光电编码器

合集下载

光电编码器

光电编码器

光电编码器原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

光电编码器每转输出600个脉冲,五线制。

其中两根为电源线,三根为脉冲线(A相、B相、Z)。

电源的工作电压为(+5~+24V)直流电源。

光电编码器是由光栅盘和光电检测装置组成。

光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

此外,为判定旋转方向,码盘还可提供相位相差90o的两路脉冲信号。

工作原理:当光电编码器的轴转动时A、B两根线都产生脉冲输出,A、B两相脉冲相差90度相位角,由此可测出光电编码器转动方向与电机转速。

假如A相脉冲比B相脉冲超前则光电编码器为正转,否则为反转.Z线为零脉冲线,光电编码器每转一圈产生一个脉冲.主要用作计数。

A线用来丈量脉冲个数,B线与A线配合可丈量出转动方向.设N为电机转速Δn=ND测-ND理例如:我们车的速度为1.5m/s,轮子的直径220mm,C=D*Pi,电机控制在21.7转/秒,根据伺服系统的指标,设电机转速为1500转/分,故可求得当ND=21.7*60=130转/分时,光码盘每秒钟输出的脉冲数为:PD=130×600/60=1300个脉冲当测出的脉冲个数与计算出的标准值有偏差时,可根据电压与脉冲个数的对应关系计算出输出给伺服系统的增量电压△U,经过D/A转换,再计算出增量脉冲个数,等下减往摘要:位置检测装置作为数控机床的重要组成部分,其作用是检测位移量,并发出反馈信号。

在现代数控伺服系统中广泛应用于角位移或角速率的测量。

目前生产和使用的数控机床大多采用的是半闭环控制方式。

关键词:光电编码器;角位移;脉冲;传感器光电编码器是一种旋转式位置传感器,在现代伺服系统中广泛应用于角位移或角速率的测量,它的转轴通常与被测旋转轴连接,随被测轴一起转动。

光电编码器工作原理

光电编码器工作原理

光电编码器工作原理光电编码器是一种用于测量角度、位置和速度的重要装置。

它通过将光、电信号转化为数字信号来实现对物体的测量。

本文将介绍光电编码器的工作原理及其应用。

1. 光电编码器的基本原理光电编码器由光电传感器和编码盘两部分组成。

光电传感器接收光信号,并将其转化为电信号;编码盘是一种有规律的图案,由光和暗交替排列而成。

当光线射到编码盘上时,光电传感器会感受到由光和暗交替引起的光信号变化,并将其转化为电信号。

根据编码盘图案的不同,光电编码器可分为增量式和绝对式两种类型。

2. 增量式光电编码器的工作原理增量式光电编码器的编码盘上通常有两个光栅,分别为A相和B相。

A相光栅上的光信号与B相光栅上的光信号具有一定相位差。

当光电传感器接收到A相和B相信号后,可以通过信号的变化来判断物体的运动方向和速度。

当物体顺时针转动时,A相和B相信号的触发顺序为A→B→A'→B';当物体逆时针转动时,触发顺序为A'→B'→A→B。

通过记录触发信号的次数和顺序,可以测量出物体的角度和速度。

3. 绝对式光电编码器的工作原理绝对式光电编码器在编码盘上添加了位移码和同步码。

位移码用于测量物体的具体位置,而同步码用于确定当前位置的起点。

通过读取编码盘上的位移码和同步码,光电传感器可以准确地确定物体的角度、位置和速度。

绝对式光电编码器的精度高,但制造成本也较高。

4. 光电编码器的应用领域光电编码器广泛应用于机器人、数控机床、电子设备等领域。

在机器人领域,光电编码器可用于测量机器人关节的角度和位置,实现精确的运动控制。

在数控机床领域,光电编码器可用于控制工件的位置、速度和加速度,确保加工的精度和稳定性。

在电子设备领域,光电编码器可用于调节电机的转速和位置,实现设备的精准控制。

总结:光电编码器是一种重要的测量装置,通过将光、电信号转化为数字信号来实现对物体的测量。

根据编码盘的不同,光电编码器可分为增量式和绝对式两种类型。

光电编码器

光电编码器

光电编码器介绍光电编码器是一种利用光电原理来测量位置和运动的装置。

它通常由光源、光栅、光电二极管和信号解码电路等组成。

光源发射光线经过光栅后被光电二极管检测到,并通过信号解码电路转换为数字信号。

光电编码器广泛应用于机械、自动化控制、仪器仪表等领域。

工作原理光电编码器的工作原理基于光电效应和光栅原理。

当光源照射到光栅上时,栅上的光不同位置的条带通过光栅凹凸不同的位置形成不同的折射或反射光束。

光电二极管接收到这些光束并转换为电信号。

信号解码电路将电信号转换为数字信号,从而实现位置和运动的测量。

主要特点1.高精度测量:光电编码器具有高分辨率的特点,能够实现对位置和运动的精确测量。

2.高速响应:光电编码器的工作速度快,能够实时获取位置和运动的信息。

3.可靠性高:光电编码器使用光学原理进行测量,不受磁场和电磁干扰,具有较高的可靠性。

4.结构简单:光电编码器的结构相对简单,易于制造和维修。

5.高适应性:光电编码器适用于不同的工作环境和工作条件,具有良好的适应性。

应用领域光电编码器广泛应用于各个领域,包括但不限于以下几个方面:1. 机械制造光电编码器可以在机械制造过程中用于测量位置和运动,例如机床、自动化装配线、工业机器人等。

其高精度和高速响应特点能够满足机械制造中对精确测量的需求。

2. 自动化控制光电编码器可以用于自动化控制系统中,例如位置控制、速度控制、角度控制等。

通过对光电编码器测量结果的实时监测和反馈,可以实现对自动化系统的精确控制。

3. 电子设备光电编码器可以应用于电子设备中,例如印刷机、数码相机、光电开关等。

通过光电编码器对位置和运动的测量,可以实现电子设备的精确定位和运动控制。

4. 仪器仪表光电编码器可以应用于仪器仪表中,例如光谱仪、测量仪表、扫描仪等。

通过光电编码器对位置和运动的测量,可以提高仪器仪表的测量精度和稳定性。

发展趋势随着自动化技术的不断发展和应用范围的扩大,光电编码器在工业和科学领域的需求也在不断增加。

光电编码器的原理及应用

光电编码器的原理及应用

光电编码器的原理及应用光电编码器是一种常见的传感器设备,用于将物理运动转换为电信号,通过测量位置、速度和角度等参数来监测和控制运动系统。

本文将介绍光电编码器的工作原理和常见的应用领域。

一、光电编码器的工作原理光电编码器由光电传感器和编码盘组成。

光电传感器通常是由发光二极管(LED)和光敏元件(如光电二极管或光电二极管阵列)组成,放置在编码盘的两侧。

编码盘上有一系列等距分布的透明和不透明区域,当物体运动时,光电编码器监测到编码盘上透明和不透明区域之间的光变化。

当LED发射出光线照射到光电编码器的编码盘上时,光线会穿透透明区域,而被不透明区域所遮挡。

光敏元件接收到光线的强度变化,将其转化为电信号。

通过分析这些电信号,我们可以获取到运动物体的位置、速度以及方向等信息。

二、光电编码器的应用领域1. 机械工业光电编码器在机械工业中广泛应用于运动控制系统,如数控机床、工业机器人和自动化生产线等。

通过使用光电编码器,可以实现对机械设备的高精度位置测量和运动控制,提高生产效率和产品质量。

2. 医疗设备在医疗器械领域,光电编码器可用于精确测量和控制医疗设备的运动,如手术机械臂、X射线机和CT扫描等。

通过光电编码器的应用,可以确保医疗设备的准确性和安全性,提高医疗诊断和治疗的效果。

3. 汽车工业光电编码器在汽车工业中被广泛用于车辆的电子稳定控制、传动系统和方向盘位置检测等方面。

通过对车辆各部件的精确测量和控制,可以提高行驶安全性和驾驶舒适度。

4. 电子设备光电编码器也被应用于电子设备中,如光学鼠标、打印机和数码相机等。

光电编码器可以测量光标在表面上的位置,通过对光标位置的检测,可以实现精确的光学定位和跟踪功能。

三、总结光电编码器是一种常见的传感器设备,通过将物理运动转换为电信号,实现对运动系统的监测和控制。

光电编码器的工作原理是利用光敏元件对光线的强度变化进行测量和转换。

光电编码器在机械工业、医疗设备、汽车工业和电子设备等领域有着广泛的应用,可以提高产品的精确性、性能和安全性。

光电编码器的介绍

光电编码器的介绍

光电编码器的介绍光电编码器(Optical Encoder)是一种由光电开关和编码盘组成的测量装置,用于测量旋转运动或线性运动的位置、速度和方向。

它是将机械运动转换为电信号的传感器,广泛应用于工业自动化系统、机床、医疗设备、机器人等领域。

光电编码器的工作原理是通过光电开关检测光电信号来实现位置和运动的测量。

它由一个光电开关和一个编码盘组成。

编码盘上有一个或多个刻有光透过孔和光遮挡槽的轨道,当编码盘旋转或移动时,光电开关会检测到光透过孔或光遮挡槽,从而产生相应的光电信号。

这些光电信号经过处理电路被转换成电信号,通过计数器或编码器读取,最终获得位置、速度和方向信息。

1.高精度:光电编码器的精度通常可以达到极高的水平,一般在几微米或更小的范围内。

这使得它在需要高精度测量的应用中得到广泛使用,如机床、机器人、印刷设备等。

2.高分辨率:光电编码器具备高分辨率的特点,可以提供更细腻的位置和速度测量。

高分辨率使得光电编码器在需要准确控制位置和速度的应用中得到广泛应用,例如自动导航、精密定位等。

3.快速响应:光电编码器可以实时检测光透过孔或光遮挡槽,从而能够快速响应运动状态的变化,使得它在需要快速反馈和控制的应用中得到广泛应用,如自动调节、速度控制等。

4.高可靠性:光电编码器采用非接触式测量方式,与传统的机械式测量装置相比,具有更长的使用寿命和更低的故障率。

同时,光电编码器具备抗干扰能力强、防尘、防水等特点,适用于各种恶劣环境和工作条件。

5.无需校准:光电编码器的安装和使用非常简单,通常无需进行校准,只需将其安装在需要测量的位置上即可。

这大大减少了安装和维护的时间和成本。

增量式编码器是一种周期性输出脉冲信号的编码器,其输出脉冲的数目与旋转角度或位移成正比。

通过对脉冲信号进行计数、计算和运算,可以获得位置和速度信息。

增量式编码器常用于需要持续测量和监控位置和速度变化的应用中。

绝对式编码器通过在编码盘上刻上固定的编码序列来实现位置测量,每个位置都有唯一的编码码,从而可以准确地确定位置。

光电式编码器

光电式编码器
脉冲信号。
通常数控机床的机械原点与各铀的脉冲编码器发出Z相脉冲的位置
是一致的。
光源
码盘
光电元件
Z 零位脉冲 A 增量脉冲 B辨向脉冲
图6.30 增量式编码器的结构图
(2)绝对式编码器
1)码制和码盘 码盘按其所用码制可分为:二进制、循环码(葛莱码)、十进
绝对式编码器图案不均匀,几位编码器其码盘上就有几位码 道,在编码器的相应位置都可输出对应的数字码,在码盘运动过 程中读取这些代码,即能实时测得坐标的变化。这种方法的优点 是坐标固定与测量以前状态无关,不需起动时的位置重合,抗干 扰能力强,无累积误差,具有断电位置保持,在不读数的范围内 移动速度可超越极限响应速度,不需要方向判别和可逆计数,信 号并行传送等。缺点是结构复杂、价格高,为提高分辨率需要提 高码道数目或者使用减速齿轮机构组成双码盘机构,将任意位置 取作零位时需进行一定的运算。
2.光电式编码器的接口与安装使用注意事项
(1)机械方面
编码器轴与用户端输出轴之间通过联轴节连接如下图所示, 避免因用户轴的串动、跳动,造成编码器轴系和码盘的损坏。应 保证编码器轴与用户轴的不同轴度<0.2mm,与轴线的偏角<1.5o 安装时严禁敲击和摔打碰撞,以免损坏轴系和码盘。 (2)电气方面
编码器的输出线不能与动力线等绕在一起或同一管道传输, 也不宜在配电盘附近使用,配线时采用屏蔽电缆,可以参照下图 进行配线。
增量式编码器图案和光脉冲信号均匀,可将任意位置作为基 准点,从该点开始按一定的量化单位检测位移或转角,计量脉冲 数即可折算为位移或转角。该方法因无确定的对应测量点,一旦 停电则失掉当前位置,且速度不可超越计数器极限响应速度,此 外由于噪声影响可能造成计数积累误差。优点是其的零点可任意 预置,且测量速度仅受计数器容量限制。

光电编码器概述

光电编码器概述

光电编码器概述光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲、数字量或模拟量信号输出的传感器。

利用它可以实现角度、直线位移、转速等模拟物理量的测量。

一、特点它具有体积小、重量轻、品种多、功能全、高频响应、分辨能力高、承载能力强、力矩小、耗能低;性能稳定、可靠、使用寿命长等特点。

二、编码器分类1、按信号的原理分:增量式编码器、绝对式编码器、混合式编码器1)增量式编码器直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90º,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位置信息。

2)绝对式编码器利用自然二进制或循环二进制(格雷码)方式进行光电转换的。

绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。

编码的设计可采用二进制码、循环码、二进制补码等。

它的特点是:(1)可以直接读出角度坐标的绝对值;(2)没有累积误差;(3)电源切除后位置信息不会丢失。

但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。

3)混合式绝对值编码器它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。

绝对值编码器是一种直接编码和直接测量的检测装置。

它能指示绝对值位置,没有累积误差,电源切除后,位置信息不丢失。

常用的编码器有编码盘和编码尺,统称为码盘。

从编码器的使用记数来分类,有二进制编码、二进制循环码(葛莱码)、二-十进制码等编码器。

从结构原理分类,有接触式、光电式和电磁式等几种。

混合式绝对值编码器就是把增量制码与绝对制码同做在一块码盘上。

在圆盘的最外圈是高密度的增量条纹,中间有四个码道组成绝对式的四位葛莱码,每1/4同心圆被葛莱码分割成16个等分段。

光电编码器

光电编码器

光电编码器光电编码器是一种传感器设备,能够将轴的旋转运动转换成数字信号。

通过对这些数字信号进行处理,可以获得轴的旋转位置、旋转速度和旋转方向等信息。

原理光电编码器的原理比较简单,它由凸轮、光电传感器、信号处理器等组成。

凸轮是安装在轴上的,随着轴的旋转而旋转。

光电传感器是位于凸轮旁边的,它通过光束来侦测凸轮的凸出部分。

每当凸轮旋转一定角度,光电传感器就会发出一个脉冲信号。

信号处理器会将这些脉冲信号转换成数字信号,然后输出给外部设备。

结构光电编码器的结构主要包括基座、盖板、基凸轮、传感器模块等。

基座和盖板由紧固件连接,连接口处还配有密封条,有效避免污染入侵。

基凸轮更是光电编码器的核心部分,它的结构包括凸轮、镜面、基座等。

凸轮和镜面的设计效果直接关系到信号质量和抗干扰能力。

这些组件的耐磨性、防水性、耐腐蚀性等都是光电编码器的关键指标。

类型根据使用范围和测量精度不同,可以将光电编码器分为不同类型:绝对式编码器绝对式编码器根据光电模块输出的情况,能够准确测量轴旋转的位置,不受停机启动或漂移等影响。

应用于比较高的要求,比如机床、精密机器人、制造业自动化等。

增量式编码器增量式编码器只能获得轴旋转的相对位置信息,并且需要其他设备的帮助才能计算出准确位置。

应用于较低的要求,比如数字显示、汽车电子、家用电器等。

应用光电编码器广泛应用于方位测量、轴位检测、角度测量等领域,适用范围包括:1.机器人控制:机器人的关节必须准确无误地工作,光电编码器能够精准地记录每个关节的旋转位置和要求的运动轨迹。

2.线性驱动轴:通过对光电编码器的输出信号进行分析,可控制线性驱动或步进电机的运行,实现高效、准确的位置控制。

3.电子制造:光电编码器能够对电子工业中使用的高速电机任何位置进行测量,使得这些电机和设备始终保持在一个有效的运行状态。

总结光电编码器作为自动化控制系统中使用和成本效益最优的旋转角度和转速测量设备之一,在机器人、航空、造船、机床、车辆、医疗、电力、矿山和物流等领域有着广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 增量式光电编码器
1.2.1 原理及其结构 增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能
通过输出脉冲区别出在哪个位置上的增量。它能够产生与位移增量等值的脉冲信号,其作用 是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某 个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。一般来说,增量式光电编
实用光电编码器技术
编著 陈先锋
第 1 章 光电编码器基础
1.1 概述
光电编码器是一种集光、机、电为一体的数字化检测装置,它具有分辨率高、精度高、 结构简单、体积小、使用可靠、易于维护、性价比高等优点。近 10 几年来,发展为一种成 熟的多规格、高性能的系列工业化产品,在数控机床、机器人、雷达、光电经纬仪、地面指 挥仪、高精度闭环调速系统、伺服系统等诸多领域中得到了广泛的应用。光电编码器可以定 义为:一种通过光电转换,将输至轴上的机械、几何位移量转换成脉冲或数字量的传感器, 它主要用于速度或位置(角度)的检测。典型的光电编码器由码盘(Disk)、检测光栅(Mask)、 光电转换电路(包括光源、光敏器件、信号转换电路)、机械部件等组成。
一般来说,根据光电编码器产生脉冲的方式不同,可以分为增量式、绝对式以及复合式 三大类。按编码器运动部件的运动方式来分,可以分为旋转式和直线式两种。由于直线式运 动可以借助机械连接转变为旋转式运动,反之亦然。因此,只有在那些结构形式和运动方式 都有利于使用直线式光电编码器的场合才予使用。旋转式光电编码器容易做成全封闭型式, 易于实现小型化,传感长度较长,具有较长的环境适用能力,因而在实际工业生产中得到广 泛的应用,在本书中主要针对旋转式光电编码器,如不特别说明,所提到的光电编码器则指 旋转式光电编码器。
θ1 = 360°/2n
(1-2)
码盘转角α 与转换出的二进制数码 C1C2……Cn 及十进制数 N 的对应关系为:
n
∑ α = 360° Ci ⋅ 2−i = Nθ1 i =1
(1-3)
二进制马盘的缺点是:每个码道的黑白分界线总有一半与相邻内圈码道的黑白分界线是 对齐的,这样就会因黑白分界线刻画不精确造成粗误差。采用其他的有权编码时也存在类似 的问题。图 1-10 是一个四位二进制码盘展开图,图中 aa 为最高位码道黑白分界线的理想位 置,它与其他三位码道的黑白分界线正好对齐,当码盘转动,光束扫过这一区域时,输出数 码从 0111 变为 1000 不会出现错误。如果 C1 道黑白分界线刻偏到 a’a’,当码盘转动时,输 出数码就会从 0111 变为 1111 再变到 1000,中途出现了错误数码 1111。反之 C1 道黑白分界 线刻偏到 a’’a’’,当码盘转动时,输出数码就会从 0111 变为 0000 再变到 1000,中途出现了 错误数码 0000。为了消除这种粗误差,可以采用循环码盘(格雷码盘)。
在设计和使用中都要给予充分考虑。
(4)响应频率
编码器输出的响应频率取决于光电检测器件、电子处理线路的响应速度。当编码器高速
旋转时,如果其分辨率很高,那么编码器输出的信号频率将会很高。如果光电检测器件和电
子线路元器件的工作速度与之不能相适应,就有可能使输出波形严重畸变,甚至产生丢失脉
冲的现象。这样输出信号就不能准确反映轴的位置信息。所以,每一种编码器在其分辨率一
还不能适应于控制、信号处理和远距离传输的要求。所以,在编码器内还必须将此信号放大、 整形。经过处理的输出信号一般近似于正弦波或矩形波。由于矩形波输出信号容易进行数字 处理,所以这种输出信号在定位控制中得到广泛的应用。采用正弦波输出信号时基本消除了 定位停止时的振荡现象,并且容易通过电子内插方法,以较低的成本得到较高的分辨率。
码道分为 2i-1 个黑白间隔,第 i 码道的黑白分界线与第 i-1 码道的黑白分界线错开 360° / 2i 。
图 1-3 集电极开路输出电路
电压输出 这种输出方式通过使用编码器输出侧的 NPN 晶体管,将晶体管的发射极引 出端子连接至 0V,集电极端子与+Vcc 和负载电阻相连,并作为输出端。在编码器供电电压 和信号接受装置的电压一致的情况下,建议使用这种类型的输出电路。输出电路如图 1-4 所 示。主要应用领域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、包装机 械和针织机械等。
(1)分辨率
光电编码器的分辨率是以编码器轴转动一周所产生的输出信号基本周期数来表示的,即
脉冲数/转(PPR)。码盘上的透光缝隙的数目就等于编码器的分辨率,码盘上刻的缝隙越多,
编码器的分辨率就越高。在工业电气传动中,根据不同的应用对象,可选择分辨率通常在
500~6000PPR 的增量式光电编码器,最高可以达到几万 PPR。交流伺服电机控制系统中通
小时以上;分辨率高;抗干扰能力较强,信号传输距离较长,可靠性较高。其缺点是它无法 直接读出转动轴的绝对位置信息。
图 1-1 增量式光电编码器的组成
图 1-2 增量式光电编码器的输出信号波形
1.2.2 基本技术规格
在增量式光电编码器的使用过程中,对于其技术规格通常会提出不同的要求,其中最关
键的就是它的分辨率、精度、输出信号的稳定性、响应频率、信号输出形式。
图 1-7 推挽式输出电路来自1.3 绝对式光电编码器1.3.1 基本构造及特点 用增量式光电编码器有可能由于外界的干扰产生计数错误,并且在停电或故障停车后无
法找到事故前执行部件的正确位置。采用绝对式光电编码器可以避免上述缺点。绝对式光电 编码器的基本原理及组成部件与增量式光电编码器基本相同,也是由光源、码盘、检测光栅、 光电检测器件和转换电路组成。与增量式光电编码器不同的是,绝对式光电编码器用不同的 数码来分别指示每个不同的增量位置,它是一种直接输出数字量的传感器。在它的圆形码盘 上沿径向有若干同心码道,每条上由透光和不透光的扇形区相间组成,相邻码道的扇区数目 是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对 应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应 的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出 一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高,对于一个具有 N 位 二进制分辨率的编码器,其码盘必须有 N 条码道。绝对式光电编码器原理如图 1-8 所示。
常选用分辨率为 2500PPR 的编码器。此外对光电转换信号进行逻辑处理,可以得到 2 倍频
或 4 倍频的脉冲信号,从而进一步提高分辨率。
(2)精度
增量式光电编码器的精度与分辨率完全无关,这是两个不同的概念。精度是一种度量在
所选定的分辨率范围内,确定任一脉冲相对另一脉冲位置的能力。精度通常用角度、角分或
图 1-10 四位二进制码盘展开图
图 1-9(b)是一个四位循环码盘,它与二进制码盘相同的是,码道数也等于数码位数, 因此最小分辨率也是式(1-2)求得,最内圈也是半圈透光半圈不透光,对应 R1 位,最外圈 是第 n 码道对于 Rn 位。与二进制码盘不同的是:第二码道也是一半透光一半不透光,第 i
绝对式光电编码器是利用自然二进制、循环二进制(格雷码)、二-十进制等方式进行光 电转换的。绝对式光电编码器与增量式光电编码器不同之处在于圆盘上透光、不透光的线条 图形,绝对光电编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。它的特点是: 可以直接读出角度坐标的绝对值;没有累积误差;电源切除后位置信息不会丢失;编码器的 精度取决于位数;最高运转速度比增量式光电编码器高。
角秒来表示。编码器的精度与码盘透光缝隙的加工质量、码盘的机械旋转情况的制造精度因
素有关,也与安装技术有关。
(3)输出信号的稳定性
编码器输出信号的稳定性是指在实际运行条件下,保持规定精度的能力。影响编码器输
出信号稳定性的主要因素是温度对电子器件造成的漂移、外界加于编码器的变形力以及光源
特性的变化。由于受到温度和电源变化的影响,编码器的电子电路不能保持规定的输出特性,
码器输出 A、B 两相互差 90° 电度角的脉冲信号(即所谓的两组正交输出信号),从而可方
便地判断出旋转方向。同时还有用作参考零位的 Z 相标志(指示)脉冲信号,码盘每旋转 一周,只发出一个标志信号。标志脉冲通常用来指示机械位置或对积累量清零。
增量式光电编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成,如图 1-1 所示。码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周 期;检测光栅上刻有 A、B 两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测 器件之间的光线。它们的节距和码盘上的节距相等,并且两组透光缝隙错开 1/4 节距,使得
增量式光电编码器的信号输出形式有:集电极开路输出(Open Collector)、电压输出 (Voltage Output)、线驱动输出(Line Driver)、互补型输出(Complemental Output)和推挽 式输出(Totem Pole)。
集电极开路输出 这种输出方式通过使用编码器输出侧的 NPN 晶体管,将晶体管的发 射极引出端子连接至 0V,断开集电极与+Vcc 的端子并把集电极作为输出端。在编码器供电 电压和信号接受装置的电压不一致的情况下,建议使用这种类型的输出电路。输出电路如图 1-3 所示。主要应用领域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、 包装机械和针织机械等。
图 1-8 绝对式光电编码器原理
1.3.2 码制与码盘 绝对式光电编码器的码盘按照其所用的码制可以分为:二进制码、循环码(格雷码)、
十进制码、六十进制码(度、分、秒进制)码盘等。四位二元码盘(二进制、格雷码)如图 1-9 所示。图中黑、白色分别表示透光、不透光区域。
图 1-9 四位二元码盘
图 1-9(a)是一个四位二进制码盘,它的最里圈码道为第一码道,半圈透光半圈不透光, 对应于最高位 C1,最外圈为第 n 码道,共分成 2n 个亮暗间隔,对应于最低位 Cn,n 位二元 码盘最小分辨率为:
相关文档
最新文档