光电编码器详解

合集下载

编码器工作原理

编码器工作原理

编码器工作原理引言概述:编码器是一种用于将机械运动转换为数字信号的装置,广泛应用于各种自动化系统中。

它可以精确地测量物体的位置、速度和方向,从而实现精准控制和监测。

本文将介绍编码器的工作原理,以帮助读者更好地理解其在自动化系统中的作用。

一、光电编码器1.1 光电编码器的结构:光电编码器由光源、光栅、接收器和信号处理电路组成。

光源发出光束,经过光栅反射或透过后,被接收器接收并转换成电信号,信号处理电路将电信号转换成数字信号。

1.2 光电编码器的工作原理:当物体运动时,光栅会随之移动,使得光束的强度发生变化。

接收器接收到的光信号也会随之变化,通过信号处理电路将这些变化转换成数字信号,从而确定物体的位置和速度。

1.3 光电编码器的应用:光电编码器广泛应用于数控机床、机器人、印刷设备等自动化系统中,用于实现位置控制、速度控制和角度测量等功能。

二、磁编码器2.1 磁编码器的结构:磁编码器由磁性标记、磁传感器和信号处理电路组成。

磁性标记可以是永磁体或磁性条,磁传感器用于检测磁场的变化,信号处理电路将检测到的信号转换成数字信号。

2.2 磁编码器的工作原理:当物体运动时,磁性标记会随之移动,磁传感器检测到磁场的变化,并将其转换成电信号。

信号处理电路将电信号转换成数字信号,确定物体的位置和速度。

2.3 磁编码器的应用:磁编码器适用于高温、高速、腐蚀性环境下的自动化系统,如汽车发动机、风力发电机等,用于实现位置控制和速度控制。

三、绝对值编码器3.1 绝对值编码器的结构:绝对值编码器由多个独立的编码单元组成,每个编码单元对应一个位置码。

通过读取每个位置码的状态,可以确定物体的绝对位置。

3.2 绝对值编码器的工作原理:每个编码单元都有一个唯一的位置码,当物体运动时,读取每个位置码的状态,可以确定物体的绝对位置,无需重新归零。

3.3 绝对值编码器的应用:绝对值编码器广泛应用于需要高精度位置控制和无需重新归零的自动化系统中,如医疗设备、航空航天设备等。

光电编码器

光电编码器

光电编码器原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

光电编码器每转输出600个脉冲,五线制。

其中两根为电源线,三根为脉冲线(A相、B相、Z)。

电源的工作电压为(+5~+24V)直流电源。

光电编码器是由光栅盘和光电检测装置组成。

光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

此外,为判定旋转方向,码盘还可提供相位相差90o的两路脉冲信号。

工作原理:当光电编码器的轴转动时A、B两根线都产生脉冲输出,A、B两相脉冲相差90度相位角,由此可测出光电编码器转动方向与电机转速。

假如A相脉冲比B相脉冲超前则光电编码器为正转,否则为反转.Z线为零脉冲线,光电编码器每转一圈产生一个脉冲.主要用作计数。

A线用来丈量脉冲个数,B线与A线配合可丈量出转动方向.设N为电机转速Δn=ND测-ND理例如:我们车的速度为1.5m/s,轮子的直径220mm,C=D*Pi,电机控制在21.7转/秒,根据伺服系统的指标,设电机转速为1500转/分,故可求得当ND=21.7*60=130转/分时,光码盘每秒钟输出的脉冲数为:PD=130×600/60=1300个脉冲当测出的脉冲个数与计算出的标准值有偏差时,可根据电压与脉冲个数的对应关系计算出输出给伺服系统的增量电压△U,经过D/A转换,再计算出增量脉冲个数,等下减往摘要:位置检测装置作为数控机床的重要组成部分,其作用是检测位移量,并发出反馈信号。

在现代数控伺服系统中广泛应用于角位移或角速率的测量。

目前生产和使用的数控机床大多采用的是半闭环控制方式。

关键词:光电编码器;角位移;脉冲;传感器光电编码器是一种旋转式位置传感器,在现代伺服系统中广泛应用于角位移或角速率的测量,它的转轴通常与被测旋转轴连接,随被测轴一起转动。

光电编码器工作原理

光电编码器工作原理

光电编码器工作原理光电编码器是一种用于测量角度、位置和速度的重要装置。

它通过将光、电信号转化为数字信号来实现对物体的测量。

本文将介绍光电编码器的工作原理及其应用。

1. 光电编码器的基本原理光电编码器由光电传感器和编码盘两部分组成。

光电传感器接收光信号,并将其转化为电信号;编码盘是一种有规律的图案,由光和暗交替排列而成。

当光线射到编码盘上时,光电传感器会感受到由光和暗交替引起的光信号变化,并将其转化为电信号。

根据编码盘图案的不同,光电编码器可分为增量式和绝对式两种类型。

2. 增量式光电编码器的工作原理增量式光电编码器的编码盘上通常有两个光栅,分别为A相和B相。

A相光栅上的光信号与B相光栅上的光信号具有一定相位差。

当光电传感器接收到A相和B相信号后,可以通过信号的变化来判断物体的运动方向和速度。

当物体顺时针转动时,A相和B相信号的触发顺序为A→B→A'→B';当物体逆时针转动时,触发顺序为A'→B'→A→B。

通过记录触发信号的次数和顺序,可以测量出物体的角度和速度。

3. 绝对式光电编码器的工作原理绝对式光电编码器在编码盘上添加了位移码和同步码。

位移码用于测量物体的具体位置,而同步码用于确定当前位置的起点。

通过读取编码盘上的位移码和同步码,光电传感器可以准确地确定物体的角度、位置和速度。

绝对式光电编码器的精度高,但制造成本也较高。

4. 光电编码器的应用领域光电编码器广泛应用于机器人、数控机床、电子设备等领域。

在机器人领域,光电编码器可用于测量机器人关节的角度和位置,实现精确的运动控制。

在数控机床领域,光电编码器可用于控制工件的位置、速度和加速度,确保加工的精度和稳定性。

在电子设备领域,光电编码器可用于调节电机的转速和位置,实现设备的精准控制。

总结:光电编码器是一种重要的测量装置,通过将光、电信号转化为数字信号来实现对物体的测量。

根据编码盘的不同,光电编码器可分为增量式和绝对式两种类型。

光电编码器

光电编码器

光电编码器介绍光电编码器是一种利用光电原理来测量位置和运动的装置。

它通常由光源、光栅、光电二极管和信号解码电路等组成。

光源发射光线经过光栅后被光电二极管检测到,并通过信号解码电路转换为数字信号。

光电编码器广泛应用于机械、自动化控制、仪器仪表等领域。

工作原理光电编码器的工作原理基于光电效应和光栅原理。

当光源照射到光栅上时,栅上的光不同位置的条带通过光栅凹凸不同的位置形成不同的折射或反射光束。

光电二极管接收到这些光束并转换为电信号。

信号解码电路将电信号转换为数字信号,从而实现位置和运动的测量。

主要特点1.高精度测量:光电编码器具有高分辨率的特点,能够实现对位置和运动的精确测量。

2.高速响应:光电编码器的工作速度快,能够实时获取位置和运动的信息。

3.可靠性高:光电编码器使用光学原理进行测量,不受磁场和电磁干扰,具有较高的可靠性。

4.结构简单:光电编码器的结构相对简单,易于制造和维修。

5.高适应性:光电编码器适用于不同的工作环境和工作条件,具有良好的适应性。

应用领域光电编码器广泛应用于各个领域,包括但不限于以下几个方面:1. 机械制造光电编码器可以在机械制造过程中用于测量位置和运动,例如机床、自动化装配线、工业机器人等。

其高精度和高速响应特点能够满足机械制造中对精确测量的需求。

2. 自动化控制光电编码器可以用于自动化控制系统中,例如位置控制、速度控制、角度控制等。

通过对光电编码器测量结果的实时监测和反馈,可以实现对自动化系统的精确控制。

3. 电子设备光电编码器可以应用于电子设备中,例如印刷机、数码相机、光电开关等。

通过光电编码器对位置和运动的测量,可以实现电子设备的精确定位和运动控制。

4. 仪器仪表光电编码器可以应用于仪器仪表中,例如光谱仪、测量仪表、扫描仪等。

通过光电编码器对位置和运动的测量,可以提高仪器仪表的测量精度和稳定性。

发展趋势随着自动化技术的不断发展和应用范围的扩大,光电编码器在工业和科学领域的需求也在不断增加。

光电编码器的原理及应用

光电编码器的原理及应用

光电编码器的原理及应用光电编码器是一种常见的传感器设备,用于将物理运动转换为电信号,通过测量位置、速度和角度等参数来监测和控制运动系统。

本文将介绍光电编码器的工作原理和常见的应用领域。

一、光电编码器的工作原理光电编码器由光电传感器和编码盘组成。

光电传感器通常是由发光二极管(LED)和光敏元件(如光电二极管或光电二极管阵列)组成,放置在编码盘的两侧。

编码盘上有一系列等距分布的透明和不透明区域,当物体运动时,光电编码器监测到编码盘上透明和不透明区域之间的光变化。

当LED发射出光线照射到光电编码器的编码盘上时,光线会穿透透明区域,而被不透明区域所遮挡。

光敏元件接收到光线的强度变化,将其转化为电信号。

通过分析这些电信号,我们可以获取到运动物体的位置、速度以及方向等信息。

二、光电编码器的应用领域1. 机械工业光电编码器在机械工业中广泛应用于运动控制系统,如数控机床、工业机器人和自动化生产线等。

通过使用光电编码器,可以实现对机械设备的高精度位置测量和运动控制,提高生产效率和产品质量。

2. 医疗设备在医疗器械领域,光电编码器可用于精确测量和控制医疗设备的运动,如手术机械臂、X射线机和CT扫描等。

通过光电编码器的应用,可以确保医疗设备的准确性和安全性,提高医疗诊断和治疗的效果。

3. 汽车工业光电编码器在汽车工业中被广泛用于车辆的电子稳定控制、传动系统和方向盘位置检测等方面。

通过对车辆各部件的精确测量和控制,可以提高行驶安全性和驾驶舒适度。

4. 电子设备光电编码器也被应用于电子设备中,如光学鼠标、打印机和数码相机等。

光电编码器可以测量光标在表面上的位置,通过对光标位置的检测,可以实现精确的光学定位和跟踪功能。

三、总结光电编码器是一种常见的传感器设备,通过将物理运动转换为电信号,实现对运动系统的监测和控制。

光电编码器的工作原理是利用光敏元件对光线的强度变化进行测量和转换。

光电编码器在机械工业、医疗设备、汽车工业和电子设备等领域有着广泛的应用,可以提高产品的精确性、性能和安全性。

光电编码器的介绍

光电编码器的介绍

光电编码器的介绍光电编码器(Optical Encoder)是一种由光电开关和编码盘组成的测量装置,用于测量旋转运动或线性运动的位置、速度和方向。

它是将机械运动转换为电信号的传感器,广泛应用于工业自动化系统、机床、医疗设备、机器人等领域。

光电编码器的工作原理是通过光电开关检测光电信号来实现位置和运动的测量。

它由一个光电开关和一个编码盘组成。

编码盘上有一个或多个刻有光透过孔和光遮挡槽的轨道,当编码盘旋转或移动时,光电开关会检测到光透过孔或光遮挡槽,从而产生相应的光电信号。

这些光电信号经过处理电路被转换成电信号,通过计数器或编码器读取,最终获得位置、速度和方向信息。

1.高精度:光电编码器的精度通常可以达到极高的水平,一般在几微米或更小的范围内。

这使得它在需要高精度测量的应用中得到广泛使用,如机床、机器人、印刷设备等。

2.高分辨率:光电编码器具备高分辨率的特点,可以提供更细腻的位置和速度测量。

高分辨率使得光电编码器在需要准确控制位置和速度的应用中得到广泛应用,例如自动导航、精密定位等。

3.快速响应:光电编码器可以实时检测光透过孔或光遮挡槽,从而能够快速响应运动状态的变化,使得它在需要快速反馈和控制的应用中得到广泛应用,如自动调节、速度控制等。

4.高可靠性:光电编码器采用非接触式测量方式,与传统的机械式测量装置相比,具有更长的使用寿命和更低的故障率。

同时,光电编码器具备抗干扰能力强、防尘、防水等特点,适用于各种恶劣环境和工作条件。

5.无需校准:光电编码器的安装和使用非常简单,通常无需进行校准,只需将其安装在需要测量的位置上即可。

这大大减少了安装和维护的时间和成本。

增量式编码器是一种周期性输出脉冲信号的编码器,其输出脉冲的数目与旋转角度或位移成正比。

通过对脉冲信号进行计数、计算和运算,可以获得位置和速度信息。

增量式编码器常用于需要持续测量和监控位置和速度变化的应用中。

绝对式编码器通过在编码盘上刻上固定的编码序列来实现位置测量,每个位置都有唯一的编码码,从而可以准确地确定位置。

光电式编码器

光电式编码器
脉冲信号。
通常数控机床的机械原点与各铀的脉冲编码器发出Z相脉冲的位置
是一致的。
光源
码盘
光电元件
Z 零位脉冲 A 增量脉冲 B辨向脉冲
图6.30 增量式编码器的结构图
(2)绝对式编码器
1)码制和码盘 码盘按其所用码制可分为:二进制、循环码(葛莱码)、十进
绝对式编码器图案不均匀,几位编码器其码盘上就有几位码 道,在编码器的相应位置都可输出对应的数字码,在码盘运动过 程中读取这些代码,即能实时测得坐标的变化。这种方法的优点 是坐标固定与测量以前状态无关,不需起动时的位置重合,抗干 扰能力强,无累积误差,具有断电位置保持,在不读数的范围内 移动速度可超越极限响应速度,不需要方向判别和可逆计数,信 号并行传送等。缺点是结构复杂、价格高,为提高分辨率需要提 高码道数目或者使用减速齿轮机构组成双码盘机构,将任意位置 取作零位时需进行一定的运算。
2.光电式编码器的接口与安装使用注意事项
(1)机械方面
编码器轴与用户端输出轴之间通过联轴节连接如下图所示, 避免因用户轴的串动、跳动,造成编码器轴系和码盘的损坏。应 保证编码器轴与用户轴的不同轴度<0.2mm,与轴线的偏角<1.5o 安装时严禁敲击和摔打碰撞,以免损坏轴系和码盘。 (2)电气方面
编码器的输出线不能与动力线等绕在一起或同一管道传输, 也不宜在配电盘附近使用,配线时采用屏蔽电缆,可以参照下图 进行配线。
增量式编码器图案和光脉冲信号均匀,可将任意位置作为基 准点,从该点开始按一定的量化单位检测位移或转角,计量脉冲 数即可折算为位移或转角。该方法因无确定的对应测量点,一旦 停电则失掉当前位置,且速度不可超越计数器极限响应速度,此 外由于噪声影响可能造成计数积累误差。优点是其的零点可任意 预置,且测量速度仅受计数器容量限制。

光电编码器介绍 1光电编码器原理 光电编码器,是一种通过光电转换将

光电编码器介绍 1光电编码器原理 光电编码器,是一种通过光电转换将

光电编码器介绍1.光电编码器原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。

光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

此外,为判断旋转方向,码盘还可提供相位相差90旱牧铰仿龀逍藕拧根据检测原理,编码器可分为光学式、磁式、感应式和电容式。

根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90海佣煞奖愕嘏卸铣鲂较颍鳽相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位置信息。

1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。

这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。

显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。

目前国内已有16位的绝对编码器产品。

绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。

绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电编码器光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。

根据检测原理,编码器可分为光学式、磁式、感应式和电容式。

根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

绝对脉冲编码器:APC 增量脉冲编码器:SPC1.光电编码器原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。

光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

此外,为判断旋转方向,码盘还可提供相位相差90°的脉冲信号。

1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。

增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。

它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。

一般来说,增量式光电编码器输出A、B两相互差90度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。

同时还有用作参考零位的Z相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志信号。

标志脉冲通常用来指示机械位置或对积累量清零。

增量式光电编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成。

码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期;检测光栅上刻有A、B两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线。

它们的节距和码盘上的节距相等,并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差电度角。

当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差电度角的近似于正弦波的电信号,电信号经过转换电路的信号处理,可以得到被测轴的转角或速度信息。

增量式光电编码器的优点是:原理构造简单、易于实现;机械平均寿命长,可达到几万小时以上;分辨率高;抗干扰能力较强,信号传输距离较长,可靠性较高。

其缺点是它无法直接读出转动轴的绝对位置信息。

1.1.2 基本技术规格在增量式光电编码器的使用过程中,对于其技术规格通常会提出不同的要求,其中最关键的就是它的分辨率、精度、输出信号的稳定性、响应频率、信号输出形式。

(1)分辨率光电编码器的分辨率是以编码器轴转动一周所产生的输出信号基本周期数来表示的,即脉冲数/转(PPR)。

码盘上的透光缝隙的数目就等于编码器的分辨率,码盘上刻的缝隙越多,编码器的分辨率就越高。

在工业电气传动中,根据不同的应用对象,可选择分辨率通常在500~6000PPR的增量式光电编码器,最高可以达到几万PPR。

交流伺服电机控制系统中通常选用分辨率为2500PPR的编码器。

此外对光电转换信号进行逻辑处理,可以得到2倍频或4倍频的脉冲信号,从而进一步提高分辨率。

(2)精度增量式光电编码器的精度与分辨率完全无关,这是两个不同的概念。

精度是一种度量在所选定的分辨率范围内,确定任一脉冲相对另一脉冲位置的能力。

精度通常用角度、角分或角秒来表示。

编码器的精度与码盘透光缝隙的加工质量、码盘的机械旋转情况的制造精度因素有关,也与安装技术有关。

(3)输出信号的稳定性编码器输出信号的稳定性是指在实际运行条件下,保持规定精度的能力。

影响编码器输出信号稳定性的主要因素是温度对电子器件造成的漂移、外界加于编码器的变形力以及光源特性的变化。

由于受到温度和电源变化的影响,编码器的电子电路不能保持规定的输出特性,在设计和使用中都要给予充分考虑。

(4)响应频率编码器输出的响应频率取决于光电检测器件、电子处理线路的响应速度。

当编码器高速旋转时,如果其分辨率很高,那么编码器输出的信号频率将会很高。

如果光电检测器件和电子线路元器件的工作速度与之不能相适应,就有可能使输出波形严重畸变,甚至产生丢失脉冲的现象。

这样输出信号就不能准确反映轴的位置信息。

所以,每一种编码器在其分辨率一定的情况下,它的最高转速也是一定的,即它的响应频率是受限制的。

(5)信号输出形式在大多数情况下,直接从编码器的光电检测器件获取的信号电平较低,波形也不规则,还不能适应于控制、信号处理和远距离传输的要求。

所以,在编码器内还必须将此信号放大、整形。

经过处理的输出信号一般近似于正弦波或矩形波。

由于矩形波输出信号容易进行数字处理,所以这种输出信号在定位控制中得到广泛的应用。

采用正弦波输出信号时基本消除了定位停止时的振荡现象,并且容易通过电子内插方法,以较低的成本得到较高的分辨率。

增量式光电编码器的信号输出形式有:集电极开路输出(Open Collector)、电压输出(Voltage Output)、线驱动输出(Line Driver)、互补型输出(plemental Output)和推挽式输出(Totem Pole)。

集电极开路输出这种输出方式通过使用编码器输出侧的NPN晶体管,将晶体管的发射极引出端子连接至0V,断开集电极与+Vcc的端子并把集电极作为输出端。

在编码器供电电压和信号接受装置的电压不一致的情况下,建议使用这种类型的输出电路。

主要应用领域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、包装机械和针织机械等。

电压输出这种输出方式通过使用编码器输出侧的NPN晶体管,将晶体管的发射极引出端子连接至0V,集电极端子与+Vcc和负载电阻相连,并作为输出端。

在编码器供电电压和信号接受装置的电压一致的情况下,建议使用这种类型的输出电路。

主要应用领域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、包装机械和针织机械等。

线驱动输出这种输出方式将线驱动专用IC芯片(26LS31)用于编码器输出电路,由于它具有高速响应和良好的抗噪声性能,使得线驱动输出适宜长距离传输。

输出电路如图1-5所示。

主要应用领域有伺服电机、机器人、数控加工机械等。

互补型输出这种输出方式由上下两个分别为PNP型和NPN型的三极管组成,当其中一个三极管导通时,另外一个三极管则关断。

这种输出形式具有高输入阻抗和低输出阻抗,因此在低阻抗情况下它也可以提供大范围的电源。

由于输入、输出信号相位相同且频率范围宽,因此它适合长距离传输。

主要应用于电梯领域或专用领域。

推挽式输出这种输出方式由上下两个NPN型的三极管组成,当其中一个三极管导通时,另外一个三极管则关断。

电流通过输出侧的两个晶体管向两个方向流入,并始终输出电流。

因此它阻抗低,而且不太受噪声和变形波的影响。

主要应用领域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、包装机械和针织机械等。

1.2 绝对式编码器旋转增量值编码器以转动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。

这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。

解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。

在参考点以前,是不能保证位置的准确性的。

为此,在工控中就有每次操作先找参考点,开机找零等方法。

这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。

绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。

这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。

显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。

绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。

绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。

编码的设计可采用二进制码、循环码、二进制补码等。

它的特点是:1.可以直接读出角度坐标的绝对值;2.没有累积误差;3.电源切除后位置信息不会丢失。

但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。

绝对型旋转光电编码器,因其每一个位置绝对唯一、抗干扰、无需掉电记忆,已经越来越广泛地应用于各种工业系统中的角度、长度测量和定位控制。

绝对编码器光码盘上有许多道刻线,每道刻线依次以2线、4线、8线、16线。

编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。

这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。

绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。

这样,编码器的抗干扰特性、数据的可靠性大大提高了。

由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。

绝对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接电缆芯数多,由此带来诸多不便和降低可靠性,因此,绝对编码器在多位数输出型,一般均选用串行输出或总线型输出,德国生产的绝对型编码器串行输出最常用的是SSI(同步串行输出)。

旋转单圈绝对式编码器,以转动中测量光码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码器只能用于旋转范围360度以内的测量,称为单圈绝对式编码器。

如果要测量旋转超过360度范围,就要用到多圈绝对式编码器。

编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。

相关文档
最新文档