内部,H 和B 是两个不同的量,究竟用H 还是用B 来作为描述磁场的本征量,根据磁场的性质有各种不同的表现来选择.因为H 和B 两者描述了不同情况下磁场的性质,它们都是描述磁场性质的宏观量,都是真正的物理量.在某些问题中,比如在电磁感应、霍尔效应、测量地磁水平分量等问题中,由于起作用的是磁通量的时间变化率,牵涉到的是B ;而如果考虑材料内部某处磁矩所受的作用时,起作用的就是H ,比如求退磁能及磁矩所做的功等。

从H B r μμ0=的关系看,表面上B 与H 是线性的,但实际上,由于r μ是一个与m χ值有关的量,而m χ值又与温度、磁化场有关,所以r μ是一个复杂的量,不能简单地从B 与H 的形式上来判断它们之间是线性的,或是非线性的关系.磁体在磁性质上有很大的不同,从实用的观点,可以根据磁体的磁化率大小和符号来分为五个种类。

铁磁材料居里点的测量大物论

铁磁材料居里点的测量大物论

铁磁材料居里点的测量辽宁科技大学 机械工程与自动化学院 机械设计11-A1 毕帅[摘要]:本文利用居里点测量仪对温敏铁磁样品的居里点温度进行定性测量和定量测量,通过对测量结果的对比发现,采用定性测量和定量测量得到的居里点温度存在一定的差异,并对产生差异的原因进行了简要的分析。

[关键词]:铁磁材料;居里点;测量方法引言;铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,以T c 表示。

居里温度是磁性材料的本征参数之一,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。

测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。

本项研究利用居里点测量仪对温敏铁磁样品的居里点温度进行定性测量和定量测量,并对测量结果产生差异的原因进行了简要的分析。

一、实验原理1.1基本理论在铁磁物质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域,这个区域的体积约为10-8m 3,称之为磁畴。

在没有外磁场作用时,不同磁畴的取向各不相同,如图1所示。

因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。

当有外磁场作用时,不同磁畴的取向趋于外磁场的方向,任何宏观区域的平均磁矩不再为零,且随着外磁场的增大而增大。

当外磁场增大到一定值时,所有磁畴沿外磁场方向整齐排列,如图2所示,任何宏观区域的平均磁矩达到最大值,铁磁物质显示出很强的磁性,我们说铁磁物质被磁化了。

铁磁物质的磁导率μ远远大于顺磁物质的磁导率。

铁磁物质被磁化后具有很强的磁性,但这种强磁性是与温度有关的,随着铁磁物质温度的升高,金属点阵热运动的加剧会影响磁畴磁矩的有序排列,但在未达到一定温度时,热运动不足以破坏磁畴磁矩基本平行排列,此时任何宏观区域的平均磁矩仍不为零,物质仍具有磁性,只是平均磁矩随温度升高而减小。

铁磁材料居里点的测定实验报告

铁磁材料居里点的测定实验报告

铁磁材料居里点的测定实验报告一、实验目的与实验仪器1.实验目的(1)了解示波器测量动态磁滞回线的原理和方法;(2)学会一种测量铁磁材料居里点的方法。

2.实验仪器用于测量环状磁性介质样品的JLD-Ⅲ居里点测量仪(含五种样品)。

二、实验原理1.铁磁材料和居里点铁磁材料在很小的磁场作用下就被磁化到饱和,不但磁化率大于零,而且达到χ~10 —10 6 数量级,当铁磁性物质的温度高于临界温度Tc(居里点温度)时,铁磁性物质转变成为顺磁性。

即在居里点附近,材料的磁性发生突变。

反复磁化铁磁材料时会出现磁滞现象。

另一重要的特点就是磁滞。

磁滞现象是材料磁化时,材料内部的磁感应强度B 不仅与当时的磁场强度H 有关,而且与以前的磁化状态有关。

2.示波器测量磁滞回线的原理如图所示,给待定铁心线圈(N 匝)通50Hz 交流电,次级线圈产生的感应电动势为 ε = - WS dB dt ,次级回路电压方程为ε = Ri + u C ,当R >> 12πfC 时,Ri >> u C ,则i = εR= - WS R dB dt . t 时刻,u C = q C = q0C + 1 C ∫idt t 0=( q0C + WS RC B 0 ) - WSRC B上式中,前一项为t = 0 时,电容初始状态和铁芯初始状态决定的直流电压值,若其为0,则u C = -WS RCB ,即uC ∝B ,将u C 输入示波器y 轴,则水平方向偏转与B 成正比。

在初级线圈中,u H = R H i H ,而H = ni H ,则u H = R H nH ,将u H 输入示波器x 轴,则竖直方向偏转与H 成正比。

综上,示波器上能够显示出稳定的B-H 曲线。

三、实验步骤测量环状磁性介质的居里点1.接线:将加热接口与居里点测试仪接口用专线相连;将铁磁材料样品与居里点测试仪用专线相连,并把样品放入加热丝;面板上的温度传感器接插件对应相接;将 B 输出(感生电动势)与示波器的 Y 输入相连,H 输出(原线圈端电压)与示波器的 X 输入相连接。

铁磁材料居里点测量

铁磁材料居里点测量

顺磁性物质的磁化率χ为正( χ P > 0 ),其磁化强度 M 与磁化场 H 同向;χ P 的数值很 小,仅显示微弱磁性,在室温下, χ P 为 10-3~10-6 数量级。顺磁物质有一个固有原子磁矩, 磁矩受热骚动,在没有外磁场时,这些磁矩是杂乱分布的,当外加磁场时,这些磁矩就获
得或趋向于获得与外磁场相同方向的排列。具有顺磁性的物质很多,典型的有稀土金属和
和-Br(≈-Bm)两种不同的剩磁,矩磁材料常用作记忆元件,如电子计算机中存储器的芯片。
软磁材料和硬磁材料的根本区别在矫顽磁力 Hc 的差别。对于高磁导率的软磁材料,Hc 很小,只有 1~10A/m(10-2~10-1 奥);对于高矫顽磁力硬磁材料,Hc 在 105A/m(1000 奥) 以上;矩磁材料的矫顽磁力 Hc 一般在 102A/m(1 奥)以下。可见,铁磁材料的磁化曲线和
ε2 ≈ I2 R2
(5)
但 R2 比 1/(2πf C)不能过大,过大了使 U2 值过小,显示也就困难了。 (2) 在满足上述条件下,U2 的振幅很小,如将它直接加在 Y 偏转板上,则不能绘出大小适 当需要的磁滞回线,为此,需将 U2 经过 Y 轴放大器增幅后输出至 Y 偏转板。这就要求在实 验磁场的频率范围内,示波器的放大器的放大系数必须稳定,不然会带来放大的相位畸变和
I1 成正比,即:
I1
=
HL N

U1
=
LR1 N
H
(2)
它表明,在交变磁场下,在任一瞬间 t,如果将电压 U1 接到示波器 X 轴输入端,则电子束
在水平方向偏转正比于励磁场强度 H。( H ∝ U1 )
为了获得跟样品中磁感应强度瞬时值 B 成正比的电压 U2,采用电阻 R2 和电容 C 组成的 积分电路,并将电容 C 两端的电压 U2 接到示波器 Y 轴输入端。因交变的磁场 H 在样品中

2022年铁磁材料居里点的测定实验报告800字(12篇)

2022年铁磁材料居里点的测定实验报告800字(12篇)

铁磁材料居里点的测定实验报告800字(12篇)导读:关于铁磁材料居里点的测定实验报告,精选6篇范文,字数为800字。

关于铁磁材料居里点的测定实验报告,精选6篇范文,字数为800字。

铁磁材料居里点的测定实验报告(范文):1铁磁材料居里点测得的结果是测得出的结果,不同的结果就可能是不同的结果,不同的结果就可能会有不同的结果。

因此,在实验过程中我学会了很多的测量仪器,如:电导柱、水准仪、测得方法和测得角度角的方法。

在实验过程中我还明白了测得比较容易的,也是最容易做的。

实验的第一天,刚开始就是测量,我们组是从一个没有任何工作的学生,开始测量,我也是不知道自己的水平能力,测量方法是什么,也没有想到我会不会测,不知道什么时候开始测的。

这个时候我就觉得测量很重要,这个测量方法和我所在的组一样,不同组有不同的方法,我们一起测,一起测,在测量过程中我们一起探讨。

我觉得我们组的成员都很配合,也很有默契,我们的工程也是这样。

测量完后,我们组又一起合作,一起把那根铁钉放到测得的角度里。

虽然我们组是不怎么认真的测量,但是看到别的组的成员都能测得很认真,我们也觉得很开心,毕竟我们组的小组成员也是很有默契,我们也感到很快乐,毕竟测量给了我们一次很好的学习经验。

这个实验我们组有一个组员,在测量过程中也是比较默契的,在一起的时候我们都很认真,我们一起测量,一起研究,一起分享,不懂的就问,大家一起解决。

测量的过程中我们大家一起讨论,一起分析,这样不仅加深了我们之间的友谊,也锻炼了我们的团结精神。

我们在测量的过程中,我们一起讨论,一起分析,一起动脑,一起讨论问题,这样我们都感到很快乐。

测量的这段时间,我们一起合作学习,一起探讨问题,我想我们一定会在以后的学习和生活中做得更好,成为一名合格的铁磁材料居里点测量的学子。

我们在测量中一起成长,一起收获快乐,我想我们也一定会在以后的学习和工作中更加的努力,一起进步!铁磁材料居里点的测定实验报告(范文):2铁磁材料居里点的测定实验报告一、实验目的、意义及实验时间铁熔材料居里点的测定实验报告二、实验内容、实训过程铁磁材料居里点的测定实验报告三、实验内容、实训内容及实验成果铁磁材料居里点的测定实验报告四、成果报告铁铁磁材料居里点的测定实验报告实验报告五、实验成果报告铁磁铁的测定实验报告报告六、实验报告内容及格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁的测定实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验报告格式铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁轨测量实验仪器铁轨测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实习仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁测量实验仪器铁磁铁磁材料居里点的测定实验报告(范文):3铁磁铁是铁磁铁的一种传统方法,在现代社会生产过程中,人们不可能直接地接受这种方法。

铁磁性材料居里点的测定

铁磁性材料居里点的测定
磁畴的出现或消失,伴随着晶格结构的改变,所以是一个相变过程。居里点和熔点一样,因物质不同而不同。例如铁、镍、钴的居里点分别为1043K、631K、1393K。
2.实验原理
在磁环上分别绕线圈A,B,并在A线圈上通激励电流,则B线圈上感应电动势的有效值为:
=4.44fNφm(1)
f为频率,N为线圈的匝数,φm为最大磁通。
四、实验装置
1.耐高温绝缘玻璃管2.加热电炉丝3.集成温度传感器4.铁氧铁(被测样品)5.固定架6.印刷板7.提供加热电流的电源部分8.测温显示部分9.激励电源10、感应电流测量部分
实验仪分测量部分和实验部分。
(1)实验部分:如上图所示,包括①被测样品和加热电炉丝;②集成温度传感器;③激励线圈和感应线圈,以上各部分都要装在一个底座上。
(3)集成温度传感器的手枪插头接到面板温度测量的接线柱上。
五、实验内容
对样品逐点测出 —T曲线,并从中求出居里温度TC。
六、实验步骤
1、参照仪器安装步骤,连好实验部分和测量部分。(加温电流暂不接)
2、 —T曲线的测量:
(1)合上测量部分的电源开关,“温度显示”显示出室温温度。“电压显示”显示激励电压或感应电压值。
铁磁性物质的磁化与温度有关,存在一临界温度TC称为居里温度(也称居里点)(如图3)。当温度增加时,由于热扰动影响磁畴内磁矩的有序排列,但在未达到居里温度TC时,铁磁体中分子热运动不足以破坏磁畴内磁矩基本的平行排列,此时物质仍具有铁磁性,仅其自发磁化强度随温度升高而降低。如果温度继续升高达居里点时,物质的磁性发生突变,磁化强度M(实为自发磁化强度)剧烈下降!因为这时分子热运动足以使相邻原子(或分子)之间的交换耦合作用突然消失,从而瓦解了磁畴内磁矩有规律的排列。此时磁畴消失,铁磁性变为顺磁性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

标题:铁磁材料居里点的测量
作者:
摘要:介绍了通过转换出分别与磁化强度和磁场强度成正比的电压信号,来定性观察与定量测量居里点的一种方法。

关键词:铁磁材料;居里点;磁滞回线
引言:铁磁材料的磁性随温度的变化而改变,当温度上升到某一定值时,铁磁材料就失掉铁磁物质的特性而转变为顺磁性物质,这一
转变温度称为居里温度,以表示。

对的测定不仅对磁性材料、磁性器件的研制、使用,而且对工程技术乃至家用电器的设计都具有重要的意义。

正文:铁磁材料(又称铁氧体)是铁和其它一种或多种适当的金属元素的复合氧化物.按磁滞回线的形状来分,有软磁材料,硬磁(又叫永久磁性)材料。

铁磁材料在工业上,尤其在电力工业上应用最为广泛,如制造发电机,电动机及电力输送变压器上的永久磁铁和硅钢片。

我们日常用的家电里有收音机中的天线棒,中周变压器,电视机中的回扫变压器,录象机中的磁头,磁鼓。

计算机中的记忆元件,逻辑元件,扬声器以及电话机中都有磁性材料。

铁磁材料在尖端技术和国防科技中应用也很多,如雷达,微波多路通讯,自动控制,射电天文望远镜,远程操纵等。

1,铁磁材料居里点存在的基本原理
以铁为代表的一类磁性很强的物质叫铁磁质。

在纯化学元素中,
除铁之外,还有过渡族中的其它元素,如钴,镍和某些稀土族元素如钆,镝,钬都具有铁磁性.但常用的铁磁质多数是铁和其它金属或非金属组成的合金,以及某些包含铁的氧化物(铁氧体)。

铁磁质的磁性主要来源于电子自旋磁矩。

在没有外磁场的条件下铁磁质中的电子自旋磁矩可以在小范围内自发地排列起来,形成一个个小的自发磁化区。

这种自发磁化区叫做磁畴。

自发磁化只发生在微小的区域(体积约为10 -8 m 3,其中含有1017一1021个原子)内,这些区域叫做磁畴。

如图19-l,其中图19-l(a)为单晶磁畴结构示意图,图19-l(b)为多晶磁畴结构示意图。

由图可见在没有外磁场作用时,在每个磁畴中,原子磁矩已经取向同一方位,但对不同的磁畴其分子磁矩的取向各不相同,磁畴的这种排列方式,使磁体处于最小能量的稳定状态.因此对整个铁磁体来说,任何宏观区域的总磁矩仍然为零,整个磁体不显磁性。

线条为畴界,箭头为磁畴的磁化方向。

但在外加磁场后将显示出宏观的磁性来。

当外加的磁化场不断加大时,磁畴的磁化方向在不同程度上转向磁化场的的磁方向,当所有畴都按磁化场的方向排列好,介质的磁化就达到饱和。

饱和时的磁化强度是很大的。

介质掺杂和内应力在磁化场去掉后阻碍着磁畴
恢复到原来的退磁状态,这就是为什么会有磁滞现象的原因。

铁磁性是与磁畴分不开的。

当铁磁体受到强烈震动或在高温下由于剧烈的热运动的影响,磁畴便会瓦解,这时铁磁性质全部消失,包括磁滞现象,即磁滞回线也消失。

对于任何铁磁物质都有这样一个临界温度,高于这个温度的铁磁性就消失,变为顺磁性。

这个临界温度叫做铁磁质的居里点,也叫居里温度。

我们就是利用这个原理来测量居里点的。

不得不提一下,磁畴的出现和消失,也伴随着晶体结构的改变,所以这是一个相变的过程,居里点和熔点一样,因物质的不同而不同。

2,基本实验原理
2.1磁滞回线的产生
铁磁材料在外加磁场中被磁化,使铁磁材料的磁场强度H(即外加磁场)与铁磁材料内部的磁感应强度B=Μh,然而铁磁材料的磁导率μ不是常数,B与H是非线性关系,如下图:
当磁化场H=0的时候处于未磁化状态.这相当于坐标原点。


逐渐增加磁化场H的过程中,B随之增加.开始B增加得较慢一些,然后经过一段急剧增加的过程,又慢下来,再继续增大磁化场时。

B 几乎不再变了。

这时介质的磁化已达到饱和。

饱和时的磁化强度称为饱和磁化强度。

从未磁化到饱和磁化的这段磁化曲线叫做铁磁质的起始磁化曲线,如图1中的OS段。

当铁磁质的磁化达到饱和之后,如果将磁化场去掉,即H=0,介质的磁化状态,并不恢复到原来的起点,而是保留一定的磁性。

这时的磁场强度H和磁感应强度B叫做剩余磁场强度和剩余磁感应强度。

通常用HR和BR来表示。

若要使介质的磁场强度和磁感应强度减到0,必须加一相反方向的磁化场,即H<0.只有当反方向的磁化场大到一定程度时,介质才完全退磁,即达到H=0,B=0的状态。

使介质完全退磁所需的反向磁化场的大小,叫做这种铁磁质的矫顽力。

从具有剩磁的状态到完全退磁的状态这一段曲线,叫做退磁曲线。

介质退磁后,如果反方向的磁化场的数值继续增大时,介质将沿相反的方向磁化,即H<0,直到饱和。

一般说来,反向的饱和磁场强度的数值与正向磁化时一样。

此后若使反方向的磁化场数值减小到0,然后又沿正方向增加,介质的磁化状态回到正向饱和磁化状态。

当磁化场在正负两个方向上往复变化时,介质的磁化过程经历了一个循环过程。

闭合曲线SRCS'R'C'S叫铁磁质的磁滞回线。

这个过程所形成的闭合曲线叫做铁磁质的磁滞回线。

磁滞回线如图1所示。

由于交流电方向不断变化,所以我们可以在示波器屏幕上观测到较为稳定的磁滞回线。

3,实验方案
(1)用连线将加热炉与电源箱前面板上的“加热炉”相连接;将铁磁材料样品与电源箱前面板上的“样品”插孔用专用线连接起来,并把样品放入加热炉:将温度传感器、降温风扇的接插件与接在电源箱前面板上的“传感器”接插件对应相接;将电源箱前面板上的“B输出”、“H输出”分别与示波器上的Y输入、X输入用专用线相连接。

(2)将“升温一降温”开关打向“降温”。

接通电源箱前面板上的电源开关,将电源箱前面板上的“H调节”旋钮调到最大,适当调节示波器,其荧光屏上就显示出了磁滞回线。

(3)关闭加热炉上的两风门(旋纽方向和加热炉的轴线方向垂直),将“测量一设置”开关打向“设置”,适当设定炉温。

(4)将“测量—设置”开关打向“测量”,将“升温一降温”开关打向“升温”,这时炉子开始升温,在此过程中注意观察示波器上的磁滞回线,记下磁滞回线消失时数显表显示的温度值,即测得了居里点温度。

(5)将“升温—降温”开关打向“降温”,并打开加热炉上的两风门,使加热炉降温。

4,关于改进实验方案的一些建议
4.1结果误差分析
本实验有许多误差来源,如:读数时温度与电动势改变引起的误差,传感器测温滞后带来的误差,室温影响等等。

4.2方案改进的建议
本实验最大的误差来源就是读数时温度与电动势改变,所以为了减小误差,我们应该在样品处于某一温度下一段时间后再测量,但是如果我们用这种方法,就会给我们带来很大的麻烦,我们这次试验的目的就是测量磁性材料的居里点,所以我们可以一开始方法不变,等接近居里点温度是再精细测量,这样我们既节省了时间又得到了比较准确的数据。

当然我们也应该在试验中采用比较精密的温度传感器以减少误差。

参考文献:
[1]李学慧.大学物理实验[M].杭州:浙江大学出版社
[2]杜义林.实验物理学[M」.合肥:中国科学技术大学出版社
[3]桂维玲,张山彪等.基础物理实验[M].北京:科学出版社。

相关文档
最新文档