分类计数原理与分步计数原理的课程教学设计

合集下载

6.1 分类加法计数原理与分步乘法计数原理(教学设计)高二数学(人教A版2019选择性必修第三册)

6.1  分类加法计数原理与分步乘法计数原理(教学设计)高二数学(人教A版2019选择性必修第三册)

6.1.1分类加法计数原理与分步乘法计数原理(第1课时)教学设计一、课时教学内容分类加法计数原理与分步乘法计数原理.二、课时教学目标1.通过实例能归纳总结出分类加法计数原理与分步乘法计数原理;2.正确理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.3.能利用两个原理解决一些简单的实际问题.三、教学重点、难点1.重点:归纳得出分类加法计数原理和分步乘法计数原理,能应用它们解决简单的实际问题.2.难点:正确地理解“完成一件事”的含义;根据实际问题的特征,正确地区分“分类”或“分步”.四、教学过程设计环节一创设情境,引入课题汽车号牌的序号一般是从26个英文字母、10个阿拉伯数字中选出若干个,并按适当顺序排列而成.随着人们生活水平的提高,家庭汽车拥有量迅速增长,汽车号牌序号需要扩容.那么,交通管理部门应如何确定序号的组成方法,才能满足民众的需求呢?这就需要“数(shǔ)出”某种汽车号牌序号的组成方案下所有可能的序号数,这就是计数.日常生活、生产中类似的问题大量存在.例如,幼儿会通过一个一个地数的方法,计算自己拥有玩具的数量;学校要举行班际篮球比赛,在确定赛制后,体育组的老师需要知道共需要举行多少场比赛;用红、黄、绿三面旗帜组成航海信号,颜色的不同排列表示不同的信号,需要知道共可以组成多少种不同的信号……如果问题中数量很少,一个一个地数也不失为一种计数的好方法.但如果问题中数量很多,我们还一个一个地去数吗?在小学我们学了加法和乘法,这是将若干个“小”的数结合成“较大”的数最基本的方法.这两种方法经过推广就成了本章将要学习的分类加法计数原理和分步乘法计数原理.这两个原理是解决计数问题的最基本、最重要的方法,利用两个计算原理还可以得到两类特殊计数问题的计数公式一排列数公式和组合数公式,应用公式就可以方便地解决一些计数问题.作为计数原理与计数公式的一个应用,本章我们还将学习在数学上有广泛应用的二项式定理.计数问题是我们从小就经常遇到的,通过列举一个一个地数是计数的基本方法.但当问题中的数量很大时,列举的方法效率不高.能否设计巧妙的“数法”,以提高效率呢?下面先分析一个简单的问题,并尝试从中得出巧妙的计数计数方法.问题1:用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?+=(因为英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出261036种不同的号码.)问题2:从甲地到乙地,可以乘火车也可以乘汽车.一天中,火车4班,汽车8班.乘这些交通工具从甲地到乙地,有多少种不同方法?(从甲地到乙地,乘火车有4班,乘汽车有8班,所以不同方法的种数为4 + 8 = 12)探究:你能说一说这个问题的特征吗?首先,这里要完成的事情是“给一个座位编号”;其次是“或”字的出现:一个座位编号用一个英文字母或一个阿拉伯数字表示.因为英文字母与阿拉伯数字互不相同,所以用英文字母编出的号码与用阿拉伯数字编出的号码也互不相同.这两类号码数相加就得到号码的总数.上述计数过程的基本环节是:(1)确定分类标准,根据问题条件分为字母号码和数字号码两类;(2)分别计算各类号码的个数;(3)各类号码的个数相加,得出所有号码的个数.教师提出问题,学生思考、回答.【设计意图】通过设置问题情境,引出分类计数问题,激发学生的学习兴趣.环节二观察分析,感知概念问题3:你能概括一下上述问题的共同特征吗?【师生活动】学生回答,教师注意引导学生概括到“分类”和“加法”上.可以由学生叙述分类加法计数原理,教师适当补充.归纳概括分类加法计数原理:一般地,有如下分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有=+N m n种不同的方法.教师对原理进行解释,特别注意强调明确要完成的“一件事”的重要性.问题1中要完成的一件事是指“给一个座位编号”,问题2中要完成的一件事是指“从甲地到乙地”.特别注意:完成一件事都需要分类完成;每一类中的每一种方法都能完成这件事,两类不同的方案中的方法互不相同.设计意图:概括分类计数问题的特征,得出分类加法计数原理.【师生活动】学生举例,教师适当评价,特别注意让学生思考回答要完成的“一件事”是什么.【设计意图】使学生辨析和理解分类加法计数原理.例1 在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,如表6.1-1.表6.1-1探究:如果完成一件事有三类不同方案,在第1类方案中有m种不同的方法,在1第2类方案中有m种不同的方法,在第3类方案中有3m种不同的方法,那么完成2这件事共有多少种不同的方法?(完成这件事共有N = 1m+2m+3m种不同的方法)如果完成一件事情有n类不同方案,在每一类中都有若干种不同的方法,那么应当如何计数呢?(如果完成一件事情有n类不同方案,在第1类方案中有1m种不同的方法,在第2类方案中有机2m种不同的方法……在第n类方案中有机“种不同的方法,那么完成这件事共有N = 1m+2m+3m+...+m种不同的方法)n让学生自主探究,得出答案.【设计意图】推广分类加法计数原理,加深对分类加法计数原理的理解与认识.巩固概念,学会用分类加法计数原理解答简单问题.思考:用前6个大写英文字母和1~9这9个阿拉伯数字,以A,2A,…,9A,1B,2B,…1的方式给教室里的一个座位编号,总共能编出多少种不同的号码?【师生活动】教师引导学生分析、比较,得出:完成问题1的方法可以分类,用26个英文字母中的任意一个或10 个阿拉伯数字中的任意一个,都可以给出一个座位号码. 但在这个问题中,号码必须由一个英文字母和一个作为下标的阿拉伯数字组成,即得到一个号码要经过先确定一个英文字母,后确定一个阿拉伯数字这样两个步骤.需要分步才能完成.【设计意图】比较分类计数问题与分步计数问题,渗透分步乘法计数原理.这里要完成的事情仍然是“给一个座位编号”,但与前一问题的要求不同.在前一问题中,用26个英文字母中的任意一个或10个阿拉伯数字中的任意一个,都可以给出一个座位号码.但在这个问题中,号码必须由一个英文字母和一个作为下标的阿拉伯数字组成,即得到一个号码要经过先确定一个英文字母,后确定一个阿拉伯数字这样两个步骤.用图6.1-1所示的方法可以列出所有可能的号码.图6.1-1是解决计数问题常用的“树状图”.你能用树状图列出所有可能的号码也可以这样思考:由于前6个英文字母中的任意一个都能与9个数字中的任意一个组成一个号码,而且它们互不相同,因此共有6954⨯=种不同的号码.【师生活动】学生列出号码,教师注意在“有规律''"有序”列举上进行引导,可引出“树状图”法.教师和学生一起列出第一个树状图,让学生列出其他的树状图. 问题4:从列号码的过程中你发现了什么规律?【师生活动】教师引导学生概括出“任意一个英文字母都能与9个数字中的任意一个组成一个号码”.可以这样思考:由于前6个英文字母中的任意一个都能与9个数字中的任意一个组成一个号码,而且它们互不相同,因此不同号码的种数为6×9 = 54.补充问题:从甲地到乙地,需要经过丙地,从甲地到丙地有4条路,从丙地到乙地有8条路.从甲地到乙地,有多少条不同的路线?(从甲地到乙地,不同路线的条数为4×8 = 32)环节四辨析理解深化概念探究:你能说一说这个问题的特征吗?上述问题要完成的一件事情仍然是“给一个座位编号”,其中最重要的特征是“和”字的出现:一个座位编号由一个英文字母和一个阿拉伯数字构成.因此得到一个座位号要经过先确定一个英文字母,后确定一个阿拉伯数字这两个步骤,每一个英文字母与不同的数字组成的号码是互不相同的.【师生活动】学生回答,教师注意引导学生概括到“分步”和“乘法”上.可以由学生叙述分步乘法计数原理,教师适当补充.一般地,有如下分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有=⨯N m n种不同的方法.【设计意图】概括分步计数问题的特征,得出分步乘法计数原理.问题5:你能举出生活中的一些分步计数问题吗?【师生活动】学生举例,教师适当评价.特别注意让学生思考回答“一件事”是什么.【设计意图】使学生辨析和理解分步乘法计数原理.例2某班有男生30名、女生24名,从中任选男生和女生各1名代表班级参加比赛,共有多少种不同的选法?探究:如果完成一件事需要三个步骤,做第1步有m种不同的方法,做第21步有m种不同的方法,做第3步有3m种不同的方法,那么完成这件事共有多少种2不同的方法?(完成这件事共有N = m1×m2×m3种不同的方法)如果完成一件事情需要n个步骤,做每一步都有若于种不同的方法,那么应当如何计数呢?【设计意图】推广分步乘法计数原理,加深对此原理的理解与认识.环节五概念应用,巩固内化例3书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同取法?(2)从书架的第1层、第2层、第3层各取1本书,有多少种不同取法?教师引导学生分析:对于第(1)小题,要完成的一件事是什么?完成这件事需要分类还是分步?(要完成的一件事是“从书架上取1本书”,需要分类完成)对于第(2)小题,要完成的一件事是什么?完成这件事需要分类还是分步?(要完成的一件事是“从书架的第1层、第2层、第3 层各取1本书”,需要分步完成)要求学生自己完成解答过程.完整解答过程如下:步,从第1层取1本计算机书,有4种方法;第2步,从第2层取1本文艺书,有3种方法;第3步,从第3层取1本体育书,有2种方法.根据分步乘法计数原理,不同取法的种数为N=⨯⨯=.43224【师生活动】你能从自己的生活经历中举出两个计数原理的例子吗?学生举例.教师针对学生举出的例子,要求学生回答要完成的“一件事”是什么,为什么可以用相应的原理来计数等.【设计意图】通过举例检查学生对概念的理解情况.环节六归纳总结,反思提升请同学们回顾本节课的学习内容,并回答下列问题:1.本节课学习的概念有哪些?2.你能从自己的生活经历中举出两个计数原理的例子吗?学生举例.教师针对学生举出的例子,要求学生回答要完成的“一件事”是什么,为什么可以用相应的原理来计数等.【设计意图】通过举例检查学生对概念的理解情况.环节七目标检测,作业布置完成教材:教材第5〜6页练习第1,3题.练习(第5页)1.填空题(1)一项工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这项工作,不同选法的种数是;【答案】9【解析】由题意,选择第1种方法来完成工作,共有5种选法;选择第2种方法完成工作,共有4种选法;所以符合题意得选法共有549+=种.故答案为:9.(2)从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B村去C村,不同路线的条数是.【解析】因为从A村去B村的道路有3条,从B村去C村的道路有2条,所以从A村经B村去C村,共有326⨯=条不同路线.故答案为:6.2.在例1中,如果数学也是A大学的强项专业,那么A大学共有6个专业可以选择,B大学共有4个专业可以选择,应用分类加法计数原理,得到这名同学可能的专业选择种数为6410+=.这种算法有什么问题?2.【解析】这种算法不正确.因为要确定的是这名同学的专业选择,并不需要考虑学校的差异,所以应当是6419+-=(种)可能的专业选择.3.书架上层放有6本不同的数学书,下层放有5本不同的语文书(1)从书架上任取1本书,有多少种不同的取法?(2)从书架上任取数学书和语文书各1本,有多少种不同的取法?3.【解析】(1)从书架上任取1本书,有两类方法:第1类方法是从上层取1本数学书,有6种取法;第2类方法是从下层取1本语文书,有5种取法.根据分类加法计数原理,不同取法的种数是6511N=+=.(2)从书架的上、下层各取1本书,可以分成两个步骤完成:第1步,从上层取1本数学书,有6种取法;第2步,从下层取1本语文书,有5种取法.根据分步乘法计数原理,不同取法的种数是6530N=⨯=.4.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名.(1)从三个年级的学生中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从三个年级的学生中各选1人参加接待外宾的活动.有多少种不同的选法? 4.【答案】(1)12;(2)60.【解析】从高一年级的学生中选取1名,有3种选法;从高二年级的学生中选取1名,有5种选法;从高三年级的学生中选取1名,有4种选法;(1)从三个年级的学生中任选1人参加活动,共有35412++=种不同选法;(2)从三个年级的学生中各选1人参加活动,共有35460⨯⨯=种不同选法.。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 培养学生运用计数原理解决实际问题的能力。

3. 引导学生通过合作交流,提高思维能力和创新能力。

二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。

(2)学会运用分类加法计数原理解决问题。

2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。

(2)学会运用分步乘法计数原理解决问题。

三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。

(2)分步乘法计数原理的应用。

2. 教学难点:(1)理解分类加法计数原理的含义。

(2)理解分步乘法计数原理的含义。

四、教学方法1. 采用问题驱动法,引导学生主动探究。

2. 运用实例分析,让学生直观理解计数原理。

3. 组织小组讨论,培养学生合作交流能力。

五、教学准备1. 课件、黑板、粉笔等教学工具。

2. 相关实例和练习题。

教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。

2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。

3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。

二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。

2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。

3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。

2. 讲解分类加法计数原理的概念和步骤。

3. 让学生举例说明并计算。

二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。

2. 讲解分步乘法计数原理的概念和步骤。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 让学生学会运用分类加法计数原理和分步乘法计法原理解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 分类加法计数原理:(1)概念介绍:同一类对象的数量相加得到总数。

(2)实例讲解:学校举办运动会,参加跑步的有20人,参加跳高的有15人,参加跳远的有10人,请问参加运动会的总人数是多少?a. 班级里有男生30人,女生20人,请问班级里总共有多少人?b. 图书馆里有小说50本,科普书籍30本,请问图书馆里总共有多少本书?2. 分步乘法计数原理:(1)概念介绍:完成一项任务需要多个步骤,每个步骤的数量相乘得到总数量。

(2)实例讲解:做一份报纸,需要先排版(10分钟),印刷(20分钟),装订(10分钟),请问完成这份报纸需要多长时间?a. 制作一个蛋糕,需要打发鸡蛋(10分钟),加入面粉和糖(5分钟),烘烤(20分钟),请问制作一个蛋糕需要多长时间?b. 工厂生产一批玩具,每台机器每小时可以生产10个玩具,共有3台机器工作,请问每小时可以生产多少个玩具?三、教学方法1. 采用讲授法,讲解分类加法计数原理和分步乘法计数原理的概念及应用。

2. 利用实例讲解,让学生更好地理解计数原理。

3. 设计练习题,让学生动手实践,巩固所学知识。

四、教学评价1. 课堂问答:检查学生对分类加法计数原理和分步乘法计数原理的理解。

2. 练习题解答:评价学生运用计数原理解决问题的能力。

3. 课后作业:布置相关题目,让学生进一步巩固所学知识。

五、教学资源1. PPT课件:展示分类加法计数原理和分步乘法计数原理的概念及实例。

2. 练习题:提供丰富的练习题,让学生动手实践。

3. 教学视频:可选用的相关教学视频,辅助学生理解计数原理。

4. 黑板、粉笔:用于板书关键词和讲解实例。

六、教学步骤1. 引入新课:通过一个简单的实例,让学生感受分类加法计数原理和分步乘法计数原理的应用。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。

2. 学会运用分类加法计数原理和分步乘法计法原理解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 分类加法计数原理:定义:如果一个事件可以分成几个互斥的部分,这个事件发生的总次数就等于各部分事件发生次数的和。

公式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:定义:如果一个事件可以分成几个相互独立的步骤,这个事件发生的总次数等于各步骤事件发生次数的乘积。

公式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理的概念和公式。

分步乘法计数原理的概念和公式。

2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决实际问题。

四、教学方法1. 采用讲授法讲解分类加法计数原理和分步乘法计数原理的概念和公式。

2. 运用案例分析法引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。

3. 开展小组讨论法,让学生分组讨论和解决问题,培养学生的团队协作能力。

五、教学步骤1. 导入新课,介绍分类加法计数原理和分步乘法计数原理的概念。

2. 讲解分类加法计数原理的公式和应用示例。

3. 讲解分步乘法计数原理的公式和应用示例。

4. 开展案例分析,让学生运用分类加法计数原理和分步乘法计数原理解决实际问题。

5. 进行小组讨论,让学生分组讨论和解决问题,分享解题心得。

六、教学评估1. 课堂问答:通过提问学生,了解学生对分类加法计数原理和分步乘法计数原理的理解程度。

2. 案例分析报告:评估学生在案例分析中的表现,包括问题解决能力和逻辑思维能力。

3. 小组讨论评价:评价学生在小组讨论中的参与程度、团队合作能力和问题解决能力。

七、教学反思1. 反思教学内容:检查教学内容是否全面、清晰,是否需要调整或补充。

分类计数原理和分步计数原理 教案

分类计数原理和分步计数原理 教案

<<§4.1 分类计数原理和分步计数原理>>教案(二)观察归纳,形成概念:(三)比较归纳,深化概念:坐这些交通工具从甲地到乙地共有多少种不同的走法?引例2:某人从甲地出发,经过乙地到达丙地。

从甲地到乙地有A,B,C共3条路可走;从乙地到丙地有a,b共2条路可走。

那么,从甲地经过乙地到丙地共有多少种不同的走法?分类计数原理(加法原理):若完成一件事,有n 类办法,在第1类办法中有1m种不同方法,在第2类中有2m种不同方法,……,在第n类办法中有nm种不同方法。

每一类方法中的每一种方法均可直接完成这件事,那么完成这件事情共有12nN m m m=+++种不同方法。

分步计数原理(乘法原理):若完成一件事,分成n个步骤,做第1步有1m种不同方法,做第2步有2m种不同方法,……,做第n步有nm种不同方法。

每一种方法均需几步才可完成这件事,那么完成这件事情共有12nN m m m=⨯⨯⨯种不同方法。

回顾两个引例:1、N = 3+2+1=6 2、N=3×2=6,比较、归纳两个原理:提示提问归纳提示回答思考推导思考讨论(五)总结反思,加深理解:(六)布置作业,分层练习:示、补充)3、应用两个原理的注意点:(1)加法原理中的“分类”要全面,不能遗漏;但也不能重复;“类”与“类”之间是并列的、互斥的、独立的。

(2)乘法原理中的“分步”程序要正确。

“步”与“步”之间是连续的,不间断的,缺一不可;但也不能重复、交叉。

描述分类计数原理和分步计数原理的诗:两大原理妙无穷,解题应用各不同; 多思慎密最重要,茫茫数理此中求。

1、习题册69、70页。

2、课后拓展(选做题):如图,一蚂蚁沿着长方体的棱,从它的一个顶点爬到相对的另一个顶点的最近路线共有多少条?总 结 提 升引 导 启 发 教 学反 思体 会 得 失欣 赏 体 会 复 习练 习AC。

高中数学_分类计数原理与分步计数原理教学设计学情分析教材分析课后反思

高中数学_分类计数原理与分步计数原理教学设计学情分析教材分析课后反思

《分类计数原理与分步计数原理》教学设计课题:分类计数原理与分步计数原理课型:新授课一、教材分析1、教材的地位与作用《分类加法计数原理与分步乘法计数原理》,是高中数学人教A版选修2-3第一章第一节课。

分类加法计数原理和分步乘法计数原理是排列、组合的基础,学生对这两个原理的理解,掌握和运用,成为学好本章的一个关键。

2、教学目标(1)知识目标掌握计数的两个基本原理,并能正确的用它们分析和解决一些简单的问题.(2)能力目标通过计数基本原理的理解和运用,提高学生分析问题和解决问题的能力,开发学生的逻辑思维能力.(3)情感目标培养学生勇于探索、勇于创新的精神,面对现实生活中复杂的事物和现象,能够作出正确的分析,准确的判断,进而拿出完善的处理方案,提高实际的应变能力。

3、重点、难点重点:分类计数原理与分步计数原理难点:正确运用分类计数原理与分步计数原理二、学情分析1、认知水平:已有使用计数原理的生活经验,但缺少思维上升,将通过再现生活情境帮助自我建构;2、心理特点:他们热爱数学,但缺少数学自信,让他们在体验生活应用和实践的成功乐趣,从而爱上数学,爱上学习;3、能力水平:动手操作能力强,但抽象思维能力弱,将通过体验性,过程性来实现。

三、教法分析科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。

基于此,我准备采用的教法:是启发引导,学生讨论相结合的方法,这样可以充分调动学生的积极性,增强同学们的参与机会,让学生在学中思,在思中学,培养学生的数学观察猜想能力,启迪学生的探索灵感。

让学生有一个直观的感受,然后在教师的引导下让学生形成感性认识。

通过设问,让学生充分进行讨论,逐步引导学生形成概念。

四、学法指导“授人与鱼,不如授人与渔”。

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,运用观察分析讨论总结的学习方法。

五、教学过程设计(一)提出课题――引入新课首先,提出本节课的课题:分类加法计数原理与分步乘法计数原理。

分类计数原理与分步计数原理教案

分类计数原理与分步计数原理教案

分类计数原理与分步计数原理教案●教学目标(一)教学知识点1.分类计数原理.2.分步计数原理.(二)能力训练要求1.正确理解分类计数原理与分步计数原理的内容.2.正确运用两个基本原理分析、解决一些简单问题.3.了解基本原理在实际生产、生活中的应用.4.提高分析问题、解决问题的能力.(三)德育渗透目标要求学生在现实生活中面对复杂的事物和现象,能够作出正确的分析,准确的判断,进而拿出完善的处理方案,提高实际的应变能力,从而认识数学知识与现实生活的内在联系及不可分割性.●教学重点分类计数原理与分步计数原理.●教学难点正确运用分类计数原理与分步计数原理.●教学方法启发引导式在两个基本原理的教学过程中,应启发学生由特殊情形归纳出一般原理,这一过程遵循由简单到复杂的认知规律,而且在基本原理的语言叙述上,也采用了生活化的语言,使学生易于理解.其次,要引导学生通过寻求两个原理的区别来理解原理.其一,认识到理解分类计数原理的关键是分类标准的确定,然后在确定的标准下分类,而完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法.其二,分步计数原理应根据问题的特点先确定一个分步的标准,还要注意满足完成一件事必须并且只需连续完成这n个步骤后这件事才算完成.●教学准备投影片三张第一张:问题一及图示(记作§10.1.1 A)第二张:问题二及图示(记作§10.1.1 B)第三张:本节例题(记作§10.1.1 C)●教学过程Ⅰ.课题导入[师]从引言部分大家了解到,排列组合是完成某项工作的方法种数的知识,在实际生产生活中有着十分广泛的应用,而学习排列组合知识,首先要熟悉分类计数原理与分步计数原理这两个关于计数的基本原理,它们是在人们大量实践经验的基础上归纳出来的基本规律.它们不仅是指导排列数、组合数计算公式的依据,而且其基本思想方法贯穿在解决本章应用问题的始终.下面,我们将通过实例给出两个基本原理,并结合实例进一步熟悉两个原理.Ⅱ.讲授新课[师]首先,我们来看问题一.(给出投影片§10.1.1 A)问题一:从甲地到乙地,可以乘火车,也可以乘汽车.一天中,火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?图示:[师生共析]要完成从甲地到乙地这件事,从交通工具上可以有两类选择,即乘火车或者乘汽车,无论乘坐哪一类都可达到目的.若乘火车有3种走法,若乘汽车有2种走法.由于每一种走法都可以从甲地到乙地,所以共有3+2=5种不同的走法,如图所示.[师]在上述的分析过程中,就体现了分类计数原理.(板书原理内容)分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m+m2+…+m n种不同的方法.1[师]对于分类计数原理,我们应注意以下几点.(1)从分类计数原理中可以看出,各类之间相互独立,都能完成这件事,且各类方法数相加,所以分类计数原理又称加法原理;(2)分类时,首先要根据问题的特点确定一个分类的标准,然后在确定的分类标准下进行分类;(3)完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法.[师]接下来,我们再看问题二.(给出投影片§10.1.1 B)问题二:从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地.一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法?[师]问题二与问题一同是研究从甲地到乙地的不同走法,但是,我们要注意找出这两个问题的不同之处.[生]在前一问题中,采用乘火车或乘汽车中的任何一种方式,都可以从甲地到乙地.而在这个问题中,必须经过先乘火车,后乘汽车两个步骤,才能从甲地到达乙地.[师]很好,下面我们就按照上述思路来完成问题二的解答.[师生共析]要完成从甲地到乙地这件事,需要分成两个步骤,即第一步乘火车,第二步乘汽车.因为乘火车有3种走法,乘汽车有2种走法,并且两步依次完成后才能达到目的,所以乘一次火车再接乘一次汽车从甲地到乙地,共有3×2=6种不同的走法.[师]从如下的图示中,我们可以具体地看到这6种走法.图示:所有走法火车1——汽车1火车1——汽车2火车2——汽车1火车2——汽车2火车3——汽车1火车3——汽车2[师]在问题二的分析过程中,就体现了分步计数原理.(板书原理内容)分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么完成这件事共有N=m×m2×…×m n种不同的方法.1[师]对于分步计数原理,我们还应注意以下几点.(1)分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤完成了,这件事才算完成;(2)分步时首先要根据问题的特点确定一个分步的标准;(3)分步时还要注意满足完成一件事必须并且只需连续完成n个步骤后这件事才算完成.[师]下面,我们结合例题来一起体会两个基本原理的正确运用.[例1]电视台在“欢乐大本营”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多种不同的结果?分析:抽奖过程分三步完成,考虑到幸运之星可分别出现在两个信箱中,故可分两种情形考虑.解:分两大类:(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有:30×29×20=17400种结果;(2)幸运之星在乙箱中抽,同理有20×19×30=11400种结果,因此共有不同结果17400+11400=28800种.[师]大家在综合运用两个原理时,既要会合理分类,又能合理分步,一般情形是先分类后分步.[例2]4张卡片的正、反面分别有0与1,2与3,4与5,6与7,将其中3张卡片排放在一起,可组成多少个不同的三位数?分析:分三步确定百位、十位、个位,注意到首位不能为0,且正反两面可用.解:分三个步骤:第一步:首位可放8-1=7个数;第二步:十位可放6个数;第三步:个位可放4个数.根据分步计数原理,可以组成N=7×6×4=168个数.[师]分类计数原理和分步计数原理是排列组合的理论基础,这两个原理的本质区别在于分类与分步,分类用分类计数原理,分步用分步计数原理.用分类计数原理的关键在于恰当分类,分类要做到“不重不漏”,应用分步计数原理的关键在于分步,要正确设计分步程序.[师]下面我们通过课堂练习来进一步熟悉基本原理的应用.Ⅲ.课堂练习练习:课本P861.解:(1)分两类:第一类:从5人中选1人,有5种选法;第二类:从4人中选1人,有4种选法;根据分类计数原理,共有不同选法:N=5+4=9种.(2)分两步:第一步:从A村去B村,有3种走法;第二步:从B村去C村,有2种走法;根据分步计数原理,共有不同走法:N=3×2=6种.2.解:(1)分三类:第一类:从高一学生中选,有3种选法;第二类:从高二学生中选,有5种选法;第三类:从高三学生中选,有4种选法.根据分类计数原理,共有:N=3+5+4=12种.(2)分三步:第一步:从高一学生中选,有3种选法;第二步:从高二学生中选,有5种选法;第三步:从高三学生中选,有4种选法.根据分步计数原理,共有:N=3×5×4=60种.3.解:分三步:第一步:从第一个括号中选,有3种选法;第二步:从第二个括号中选,有4种选法;第三步:从第三个括号中选,有5种选法;根据分步计数原理,共有:N=3×4×5=60种不同项.Ⅳ.课时小结[师]通过本节学习,要求大家正确理解分类计数原理与分步计数原理,并能正确运用两个基本原理分析、解决生产、生活中的实际应用.Ⅴ.课后作业(一)课本习题10.11.解:分两类:第一类:选本地产品有4种选法;第二类:选外地产品有7种选法;根据分类计数原理有:N=4+7=11种选法.2.解:分两大类:第一大类:由甲地经乙地到丁地,又可分为两步:第一步:甲到乙有2种走法;第二步:由乙到丁有3种走法;由分步计数原理,第一类共有2×3=6种走法;第二大类:由甲地经丙地到丁地,又可分为两步:第一步:甲到丙有4种走法;第二步:由丙到丁有2种走法;由分步计数原理,第二类共有4×2=8种走法;再根据分类计数原理,从甲到丁共有:N=6+8=14种不同走法.3.解:构造分数分两步:第一步:分子从1,5,9,13中选取,有4种选法;第二步:从4,8,12,16中选分母,有4种选法.由分步计数原理,有不同分数N=4×4=16种.构造真分数分四类:第一类:1作分子,分母有4种选法;第二类:5作分子,分母有3种选法;第三类:9作分子,分母有2种选法;第四类:13作分子,分母有1种选法.由分类计数原理,共有N=4+3+2+1=10个不同真分数.(二)1.预习课本P例1~例3.852.预习题纲:(1)熟悉基本原理应用;(2)各例题中分类或分步的标准是什么.。

分类加法计数原理与分步乘法计数原理教学设计

分类加法计数原理与分步乘法计数原理教学设计

分类加法计数原理与分步乘法计数原理教学设计教学设计:分类加法计数原理与分步乘法计数原理一、教学目标:1.了解分类加法计数原理和分步乘法计数原理的概念和应用。

2.掌握分类加法计数原理和分步乘法计数原理的解题方法。

3.培养学生的分类、归纳和逻辑思维能力。

二、教学准备:1.教学用具:黑板、粉笔、教学课件、教学实例。

2.学生学具:纸笔。

三、教学过程:步骤一:导入新知识1.教师简要介绍分类加法计数原理和分步乘法计数原理的内容和应用。

2.引导学生思考:在日常生活中,是否经常遇到需要进行分类和计数的问题?举例说明。

步骤二:分类加法计数原理1.定义:将问题分解成若干个相互独立的部分,计算每个部分的数量然后求和。

2.通过教学实例,讲解分类加法计数原理的解题方法。

(1)例1:班有3个男生和4个女生,问这个班一共有几个人?(2)例2:有红、黄、绿三种颜色的苹果,已知红色有5个,黄色有3个,绿色有2个,问一共有几个苹果?(3)例3:一件衣服原价100元,店铺打8折,现在卖多少钱?3.设计学生练习题,引导学生自主解答。

步骤三:分步乘法计数原理1.定义:将问题分解成若干个相互独立的步骤,计算每个步骤的数量然后相乘。

2.通过教学实例,讲解分步乘法计数原理的解题方法。

(1)例1:从1到4,选出一个数字作为个位数,选出一个数字作为十位数,选出一个数字作为百位数,一共有多少种不同的三位数?(2)例2:现有4个不同的数字,从中选取2个数字,可以组成多少个不同的两位数?3.设计学生练习题,引导学生自主解答。

步骤四:小结与巩固1.简要总结分类加法计数原理和分步乘法计数原理的应用和解题方法。

2.设计综合练习题,要求学生灵活运用分类加法计数原理和分步乘法计数原理解答问题。

步骤五:拓展应用1.鼓励学生运用分类加法计数原理和分步乘法计数原理解决实际生活中的问题。

(1)例1:在次抽奖活动中,每个人有5张彩票,每张彩票都有4个数字,已知每个数字的范围是1到10,那么这次抽奖一共有多少个可能的中奖号码?(2)例2:一个班级有4个男生和3个女生,学校要选出一个代表队,其中队长必须是男生,队员可以是男生或女生,那么一共有多少种可能的代表队组合?2.扩大学生的思维视野,培养他们的综合运用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类计数原理与分步计数原理的课程教学设计
一、本节内容的地位与重要性“分类计数原理与分步计数原理”是《高中数学》一节独特内容。

这一节课与排列、组合的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解分类计数原理与分步计数原理,还为日后排列、组合和二项式定理的教学做好准备, 起到奠基的重要作用。

二、关于教学目标的确定
根据两个基本原理的地位和作用,我认为本节课的教学目标是:
(1)使学生正确理解两个基本原理的概念;
(2)使学生能够正确运用两个基本原理分析、解决一些简单问
题;
(3)提高分析、解决问题的能力
(4)使学生树立“由个别到一般,由一般到个别”的认识事物的辩证唯物主义哲学思想观点。

三、关于教学重点、难点的选择和处理中学数学课程中引进的关于排列、组合的计算公式都是以两个计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以正确理解两个基本原理并能解决实际问题是学习本章的重点内容。

正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件.而原理中提到的分步和分类,学生不是一下子就能理解深刻的,面对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。

必需使学生认清
两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生接受概念并对如何运用这两个基本原理有正确清楚的认识。

教学中两个基本问题的引用及引伸,就是为突破难点做准备。

四、关于教学方法和教学手段的选用
根据本节课的内容及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。

启发引导式作为一种启发式教学方法,体现了认知心理学的基本理论。

符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则,教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。

电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。

另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。

五、关于学法的指导
“授人以鱼,不如授人以渔”,在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的目标。

教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,类比推理,在积极的双边活动中,学生找到了解决疑难的方法。

整个过程贯穿“设疑” ――“思索”一一“发现”一
一“解惑”四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。

六、关于教学程序的设计
(一)课题导入
这是本章的第一节课,是起始课,讲起始课时,把这一学科的内容作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为下面的学习打下思想基础。

所以,首先阅读引言,明确任务,激发兴趣。

由学生感兴趣的乒乓球比赛提出问题,引出学习本节的必要性,明确研究计数方法是本章内容的独特性,从应用的广泛看学习本章内容的重要性。

同时板书课题(分类计数原理与分步计数原理)
这样做,能使学生明白本节内容的地位和作用,激发其学习新知识的欲望,为顺利完成教学任务做好思维上的准备。

(二)新课讲授
通过幻灯片给出问题,配图分析,讲清坐火车与坐汽车两类方法均可,每类中任一种办法都可以独立地把从甲地到乙地这件事办好。

紧跟着给出:
引申1:若甲地到乙地一天中还有4班轮船可乘,那么一天中,
坐这些交通工具从甲地到一点共有多少种不同的走法?
引伸2:若完成一件事,有类办法.在第1类办法中有种不同方法在第2类办法中有种不同的方法,……,在第类办法中有种不同方法,每一类中的每一种方法均可完成这件事, 那么完成这件事共有多少种不同方法?
这个问题的两个引申由渐入深、循序渐进为学生接受分类计数原理做好了准备。

板书分类计数原理内容:
完成一件事, 有类办法.在第1类办法中有种不同方法, 在第2类
办法中有种不同的方法,……,在第类办法中有种不同方法,那么完成这件事共有种不同的方法.(也称加法原理)
此时,趁学生对于原理有了一个较清晰的认识,引导学生分析分类计数原理内容,启发总结得下面三点注意:(出示幻灯片)
(1)各分类之间相互独立,都能完成这件事;
(2)根据问题的特点在确定的分类标准下进行分类;
(3)完成这件事的任何一种方法必属于某一类,并且分别属于
不同两类的两种方法都是不同的方法。

这样做加深学生对分类计数原理的正确理解,突出了重点,突破了难点。

接下来给出问题2:(出示幻灯片)由A村去B村的道路有3条,由B村去C村的道路有2条(见图
9—1),从A村经B村去C村,共有多少种不同的走法?
提出问题:问题1与问题2同是研究从甲地到乙地的不同走法,请找出这两个问题的不之处?学生会发现问题1 中采用乘火车或乘汽车都可以从甲地到乙地,而问题2 中必須经过先乘火车后乘汽车两个步骤才能完成从甲地到乙地这件事。

问题2 的讲授采用给出问题,配图分析,组织讨论,强调分步。


多媒体配不同的颜色闪现出六种不同的走法,让学生列式求出不同走法数,并列举所有走法。

归纳得出:分步计数原理(板书原理内容)分步计数原理:做一件事,完成它需要分成n 个步骤,做第一步有ml种不同的方法,做第二步有m2种不同的方法,,做第n 步有mn种不同的方法.那么,完成这件事共有N = mix m2x — x mn
种不同的方法.
同样趁学生对定理有一定的认识,引导学生分析分步计数原理内容,启发总结得下面三点注意:(出示幻灯片)
(1 )各步骤相互依存,只有各个步骤完成了,这件事才算完成;
(2)根据问题的特点在确定的分步标准下分步;
(3)分步时要注意满足完成一件事必须并且只需连续完成这N 个步骤这件事才算完成
(三)应用举例
教材例1:(书架取书问题)引导学生分析解答, 注意区分是分
类还是分步。

例2:由数字0,1,2,3,4可以组成多少个三位整数(各位上
的数字允许重复)?本题设置了4 个问题:
(1)每一个三位数是由什么构成的?(三个整数字)
(2)023 是一个三位数吗?(百位上不能是0)
(3)组成一个三位数需要怎么做?(分成三个步骤来完成:第一步
确定百位上的数字;第二步确定十位上的数字;第三步确定个位上的数字)
(4)怎样表述?
教师巡视指导、并归纳解:要组成一个三位数,需要分成三个步骤:第一步确定百位
上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5 种选法;第三步确定个位上的数字,仍有5种选法.根据分步计数原理,得到可以组成的三位整数的个数是N=4X 5X 5=100.
答:可以组成100 个三位整数.
(教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高.
教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的
促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础)
(四)归纳小结师:什么时候用分类计数原理、什么时候用分步计数原理呢?生:分类时用分类计数原理,分步时用分步计数原理.师:应用两个基本原理时需要注意什么呢?生:分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的.
(五)课堂练习
P222 :练习1〜4 .学生板演第4题
(对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)
(六)布置作业
P222 :练习5,6,7.
补充题:
1 .在所有的两位数中,个位数字小于十位数字的共有多少个?
(提示:按十位上数字的大小可以分为9类,共有9+ 8+ 7+ (2)
1=45个个位数字小于十位数字的两位数)
2 .某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第
一、二、三志愿依次填写3 个不同的志愿,求该生填写志愿的方式的种数.
( 提示:需要按三个志愿分成三步.共有m(m-1)(m-2) 种填写方式)
3 .在所有的三位数中,有且只有两个数字相同的三位数共有多少个?
( 提示:可以用下面方法来求解:(1) △△□,(2) △□△,(3)
□(1) , (2) , (3)类中每类都是9X9种,共有9X9 + 9X 9+ 9
x 9=3X 9X 9=243个只有两个数字相同的三位数)
4 .某小组有1 0人,每人至少会英语和日语中的一门,其中8 人会英语,
5 人会日语,(1) 从中任选一个会外语的人,有多少种选法?(2) 从
中选出会英语与会日语的各1 人,有多少种不同的选法?
( 提示:由于8+ 5=13> 10,所以10人中必有3人既会英语又会日语.(1 )N=5 + 2+ 3;(2)N=5 x 2+ 5 x 3+ 2 x 3)。

相关文档
最新文档